Theoretical and Experimental Aspects of Current and Future Research on NbO2 Thin Film Devices
Abstract
:1. Introduction
2. Nucleation and Growth
3. Electrical Properties
4. Thermal Properties
5. Mechanical Properties
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nico, C.; Soares, M.R.N.; Rodrigues, J.; Matos, M.; Monteiro, R.; Graça, M.P.F.; Valente, M.A.; Costa, F.M.; Monteiro, T. Sintered NbO powders for electronic device applications. J. Phys. Chem. C 2011, 115, 4879. [Google Scholar] [CrossRef]
- Baur, W.H. Rutile-type compounds. Acta Cryst. B 1976, 32, 2200. [Google Scholar] [CrossRef]
- Maddox, B.R.; Yoo, C.S.; Kasinathan, D.; Pickett, W.E.; Scalettar, R.T. High-pressure structure of half-metallic CrO2. Phys. Rev. B 2006, 73, 144111. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.; Rao, M.S.R.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A.; et al. The 2016 oxide electronic materials and oxide interfaces roadmap. J. Phys. D Appl. Phys. 2016, 49, 433001. [Google Scholar] [CrossRef]
- O’Hara, A.; Nunley, T.N.; Posadas, A.B.; Zollner, S.; Demkov, A.A. Electronic and optical properties of NbO2. J. Appl. Phys. 2014, 116, 213705. [Google Scholar] [CrossRef]
- Joshi, T.; Senty, T.R.; Borisov, P.; Bristow, A.D.; Lederman, D. Preparation, characterization, and electrical properties of epitaxial NbO2 thin film lateral devices. J. Phys. D Appl. Phys. 2015, 48, 335308. [Google Scholar] [CrossRef] [Green Version]
- Bolzan, A.A.; Fong, C.; Kennedy, B.J.; Howard, C.J. A powder neutron diffraction study of semiconducting and metallic niobium dioxide. J. Solid State Chem. 1994, 113, 9. [Google Scholar] [CrossRef]
- Ji, Q.; Gao, X.; Zhang, Q.; Jin, L.; Wang, D.; Xia, Y.; Yin, S.; Xia, S.; Hohn, N.; Zuo, X.; et al. Dental resin monomer enables unique NbO2/carbon lithium-ion battery negative electrode with exceptional performance. Adv. Funct. Mater. 2019, 29, 1904961. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Cho, Y.; Nogales, P.M.; Jeong, S.-K. NbO2 as a noble zero-strain material for Li-Ion batteries: Electrochemical redox behavior in a nonaqueous solution. Energies 2019, 12, 2960. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Z.; Lin, Y. Optical and dielectric properties of a nanostructured NbO2 thin film prepared by thermal oxidation. J. Phys. D Appl. Phys. 2004, 37, 3392. [Google Scholar] [CrossRef]
- Lin, J.-H.; Patil, R.A.; Wu, M.-A.; Yu, L.-G.; Liu, K.-D.; Devan, W.-T.G.R.S.; Ho, C.-H.; Liou, Y.; Ma, Y.-R. Large-area nanoscale farmland-like surfaces of one-dimensional NbO2 nanorods with multigrowth directions: Studies on the purple-blue photoluminescence and low-field electron emissions. J. Mater. Chem. C 2014, 2, 8667. [Google Scholar] [CrossRef]
- Rahman, J.U.; Meang, E.-J.; Nguyen, D.V.; Seo, W.-S.; Hussain, A.; Kim, M.H.; Lee, S. The synthesis and thermoelectric properties of p-type Li1-xNbO2-based compounds. J. Electron. Mater. 2017, 46, 1740. [Google Scholar] [CrossRef]
- Music, D.; Chen, Y.-T.; Bliem, P.; Geyer, R.W. Amorphous-crystalline transition in thermoelectric NbO2. J. Phys. D Appl. Phys. 2015, 48, 275301. [Google Scholar] [CrossRef]
- Backhaus-Ricoult, M.; Rustad, J.; Moore, L.; Smith, C.; Brown, J. Semiconducting large bandgap oxides as potential thermoelectric materials for high-temperature power generation? Appl. Phys. A 2014, 116, 433. [Google Scholar] [CrossRef]
- Roberson, J.A.; Rapp, R.A. Electrical properties of NbO and NbO2. J. Phys. Chem. Solids 1969, 30, 1119. [Google Scholar] [CrossRef]
- Isobe, S.; Kudoh, K.; Hino, S.; Hara, K.; Hashimoto, N.; Ohnuki, S. Catalytic efficiency of Nb and Nb oxides for hydrogen dissociation. Appl. Phys. Lett. 2015, 107, 081602. [Google Scholar] [CrossRef]
- Huang, L.; Wu, J.; Han, P.; Al-Enizi, A.M.; Almutairi, T.M.; Zhang, L.; Zheng, G. NbO2 electrocatalyst toward 32% faradaic efficiency for N2 fixation. Small Methods 2019, 3, 1800386. [Google Scholar] [CrossRef]
- Sun, J.; Sun, W.; Du, L.; Du, C.; Gao, Y.; Yin, G. Tailored NbO2 modified Pt/graphene as highly stable electrocatalyst towards oxygen reduction reaction. Fuel Cells 2018, 18, 360. [Google Scholar] [CrossRef]
- Geselbracht, M.J.; Richardson, T.J.; Stacy, A.M. Superconductivity in the layered compound LixNbO2. Nature 1990, 345, 324. [Google Scholar] [CrossRef]
- Sakata, K. Note on the phase transition in NbO2. J. Phys. Soc. Jpn. 1969, 26, 582. [Google Scholar] [CrossRef]
- Beebe, M.R.; Klopf, J.M.; Wang, Y.; Kittiwatanakul, S.; Lu, J.; Wolf, S.A.; Lukaszew, R.A. Time-resolved light-induced insulator-metal transition in niobium dioxide and vanadium dioxide thin films. Opt. Mater. Express 2017, 7, 213. [Google Scholar] [CrossRef]
- Music, D.; Geyer, R.W. Theoretical and experimental study of NbO2 nanoslice formation. J. Phys. D Appl. Phys. 2015, 48, 305302. [Google Scholar] [CrossRef]
- Kumar, S.; Strachan, J.P.; Williams, R.S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 2017, 548, 318. [Google Scholar] [CrossRef]
- Leon, J.J.D.; Norris, K.J.; Yang, J.J.; Sevic, J.F.; Kobayashi, N.P. A niobium oxide-tantalum oxide selector-memristor self-aligned nanostack. Appl. Phys. Lett. 2017, 110, 103102. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Kim, T.; Sohn, H. Effect of Pt top electrode deposition on the valence state and resistance switching behavior of NbO2-x. J. Mater. Sci. Mater. Electron 2020, 31, 14384. [Google Scholar] [CrossRef]
- Park, J.; Hadamek, T.; Posadas, A.B.; Cha, E.; Demkov, A.A.; Hwang, H. Multi-layered NiOy/NbOx/NiOy fast drift-free threshold switch with high Ion/Ioff ratio for selector application. Sci. Rep. 2017, 7, 4068. [Google Scholar] [CrossRef]
- Lee, J.C.; Durand, W.W. Electrically stimulated optical switching of NbO2 thin films. J. Appl. Phys. 1984, 56, 3350. [Google Scholar] [CrossRef]
- Wong, F.J.; Hong, N.; Ramanathan, S. Orbital splitting and optical conductivity of the insulating state of NbO2. Phys. Rev. B 2014, 90, 115135. [Google Scholar] [CrossRef]
- Lee, J.H.; Cha, E.J.; Kim, Y.T.; Chae, B.K.; Kim, J.J.; Lee, S.Y.; Hwang, H.S.; Park, C.G. A study of threshold switching of NbO2 using atom probe tomography and transmission electron microscopy. Micron 2015, 79, 101. [Google Scholar] [CrossRef]
- Zhang, J.; Norris, K.J.; Gibson, G.; Zhao, D.; Samuels, K.; Zhang, M.M.; Yang, J.J.; Park, J.; Sinclair, R.; Jeon, Y.; et al. Thermally induced crystallization in NbO2 thin films. Sci. Rep. 2016, 6, 34294. [Google Scholar] [CrossRef]
- Wang, P.; Khan, A.I.; Yua, S. Cryogenic behavior of NbO2 based threshold switching devices as oscillation neurons. Appl. Phys. Lett. 2020, 116, 162108. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, J.; Ni, Y.; Chen, X.; Mescall, R.; Isaacs-Smith, T.; Comes, R.B.; Kittiwatanakul, S.; Wolf, S.A.; Lu, J.; et al. Structural, transport, and ultrafast dynamic properties of V1-xNbxO2 thin films. Phys. Rev. B 2019, 99, 245129. [Google Scholar] [CrossRef]
- Noskin, L.E.; Seidner, A.; Schlom, D.G. Growth of NbO2 by molecular-beam epitaxy and characterization of its metal-insulator transition. MRS Adv. 2017, 2, 3031. [Google Scholar] [CrossRef] [Green Version]
- Nivedita, L.R.; Haubert, A.; Battu, A.K.; Ramana, C.V. Correlation between crystal structure, surface/interface microstructure, and electrical properties of nanocrystalline niobium thin films. Nanomaterials 2020, 10, 1287. [Google Scholar] [CrossRef]
- Kautz, E.J.; Gwalani, B.; Lambeets, S.V.M.; Kovarik, L.; Schreiber, D.K.; Perea, D.E.; Senor, D.; Liu, Y.-S.; Battu, A.K.; Tseng, K.-P.; et al. Rapid assessment of structural and compositional changes during early stages of zirconium alloy oxidation. NPJ Mater. Degrad. 2020, 4, 29. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef] [Green Version]
- Case, E.D. Thermal fatigue and waste heat recovery via thermoelectrics. J. Electron. Mater. 2012, 41, 1811. [Google Scholar] [CrossRef]
- Petrov, I.; Barna, P.B.; Hultman, L.; Greene, J.E. Microstructural evolution during film growth. J. Vac. Sci. Technol. A 2003, 21, S117. [Google Scholar] [CrossRef]
- Mráz, S.; Schneider, J.M. Influence of the negative oxygen ions on the structure evolution of transition metal oxide thin films. J. Appl. Phys. 2006, 100, 023503. [Google Scholar] [CrossRef]
- Hála, M.; Čapek, J.; Zabeida, O.; Klemberg-Sapieha, J.E.; Martinu, L. Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies. J. Phys. D Appl. Phys. 2012, 45, 055204. [Google Scholar] [CrossRef]
- Deng, H.T.; Kerns, K.P.; Castleman, A.W. Formation, structures, and reactivities of niobium oxide cluster ions. J. Phys. Chem. 1996, 100, 13386. [Google Scholar] [CrossRef]
- Fielicke, A.; Meijer, G.; von Helden, G. Infrared spectroscopy of niobium oxide cluster cations in a molecular beam: Identifying the cluster structures. J. Am. Chem. Soc. 2003, 125, 3659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Music, D.; Schmidt, P.; Mráz, S. Adsorption of film-forming species on NbO and NbO2 surfaces. J. Vac. Sci. Technol. A 2017, 35, 061512. [Google Scholar] [CrossRef]
- Music, D.; Prünte, S.; Keuter, P.; Saksena, A. On thermal conductivity of amorphous niobium monoxide. J. Phys. D Appl. Phys. 2020, 53, 285303. [Google Scholar] [CrossRef]
- Posadas, A.; Kvit, A.; Demkov, A.A. Growth of NbO2 thin films on GaN (0001) by molecular beam epitaxy. Thin Solid Film. 2019, 691, 137603. [Google Scholar] [CrossRef]
- Jacob, K.T.; Shekhar, C.; Vinay, M. Thermodynamic properties of niobium oxides. J. Chem. Eng. Data 2010, 55, 4854. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Cheng, X. Sequential insulating-metal-insulating phase transition of NbO2 by doping photoexcited carrier. Comput. Mater. Sci. 2020, 173, 109434. [Google Scholar] [CrossRef]
- Kang, M.; Yu, S.; Son, J. Voltage-induced insulator-to-metal transition of hydrogen-treated NbO2 thin films. J. Phys. D Appl. Phys. 2015, 48, 095301. [Google Scholar] [CrossRef]
- Joshi, T.; Cirino, E.; Morley, S.A.; Lederman, D. Thermally induced metal-to-insulator transition in NbO2 thin films: Modulation of the transition temperature by epitaxial strain. Phys. Rev. Mater. 2019, 3, 124602. [Google Scholar] [CrossRef]
- Sun, W.; Gao, B.; Chi, M.; Xia, Q.; Yang, J.J.; Qian, H.; Wu, H. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 2019, 10, 3453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Kyrsta, S.; Music, D.; Ahuja, R.; Schneider, J.M. Structure of the Ge-Sb-Te phase-change materials studied by theory and experiment. Solid State Commun. 2007, 143, 240. [Google Scholar] [CrossRef]
- Wuttig, M.; Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 2007, 6, 824. [Google Scholar] [CrossRef] [PubMed]
- Barth, J.V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353. [Google Scholar] [CrossRef]
- Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Aydil, E.S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985. [Google Scholar] [CrossRef]
- Wang, M.; Huang, C.; Cao, Y.; Yu, Q.; Deng, Z.; Liu, Y.; Huang, Z.; Huang, J.; Huang, Q.; Guo, W.; et al. Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D Appl. Phys. 2009, 42, 155104. [Google Scholar] [CrossRef]
- Music, D.; Basse, F.H.-U.; Haβdorf, R.; Schneider, J.M. Synthesis and thermoelectric properties of RuO2 nanorods. J. Appl. Phys. 2010, 108, 013707. [Google Scholar] [CrossRef]
- Lin, Y.-T.; Chen, C.-Y.; Hsiung, C.-P.; Cheng, K.-W.; Gan, J.-Y. Growth of RuO2 nanorods in reactive sputtering. Appl. Phys. Lett. 2006, 89, 063123. [Google Scholar] [CrossRef] [Green Version]
- Music, D.; Breunung, J.; Mráz, S.; Schneider, J.M. Role of RuO3 for the formation of RuO2 nanorods. Appl. Phys. Lett. 2012, 100, 033108. [Google Scholar] [CrossRef]
- Wei, M.; Qi, Z.; Ichihara, M.; Zhou, H. Synthesis of single-crystal niobium pentoxide nanobelts. Acta Mater. 2008, 56, 2488. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hata, H.; Salama, M.; Mallouk, T.E. Scrolled sheet precursor route to niobium and tantalum oxide nanotubes. Nano Lett. 2007, 7, 2142. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Nolas, G.S.; Goldsmid, H.J. The figure of merit in amorphous thermoelectrics. Phys. Status Solidi A 2002, 194, 271. [Google Scholar] [CrossRef]
- Liu, Y.; Lan, J.; Xu, W.; Liu, Y.; Pei, Y.-L.; Cheng, B.; Liu, D.-B.; Lin, Y.-H.; Zhao, L.-D. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem. Commun. 2013, 49, 8075. [Google Scholar] [CrossRef]
- Tang, J.; Wang, W.; Zhao, G.-L.; Li, Q. Colossal positive Seebeck coefficient and low thermal conductivity in reduced TiO2. J. Phys. Condens. Matter 2009, 21, 205703. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Hao, Q.; Chen, G.; Poudel, B.; Wang, X.; Wang, D.; Ren, Z. Thermoelectric property studies on bulk TiOx with x from 1 to 2. Appl. Phys. Lett. 2007, 91, 052505. [Google Scholar] [CrossRef]
- Walia, S.; Balendhran, S.; Yi, P.; Yao, D.; Zhuiykov, S.; Weber, M.P.R.; Strano, M.S.; Bhaskaran, M.; Sriram, S.; Kalantar-zadeh, K. MnO2-based thermopower wave sources with exceptionally large output voltages. J. Phys. Chem. C 2013, 117, 9137. [Google Scholar] [CrossRef]
- Music, D.; Chen, Y.-T.; Geyer, R.W.; Bliem, P.; Schneider, J.M. Modulation of transport properties of RuO2 with 3d transition metals. Mater. Res. Express 2014, 1, 045034. [Google Scholar] [CrossRef]
- Rajendran, S.; Rao, V.S. An anomalous behaviour in the phase stability of the system Fe203 and NiO. J. Mater. Sci. 1994, 29, 5673. [Google Scholar] [CrossRef]
- Terasaki, I.; Sasago, Y.; Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 1997, 56, R12685. [Google Scholar] [CrossRef]
- Ravichandran, J.; Siemons, W.; Scullin, M.L.; Mukerjee, S.; Huijben, M.; Moore, J.E.; Majumdar, A.; Ramesh, R. Tuning the electronic effective mass in double-doped SrTiO3. Phys. Rev. B 2011, 83, 035101. [Google Scholar] [CrossRef] [Green Version]
- Bahgat, A.A.; Ibrahim, F.A.; El-Desoky, M.M. Electrical and optical properties of highly oriented nanocrystalline vanadium pentoxide. Thin Solid Film. 2005, 489, 68. [Google Scholar] [CrossRef]
- Hutchins, M.G.; Abu-Alkhair, O.; El-Nahass, M.M.; Abdel-Hady, K. Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) thin films. J. Phys. Condens. Matter 2006, 18, 9987. [Google Scholar] [CrossRef]
- Hartung, D.; Gather, F.; Hering, P.; Kandzia, C.; Reppin, D.; Polity, A.; Meyer, B.K.; Klar, P.J. Assessing the thermoelectric properties of CuxO (x = 1 to 2) thin films as a function of composition. Appl. Phys. Lett. 2015, 106, 253901. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, J.; Xu, B.; Lan, J.; Zheng, Y.; Zhan, B.; Zhang, B.; Lin, Y.; Nan, C. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Appl. Phys. Lett. 2015, 106, 233903. [Google Scholar] [CrossRef]
- Jood, P.; Mehta, R.J.; Zhang, Y.; Peleckis, G.; Wang, X.; Siegel, R.W.; Borca-Tasciuc, T.; Dou, S.X.; Ramanath, G. Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties. Nano Lett. 2011, 11, 4337. [Google Scholar] [CrossRef] [PubMed]
- Flahaut, D.; Mihara, T.; Funahashi, R.; Nabeshima, N.; Lee, K.; Ohta, H.; Koumoto, K. Thermoelectrical properties of A-site substituted Ca1−xRexMnO3 system. J. Appl. Phys. 2006, 100, 084911. [Google Scholar] [CrossRef]
- Shin, W.; Murayama, N. Li-doped nickel oxide as a thermoelectric material. Jpn. J. Appl. Phys. 1999, 38, L1336. [Google Scholar] [CrossRef]
- Kowalski, K.; Ijjaali, M.; Bak, T.; Dupre, B.; Gleitzer, C.; Nowotny, J.; Rekas, M.; Sorrell, C.C. Semiconducting properties of CoO thin films. Ionics 2001, 7, 394. [Google Scholar] [CrossRef]
- Young, E.W.A.; Gerretsen, J.H.; De Wit, J.H.W. The oxide partial pressure dependence of the defect structure of chromium (III) oxide. J. Electrochem. Soc. 1987, 134, 2257. [Google Scholar] [CrossRef]
- Music, D.; Geyer, R.W.; Hans, M. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions. J. Appl. Phys. 2016, 120, 045104. [Google Scholar] [CrossRef]
- Music, D.; Geyer, R.W.; Hans, M. Enhanced thermoelectric performance of amorphous Nb based oxynitrides. Phys. B Condens. Matter 2015, 479, 96. [Google Scholar] [CrossRef]
- Slesazeck, S.; Mähne, H.; Wylezich, H.; Wachowiak, A.; Radhakrishnan, J.; Ascoli, A.; Tetzlaff, R.; Mikolajick, T. Physical model of threshold switching in NbO2 based memristors. RSC Adv. 2015, 5, 102318. [Google Scholar] [CrossRef]
- Griffith, K.J.; Wiaderek, K.M.; Cibin, G.; Marbella, L.E.; Grey, C.P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 2018, 559, 556. [Google Scholar] [CrossRef]
- Ding, H.; Song, Z.; Zhang, H.; Zhang, H.; Li, X. Niobium-based oxide anodes toward fast and safe energy storage: A review. Mater. Today Nano 2020, 11, 100082. [Google Scholar] [CrossRef]
- Liu, T.-R.; Chang, Y.-C.; Bayeh, A.W.; Wang, K.-C.; Chen, H.-Y.; Wang, Y.-M.; Chiang, T.-C.; Tang, M.-T.; Tseng, S.-C.; Huang, H.-C.; et al. Synergistic effects of niobium oxide–niobium carbide–reduced graphene oxide modified electrode for vanadium redox flow battery. J. Power Sources 2020, 473, 228590. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, G.; Onozato, T.; Jeen, H.; Ohta, H. Thermal conductivity tensor of NbO2. Int. J. Heat Mass Transf. 2019, 137, 263. [Google Scholar] [CrossRef]
- Music, D.; Stelzer, B. Intrinsic thermal shock behavior of common rutile oxides. Physics 2019, 1, 290–300. [Google Scholar] [CrossRef] [Green Version]
- Manning, W.R.; Hunter, O., Jr.; Calderwood, F.W.; Stacy, D.W. Thermal expansion of Nb2O5. J. Am. Ceram. Soc. 1972, 55, 342. [Google Scholar] [CrossRef]
- Daniel, R.; Holec, D.; Bartosik, M.; Keckes, J.; Mitterer, C. Size effect of thermal expansion and thermal/intrinsic stresses in nanostructured thin films: Experiment and model. Acta Mater. 2011, 59, 6631. [Google Scholar] [CrossRef]
- Boyle, W.F.; Bennett, J.G.; Shin, S.H.; Sladek, R.J. Elastic constants of NbO2 at room temeprature. Phys. Rev. B 1976, 14, 526. [Google Scholar] [CrossRef]
- Bennett, J.G.; Sladek, R.J. Low temperature elastic constants and Debye temperature of NbO2. Solid State Commun. 1978, 25, 1035. [Google Scholar] [CrossRef]
- Wu, A.Y.; Sladek, R.J. Elastic constants of NbO2 between 1.6 and 298 K. Phys. Rev. B 1982, 26, 2159. [Google Scholar] [CrossRef]
- Rimai, D.S.; Sladek, R.J. Pressure dependences of the elastic constants of semiconducting NbO2 at 296 K. Phys. Rev. B 1978, 18, 2807. [Google Scholar] [CrossRef]
- Hossain, N.; Günes, O.; Zhang, C.; Koughia, C.; Li, Y.; Wen, S.J.; Wong, R.; Kasap, S.; Yang, Q. Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 2019, 30, 9822. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564. [Google Scholar] [CrossRef]
- Papadimitriou, I.; Utton, C.; Tsakiropoulos, P. Ab initio investigation of the intermetallics in the Nb—Sn binary system. Acta Mater. 2015, 86, 23. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19, 1275. [Google Scholar] [CrossRef] [Green Version]
- Dubovik, V.N.; Raikhel, A.M.; Ivchenko, L.G.; Nepomnyashchii, O.A. Microhardness and microbrittleness of several crystalline glass ceramic phases. Strength Mater. 1992, 24, 598. [Google Scholar] [CrossRef]
- Szot, K.; Rodenbücher, C.; Bihlmayer, G.; Speier, W.; Ishikawa, R.; Shibata, N.; Ikuhara, Y. Influence of dislocations in transition metal oxides on selected physical and chemical properties. Crystals 2018, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Hirthe, W.M.; Brittain, J.O. Dislocations in rutile as revealed by the etch-pit technique. J. Am. Ceram. Soc. 1962, 45, 546. [Google Scholar] [CrossRef]
- Ashbee, K.H.G.; Smallman, R.E. The plastic deformation of titanium dioxide single crystals. Proc. R. Soc. Lond. A 1963, 274, 195. [Google Scholar] [CrossRef]
- Li, H.; Bradt, R.C. Knoop microhardness anisotropy of single crystal rutile. J. Am. Ceram. Soc. 1990, 73, 1360. [Google Scholar] [CrossRef]
- Basu, S.; Elshrief, O.A.; Coward, R.; Anasori, B.; Barsoum, M.W. Microscale deformation of (001) and (100) rutile single crystals under spherical nanoindentation. J. Mater. Res. 2011, 27, 53. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Music, D.; Krause, A.M.; Olsson, P.A.T. Theoretical and Experimental Aspects of Current and Future Research on NbO2 Thin Film Devices. Crystals 2021, 11, 217. https://doi.org/10.3390/cryst11020217
Music D, Krause AM, Olsson PAT. Theoretical and Experimental Aspects of Current and Future Research on NbO2 Thin Film Devices. Crystals. 2021; 11(2):217. https://doi.org/10.3390/cryst11020217
Chicago/Turabian StyleMusic, Denis, Andreas M. Krause, and Pär A. T. Olsson. 2021. "Theoretical and Experimental Aspects of Current and Future Research on NbO2 Thin Film Devices" Crystals 11, no. 2: 217. https://doi.org/10.3390/cryst11020217
APA StyleMusic, D., Krause, A. M., & Olsson, P. A. T. (2021). Theoretical and Experimental Aspects of Current and Future Research on NbO2 Thin Film Devices. Crystals, 11(2), 217. https://doi.org/10.3390/cryst11020217