Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization
Abstract
:1. Introduction
2. Crystal Structure of Perovskite Materials
3. Research Progress of PSCs
4. Challenges and Solutions for Manufacturing Large-Area PSCs
4.1. Processes Improvement
4.2. Improvement of the Precursor Solution and Better Materials Utilization
4.3. Additives Addition to the Precursor Solution
4.4. Interface Engineering
4.5. Packaging Technologies
4.6. The Control of Perovskite Crystal Growth
5. Discussion and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akihiro, K.; Kenjiro, T.; Yasuo, S.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar]
- NREL, Best Research-Cell Efficiencies. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 30 September 2020).
- Kim, Y.Y.; Park, E.Y.; Yang, T.Y.; Noh, J.H.; Shin, T.J.; Jeon, N.J.; Seo, J. Fast two-step deposition of Perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J. Mater. Chem. A 2018, 6, 12447–12454. [Google Scholar] [CrossRef]
- Giacomo, F.D.; Fledderus, H.; Gorter, H.; Kirchner, G.; De Vries, I.; Dogan, I.; Verhees, W.; Zardetto, V.; Najafi, M.; Zhang, D. Large area > 140 cm2 perovskite solar modules made by sheet to sheet and roll to roll fabrication with 14.5% efficiency. In Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 2795–2798. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Boyd, C.C.; Cheacharoen, R.; Leijtens, T. Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451. [Google Scholar] [CrossRef] [PubMed]
- Kristallogr, Z. Krystallographisch-chemische untersuchungen homologer verbindungen. Chem. Rev. 1884, 8, 246–296. [Google Scholar]
- Zhou, Y.; Zhao, Y. Chemical stability and instability of inorganic halide perovskites. Energ. Environ Sci. 2019, 12, 1495–1511. [Google Scholar] [CrossRef]
- Chonghea, L.; Xionggang, L.; Weizhong, D. Formability of ABX{sub 3 (X=F, Cl, Br, I) halide perovskites. Acta Crystallogr. 2008, 64, 702–707. [Google Scholar]
- Wiley, A.; Dunlap-Shohl, Y. Synthetic Approaches for Halide Perovskite Thin Films. Chem. Rev. 2018, 119, 3193–3295. [Google Scholar]
- Travis, W.; Glover, E.N.K.; Bronstein, H. On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 2016, 7, 4548–4556. [Google Scholar] [CrossRef] [Green Version]
- Stoumpos, C.C.; Malliakas, C.D.; Kanatzidis, M.G. Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorg. Chem. 2013, 52, 9019–9038. [Google Scholar] [CrossRef]
- Im, J.H.; Lee, C.R.; Lee, J.W. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.M.; Teuscher, J.; Miyasaka, T. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, Q.; Li, G. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546. [Google Scholar] [CrossRef]
- Yang, W.S.; Noh, J.H.; Jeon, N.J. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wu, Y.; Yue, Y. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, T.; Barbaud, J. Stabilizing heterostructures of soft perovskite semiconductors. Science 2019, 365, 687–691. [Google Scholar] [CrossRef]
- Bi, D.; Yi, C.; Luo, J. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142. [Google Scholar] [CrossRef]
- Yang, W.S.; Park, B.W.; Jung, E.H. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379. [Google Scholar] [CrossRef] [Green Version]
- Jeon, N.J.; Na, H.; Jung, E.H.; Yang, T.Y.; Lee, Y.G.; Kim, G.; Shin, H.-W.; Seok, S., II; Lee, J.; Lee, J.; et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689. [Google Scholar] [CrossRef]
- Kim, M.; Kim, G.H.; Lee, T.K. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192. [Google Scholar] [CrossRef]
- Tang, S.; Deng, Y.; Zheng, X.; Bai, Y.; Fang, Y.; Dong, Q.; Wei, H.; Huang, J. Composition Engineering in Doctor-Blading of Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700302. [Google Scholar] [CrossRef]
- Yang, M.; Li, Z.; Reese, M.O.; Reid, O.G.; Kim, D.H.; Siol, S.; Klein, T.R.; Yan, Y.; Berry, J.J.; van Hest, M.F.A.M.; et al. Perovskite Ink with Wide Processing Window for Scalable Highefficiency Solar Cells. Nat. Energy 2017, 2, 17038. [Google Scholar] [CrossRef]
- Kim, J.-E.; Jung, Y.-S.; Heo, Y.-J.; Hwang, K.; Qin, T.; Kim, D.-Y.; Vak, D. Slot Die Coated Planar Perovskite Solar Cells via Blowing and Heating Assisted One Step Deposition. Sol. Energy Mater. Sol. Cells. 2018, 179, 80–86. [Google Scholar] [CrossRef]
- Whitaker, J.B.; Kim, D.H.; Larson, B.W.; Zhang, F.; Berry, J.J.; van Hest, M.F.A.M.; Zhu, K. Scalable Slot-die Coating of High Performance Perovskite Solar Cells. Sustain. Energy Fuels 2018, 2, 2442–2449. [Google Scholar] [CrossRef]
- Lee, D.; Jung, Y.-S.; Heo, Y.-J.; Lee, S.; Hwang, K.; Jeon, Y.-J.; Kim, J.-E.; Park, J.; Jung, G.Y.; Kim, D.-Y. Slot-Die Coated Perovskite Films Using Mixed Lead Precursors for Highly Reproducible and Large-Area Solar Cells. ACS Appl. Mater. Interfaces 2018, 10, 16133–16139. [Google Scholar] [CrossRef]
- Mathies, F.; Eggers, H.; Richards, B.S.; Hernandez-Sosa, G.; Lemmer, U.; Paetzold, U.W. Inkjet-Printed Triple Cation Perovskite Solar Cells. ACS Appl. Energy Mater. 2018, 1, 1834–1839. [Google Scholar] [CrossRef]
- Mathies, F.; Abzieher, T.; Hochstuhl, A.; Glaser, K.; Colsmann, A.; Paetzold, U.W.; Hernandez-Sosa, G.; Lemmer, U.; Quintilla, A. Multipass Inkjet Printed Planar Methylammonium Lead Iodide Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 19207–19213. [Google Scholar] [CrossRef]
- Li, S.G.; Jiang, K.J.; Su, M.J.; Cui, X.P.; Huang, J.H.; Zhang, Q.Q.; Zhou, X.Q.; Yang, L.M.; Song, Y.-L. Inkjet Printing of CH3NH3PbI3 on a Mesoscopic TiO2 Film for Highly Efficient Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 9092–9097. [Google Scholar] [CrossRef]
- Cao, K.; Zuo, Z.; Cui, J.; Shen, Y.; Moehl, T.; Zakeeruddin, S.M.; Gratzel, M.; Wang, M. Efficient Screen Printed Perovskite Solar Cells Based on Mesoscopic TiO2/Al2O3/NiO/carbon Architecture. Nano Energy 2015, 17, 171–179. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Bashir, A.; Gunawan, J.T.; Haur, L.J.; Bruno, A.; Akhter, Z.; Mathews, N.; Mhaisalkar, S.G. Simplified Architecture of a Fully Printable Perovskite Solar Cell Using a Thick Zirconia Layer. Energy Technol. 2017, 5, 1866–1872. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, D.K.; Griffin, J.; Bracher, C.; Barrows, A.T.; Lidzey, D.G. Spray-Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air. Adv. Energy Mater. 2016, 6, 1600994. [Google Scholar] [CrossRef]
- Lan, D.H.; Hong, S.H.; Chou, L.H.; Wang, X.F.; Liu, C.L. High Throughput Two-step Ultrasonic Spray Deposited CH3NH3-PbI3 Thin Film Layer for Solar Cell Application. J. Power Sources 2018, 390, 270–277. [Google Scholar] [CrossRef]
- Ono, L.K.; Leyden, M.R.; Wang, S.; Qi, Y. Organometal Halide Perovskite Thin Films and Solar Cells by Vapor Deposition. J. Mater. Chem. A 2016, 4, 6693–6713. [Google Scholar] [CrossRef] [Green Version]
- Leyden, M.R.; Jiang, Y.; Qi, Y. Chemical Vapor Deposition Grown Formamidinium Perovskite Solar Modules with High Steady State Power and Thermal Stability. J. Mater. Chem. A 2016, 4, 13125–13132. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wei, Z.; Zheng, X.; Yang, S. A Scalable Electrodeposition Route to the Low-cost, Versatile and Controllable Fabrication of Perovskite Solar Cells. Nano Energy 2015, 15, 216–226. [Google Scholar] [CrossRef]
- Charles, U.A.; Ibrahim, M.A.; Teridi, M.A.M. Electrodeposition of Organic–inorganic Tri-halide Perovskites Solar Cell. J. Power Sources 2018, 378, 717–731. [Google Scholar] [CrossRef]
- Fei, C.; Li, B.; Zhang, R. Highly Efficient and Stable Perovskite Solar Cells Based on Monolithically Grained CH3NH3PbI3 Film. Adv. Energy Mater. 2016, 7, 1602017. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Xie, F.X.; Chen, H. Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv. Mater. 2017, 29, 1701073. [Google Scholar] [CrossRef] [PubMed]
- Watthage, S.C.; Song, Z.; Shrestha, N. Enhanced Grain Size, Photoluminescence, and Photoconversion Efficiency with Cadmium Addition during the Two-Step Growth of CH3NH3PbI3. ACS Appl. Mater. Interfaces 2016, 9, 2334–2341. [Google Scholar] [CrossRef]
- Wang, J.T.W.; Wang, Z.P.; Pathak, S.; Zhang, W. Efficient perovskite solar cells by metal ion doping. Energy Environ Sci. 2016, 9, 2892–2901. [Google Scholar] [CrossRef] [Green Version]
- Ke, W.; Xiao, C.; Wang, C. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Adv Mater. 2016, 28, 5214. [Google Scholar] [CrossRef]
- Chiang, C.H.; Wu, C.G. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photon. 2016, 10, 196. [Google Scholar] [CrossRef]
- Li, X.; Bi, D.; Yi, C. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62. [Google Scholar] [CrossRef]
- Mei, A.; Li, X.; Liu, L.; Ku, Z.; Liu, T.; Rong, Y.; Xu, M.; Hu, M.; Chen, J.; Yang, Y.; et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298. [Google Scholar] [CrossRef]
- Yang, S.; Dai, J.; Yu, Z. H Tailoring Passivation Molecular Structues for Extremely Small Open-Circuit Voltage Loss in Perovskite Solar Cells. J. Am. Chem. Soc. 2019, 141, 5781–5787. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, N.N.; Tian, H. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, H.S.; Park, N.G. Lewis Acid–Base Adduct Approach for High Efficiency Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, C.; Qiu, S. Spontaneously Self ssembly of a 2D/3D Heterostructure Enhances the Efficiency and Stability in Printed Perovskite Solar Cells. Adv. Energy Mater. 2020, 10, 2000173. [Google Scholar] [CrossRef]
- Liao, H.; Guo, P.; Hsu, C.P. Enhanced Efficiency of Hot-Cast Large-Area Planar Perovskite Solar Cells/Modules Having Controlled Chloride Incorporation. Adv. Energy Mater. 2017, 7, 1601660. [Google Scholar] [CrossRef]
- Bu, T.; Liu, X.; Zhou, Y. A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells. Energy Environ. Sci. 2017, 10, 2509–2515. [Google Scholar] [CrossRef]
- Agresti, A.; Pescetelli, S.; Palma, A.L. Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Lett. 2019, 4, 1862–1871. [Google Scholar] [CrossRef]
- Bella, F.; Renzi, P.; Cavallo, C. Caesium for Perovskite Solar Cells: An Overview. Chem. A Eur. J. 2018, 24, 12183–12205. [Google Scholar] [CrossRef]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Yang, S. Methods and strategies for achieving high-performance carbon-based perovskite solar cells without hole transport materials. J. Mater. Chem. A 2019, 7, 15476–15490. [Google Scholar] [CrossRef]
- Fagiolari, L.; Bella, F. Carbon-based materials for stable, cheaper and large-scale processable perovskite solar cells. Energ. Environ. Sci. 2019, 12, 3437–3472. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Sun, M.; Zhou, H.; Ma, J.-Y.; Ma, T. Carbon Counter Electrodesin Dye-Sensitized and Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 1906451. [Google Scholar] [CrossRef]
- Hou, Y.; Du, X.; Scheiner, S. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science 2017, 358, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, L.; Feng, S. Interfacial engineering and film-forming mechanism of perovskite films revealed by synchrotron-based GIXRD at SSRF for highperformance solar cells. Mater. Today Adv. 2020, 6, 100068. [Google Scholar] [CrossRef]
- Jeong, M.; Choi, I.W.; Go, E.M. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620. [Google Scholar] [PubMed]
- Hendriks, K.H.; van Franeker, J.J.; Bruijnaers, B.J. 2-Methoxyethanol as a new solvent for processing methylammonium lead halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 2346–2354. [Google Scholar] [CrossRef]
- Noel, N.K.; Habisreutinger, S.N.; Wenger, B. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 2016, 10, 145–152. [Google Scholar] [CrossRef]
- Deng, Y.; Van Brackle, C.H.; Dai, X. Tailoring solvent coordination for high-speed, room-temperature blading of Perovskite photovoltaic films. Sci. Adv. 2019, 5, 7537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Zheng, X.; Bai, Y. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 2018, 3, 560–566. [Google Scholar] [CrossRef]
- Huang, S.H.; Guan, C.K.; Lee, P.H.; Huang, H.C.; Li, C.F.; Huang, Y.C.; Su, W.F. Toward All Slot-Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air. Adv. Energy Mater. 2020, 10, 2001567. [Google Scholar] [CrossRef]
- Ye, T.; Han, G.; Surendran, A. Large area, high efficiency and stable Perovskite solar cells enabled by fine control of intermediate phase. Sol. Energy Mater. Sol. Cells 2019, 201, 110113. [Google Scholar] [CrossRef]
- Jung, E.H.; Jeon, N.J.; Park, E.Y. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511. [Google Scholar] [CrossRef]
- Bi, E.; Tang, W.; Chen, H. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers. Joule 2019, 3, 2748–2760. [Google Scholar] [CrossRef]
- Lou, L.; Liu, T.; Xiao, J. Controlling Apparent Coordinated Solvent Number in the Perovskite Intermediate Phase Film for Developing Large-Area Perovskite Solar Modules. Energy Technol. 2019, 8, 1900972. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Chai, N. Large-area perovskite solar cells with CsxFA1−xPbI3−yBry thin films deposited by a vapor–solid reaction method. J. Mater. Chem. A 2018, 6, 21143–21148. [Google Scholar] [CrossRef]
- Jang, G.; Kwon, H.C.; Ma, S. Cold Antisolvent Bathing Derived Highly Efficient Large-Area Perovskite Solar Cells. Adv. Energ. Mater. 2019, 9, 1901719. [Google Scholar] [CrossRef]
- Qiu, L.; He, S.; Jiang, Y. Hybrid chemical vapor deposition enables scalable and stable Cs-FA mixed cation perovskite solar modules with a designated area of 91.8 cm2 approaching 10% efficiency. J. Mater. Chem. 2019, 7, 6920–6929. [Google Scholar] [CrossRef]
- Giacomo, F.D.; Shanmugam, S.; Fledderus, H. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater Sol. Cells 2017, 181, 53–59. [Google Scholar] [CrossRef]
- Wang, Z.K.; Gong, X.; Li, M. Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. Acs Nano. 2016, 10, 5479–5489. [Google Scholar] [CrossRef]
- Park, N.G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1, 16152. [Google Scholar] [CrossRef]
- Singh, T.; Singh, J.; Miyasaka, T. Role of Metal Oxide Electron-Transport Layer Modification on the Stability of High Performing Perovskite Solar Cells. ChemSusChem 2016, 9, 2559–2566. [Google Scholar] [CrossRef] [PubMed]
- Ahn, N.; Kwak, K.; Jang, M.S. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 2016, 7, 13422. [Google Scholar] [CrossRef] [Green Version]
- Saliba, M.; Matsui, T.; Domanski, K. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 2016, 536, 312–316. [Google Scholar] [CrossRef]
- Shao, Y.C.; Yuan, Y.B.; Huang, J.S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nat. Energy 2015, 1, 15001. [Google Scholar] [CrossRef]
- Wang, Q.; Dong, Q.F.; Li, T. Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells. Adv. Mater. 2016, 28, 6734. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, Y.; Chen, Q. A Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 15540–15547. [Google Scholar] [CrossRef] [PubMed]
- Giordano, F.; Abate, A.; Baena, J.P.C. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 2016, 7, 10379. [Google Scholar] [CrossRef]
- Tan, H.; Jain, A.; Voznyy, O. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room- Temperature Solution Processing Techniques. Nat. Photonics 2014, 8, 133. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X. Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells. Nat. Energy 2016, 2, 1667. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Fang, G. Review on the Application of SnO2 in Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1802757. [Google Scholar] [CrossRef]
- Mali, S.S.; Patil, J.V.; Kim, H.; Hong, C.K. Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale 2018, 10, 8275. [Google Scholar] [CrossRef]
- Milot, R.L.; Eperon, G.E.; Snaith, H.J. Temperature-Dependent Charge-Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films. Adv. Funct. Mater. 2015, 25, 6218. [Google Scholar] [CrossRef] [Green Version]
- Zhen, J.; Zhou, W.; Chen, M.; Yang, S. Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells. J. Mater. Chem. A 2019, 7, 2754. [Google Scholar] [CrossRef]
- Hu, W.; Yang, Y.; Xu, Q. Red-Carbon-Quantum-Dot-Doped SnO2 Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Adv. Mater. 2020, 32, 1906374. [Google Scholar] [CrossRef] [PubMed]
- Weerasinghe, H.C.; Dkhissi, Y.; Scully, A.D.; Caruso, R.A.; Cheng, Y.B. Encapsulation for improving the lifetime of flexible perovskite solar cells. Nano Energy 2015, 18, 118–125. [Google Scholar] [CrossRef]
- Hwang, I.; Jeong, I.; Lee, J.; Ko, M.J.; Yong, K. Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 2015, 7, 17330–17336. [Google Scholar] [CrossRef] [PubMed]
- Kaltenbrunner, M.; Adam, G.; Głowacki, E.D.; Drack, M. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 2015, 14, 1032–1039. [Google Scholar] [CrossRef]
- You, J.; Meng, L.; Song, T.-B.; Guo, T.-F. Improved air stability of Perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 2016, 11, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Domanski, K.; Correa-Baena, J.P.; Grätzel, M. Not all that glitters is gold: Metal-migrationinduced degradation in Perovskite solar cells. ACS Nano 2016, 10, 6306–6314. [Google Scholar] [CrossRef]
- Bella, F.; Griffini, G.; Correa-Baena, J.P. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science 2016, 354, 203–206. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, D.H.; Kang, S.Y.; Ahn, S.D. A thin film encapsulation layer fabricated via initiated chemical vapor deposition and atomic layer deposition. J. Appl. Polym. Sci. 2014, 131, 40974. [Google Scholar] [CrossRef]
- Kim, B.J.; Park, H.; Seong, H.; Lee, M.S.; Kwon, B.-H.; Kim, D.H.; Lee, Y.I.; Lee, H.; Lee, J.-I.; Im, S.G. A Single—Chamber System of Initiated Chemical Vapor Deposition and Atomic Layer Deposition for Fabrication of Organic/Inorganic Multilayer Films. Adv. Eng. Mater. 2017, 19, 1600819. [Google Scholar] [CrossRef]
- Kim, B.J.; Han, D.; Yoo, S.; Im, S.G. Upgrading of pyrolysis bio-oil using WO3/ZrO2 and Amberlyst catalysts: Evaluation of acid number and viscosity. Korean J. Chem. Eng. 2017, 34, 892. [Google Scholar]
- Lee, Y., II; Jeon, N.J.; Kim, B.J.; Shim, H.; Yang, T.-Y.; Seok, S., II; Seo, J.; Im, S.G. A Low-Temperature Thin-Film Encapsulation for Enhanced Stability of a Highly Efficient Perovskite Solar Cell. Adv. Energy Mater. 2018, 8, 1701928. [Google Scholar] [CrossRef]
- Emami, S.; Martins, J.; Ivanou, D. Advanced hermetic encapsulation of perovskite solar cells: The route to commercialization. J. Mater. Chem. 2020, 8, 2654–2662. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, H.; Wang, J. All-in-One Deposition to Synergistically Manipulate Perovskite Growth for High-Performance Solar Cell. Research 2020, 2020, 2763409. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Bi, W.; Jia, P.; Cui, Q.; Hu, Y.; Lou, Z.; Hou, Y.; Teng, F. Grain Growth of MAPbI3 via Diethylammonium Bromide Induced Grain Mergence. ACS Appl. Mater. Interfaces 2020, 12, 16707–16714. [Google Scholar] [CrossRef]
Area/cm2 | Efficiency/% | Country | Institution/Unit | Corresponding Author |
---|---|---|---|---|
2 | 15.1 | Singapore | NTU | Leong, W. L [68] |
24.97 | 16 | South Korea | Korea Research Institute of Chemical Technology | Noh, J. H [69] |
36 | 15 | China | Shanghai Jiao Tong University | Yang, X. D [70] |
52 | 10.2 | China | Peking University | Zheng, S. Z [71] |
64 | 12.24 | China | WuHan University | Peng, Y [72] |
80 | 17.28 | South Korea | Yonsei University | Moon, J [73] |
91.8 | 10.4 | Japan | Okinawa Institute of Science and Technology | Qi, Y. B [74] |
168.75 | 11.1 | Italy | University of Rome Tor Vergata | Galagan, Y [75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Cao, Q.; Yang, L.; Aldamasy, M.H.; Li, M.; Liang, Q.; Lu, H.; Dong, Y.; Yang, Y. Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals 2021, 11, 295. https://doi.org/10.3390/cryst11030295
Dai T, Cao Q, Yang L, Aldamasy MH, Li M, Liang Q, Lu H, Dong Y, Yang Y. Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals. 2021; 11(3):295. https://doi.org/10.3390/cryst11030295
Chicago/Turabian StyleDai, Tianzhao, Qiaojun Cao, Lifeng Yang, Mahmoud H. Aldamasy, Meng Li, Qifeng Liang, Hongliang Lu, Yiming Dong, and Yingguo Yang. 2021. "Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization" Crystals 11, no. 3: 295. https://doi.org/10.3390/cryst11030295
APA StyleDai, T., Cao, Q., Yang, L., Aldamasy, M. H., Li, M., Liang, Q., Lu, H., Dong, Y., & Yang, Y. (2021). Strategies for High-Performance Large-Area Perovskite Solar Cells toward Commercialization. Crystals, 11(3), 295. https://doi.org/10.3390/cryst11030295