Laser-Induced Graphene on a Quartz Crystal Microbalance for Humidity Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of QCM
2.3. Preparation of PI Layer
2.4. Fabrication of Interdigitated Electrodes (IDE)
2.5. Sensing Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yunusa, Z.; Hamidon, M.N.; Kaiser, A.; Awang, Z. Gas Sensors: A Review. Sens. Transducers 2014, 168, 61–75. [Google Scholar]
- Potyrailo, R.A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016, 116, 11877–11923. [Google Scholar] [CrossRef]
- Cui, L.; Swann, M.J.; Glidle, A.; Barker, J.R.; Cooper, J.M. Odour Mapping Using Microresistor and Piezo-Electric Sensor Pairs. Sens. Actuators B Chem. 2000, 66, 94–97. [Google Scholar] [CrossRef]
- Hwang, B.J.; Yang, J.Y.; Lin, C.W. Recognition of Alcohol Vapor Molecules by Simultaneous Measurements of Resistance Changes on Polypyrrole-Based Composite Thin Films and Mass Changes on a Piezoelectric Crystal. Sens. Actuators B Chem. 2001, 75, 67–75. [Google Scholar] [CrossRef]
- Goda, T.; Maeda, Y.; Miyahara, Y. Simultaneous Monitoring of Protein Adsorption Kinetics Using a Quartz Crystal Microbalance and Field-Effect Transistor Integrated Device. Anal. Chem. 2012, 84, 7308–7314. [Google Scholar] [CrossRef]
- Wark, M.; Winters, S.; York, C.; Pinkham, W.; Bernhardt, G.; Vetelino, J.F. A Lateral Field Excited Sensor Array on a Single Piezoelectric Substrate. IEEE Ultrason. Symp. 2006, 876–879. [Google Scholar] [CrossRef]
- Yim, C.; Yun, M.; Jung, N.; Jeon, S. Quartz Resonator for Simultaneously Measuring Changes in the Mass and Electrical Resistance of a Polyaniline Film. Anal. Chem. 2012, 84, 8179–8183. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Huang, Y.; Jin, X.; Mason, A.J.; Zeng, X. Ionic Liquid Thin Layer EQCM Explosives Sensor. Sens. Actuators B Chem. 2009, 140, 363–370. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Lee, S.; Jeon, S. Laser-Induced Graphitization of Cellulose Nanofiber Substrates under Ambient Conditions. ACS Sustain. Chem. Eng. 2018, 7, 2270–2275. [Google Scholar] [CrossRef]
- Lee, S.; Jang, H.; Lee, H.; Yoon, D.; Jeon, S. Direct Fabrication of a Moisture-Driven Power Generator by Laser-Induced Graphitization with a Gradual Defocusing Method. ACS Appl. Mater. Interfaces 2019, 11, 26970–26975. [Google Scholar] [CrossRef]
- Lee, S.; Eun, J.; Jeon, S. Facile Fabrication of a Highly Efficient Moisture-Driven Power Generator Using Laser-Induced Graphitization under Ambient Conditions. Nano Energy 2020, 68, 104364. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Rathinam, K.; Singh, S.P.; Li, Y.; Kasher, R.; Tour, J.M.; Arnusch, C.J. Polyimide Derived Laser-Induced Graphene as Adsorbent for Cationic and Anionic Dyes. Carbon 2017, 124, 515–524. [Google Scholar] [CrossRef]
- Garland, N.T.; McLamore, E.S.; Cavallaro, N.D.; Mendivelso-Perez, D.; Smith, E.A.; Jing, D.; Claussen, J.C. Flexible Laser-Induced Graphene for Nitrogen Sensing in Soil. ACS Appl. Mater. Interfaces 2018, 10, 39124–39133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyfus, R.W. CN Temperatures above Laser Ablated Polyimide. Appl. Phys. 1992, 55, 335–339. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [Green Version]
- Inagaki, M.; Harada, S.; Sato, T.; Nakajima, T.; Horino, Y.; Morita, K. Carbonization of Polyimide Film “Kapton”. Carbon 1989, 27, 253–257. [Google Scholar] [CrossRef]
- Li, Y.; Luong, D.X.; Zhang, J.; Tarkunde, Y.R.; Kittrell, C.; Sargunaraj, F.; Ji, Y.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces. Adv. Mater. 2017, 29, 1700496. [Google Scholar] [CrossRef]
- Jou, J.-H.; Huang, P.-T. Effect of Thermal Curing on the Structures and Properties of Aromatic Polyimide Films. Macromolecules 1991, 24, 3796–3803. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.; Choi, J.; Lee, H.; Jeon, S. Corrugated Wood Fabricated Using Laser-Induced Graphitization for Salt-Resistant Solar Steam Generation. ACS Appl. Mater. Interfaces 2020, 12, 30320–30327. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrey, G. Verwendung von Schwingquarzen Zur Wägung Dünner Schichten Und Zur Mikrowägung. Z. Für Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Hu, Y.; French, L.A.; Radecsky, K.; Da Cunha, M.P.; Millard, P.; Vetelino, J.F. A Lateral Field Excited Liquid Acoustic Wave Sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1373–1380. [Google Scholar] [CrossRef]
- Meissner, M.; French, L.A.; Pinkham, W.; York, C.; Bernhardt, G.; Cunha, M.P.D.; Vetelino, J.F. Electrode Optimization for a Lateral Field Excited Acoustic Wave Sensor. IEEE Ultrason. Symp. 2004 2004, 1, 314–318. [Google Scholar] [CrossRef]
- Barroso-Bujans, F.; Cerveny, S.; Alegría, A.; Colmenero, J. Sorption and Desorption Behavior of Water and Organic Solvents from Graphite Oxide. Carbon 2010, 48, 3277–3286. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, K.-H.; Kim, S.Y. Pervaporation Separation of Water from Ethanol through Polyimide Composite Membranes. J. Membr. Sci 2000, 169, 81–93. [Google Scholar] [CrossRef]
- Subramanian, R.; Potriger, M.T.; Morris, J.H.; Curilla, J.P. Effect of Moisture on The Physical Properties of Polyimide Films. MRS Online Proc. Libr. 1991, 227, 147. [Google Scholar] [CrossRef]
- Björklund, S.; Kocherbitov, V. Humidity Scanning Quartz Crystal Microbalance with Dissipation Monitoring Setup for Determination of Sorption-Desorption Isotherms and Rheological Changes. Rev. Sci. Instrum. 2015, 86, 055105. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Baek, S.; Jeon, S.; Yim, C. Laser-Induced Graphene on a Quartz Crystal Microbalance for Humidity Sensing. Crystals 2021, 11, 289. https://doi.org/10.3390/cryst11030289
Choi J, Baek S, Jeon S, Yim C. Laser-Induced Graphene on a Quartz Crystal Microbalance for Humidity Sensing. Crystals. 2021; 11(3):289. https://doi.org/10.3390/cryst11030289
Chicago/Turabian StyleChoi, Jihun, Saeyeon Baek, Sangmin Jeon, and Changyong Yim. 2021. "Laser-Induced Graphene on a Quartz Crystal Microbalance for Humidity Sensing" Crystals 11, no. 3: 289. https://doi.org/10.3390/cryst11030289
APA StyleChoi, J., Baek, S., Jeon, S., & Yim, C. (2021). Laser-Induced Graphene on a Quartz Crystal Microbalance for Humidity Sensing. Crystals, 11(3), 289. https://doi.org/10.3390/cryst11030289