Fractional Power-Law Intraband Optical Conductivity in the Low-Dimensional Dirac Material CaMnBi2
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Park, J.; Lee, G.; Wolff-Fabris, F.; Koh, Y.Y.; Eom, M.J.; Kim, Y.K.; Farhan, M.A.; Jo, Y.J.; Kim, C.; Shim, J.H.; et al. Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2. Phys. Rev. Lett. 2011, 107, 126402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Graf, D.; Wang, L.; Lei, H.; Tozer, S.W.; Petrovic, C. Two-dimensional Dirac fermions and quantum magnetoresistance in CaMnBi2. Phys. Rev. B 2012, 85, 041101(R). [Google Scholar] [CrossRef] [Green Version]
- He, J.B.; Wang, D.M.; Chen, G.F. Giant magnetoresistance in layered manganese pnictide CaMnBi2. Appl. Phys. Lett. 2012, 100, 112405. [Google Scholar] [CrossRef]
- Lee, G.; Farhan, M.A.; Kim, J.S.; Shim, J.H. Anisotropic Dirac electronic structures of AMnBi2 (A = Sr, Ca). Phys. Rev. B 2013, 87, 245104. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Wang, Z.; Chen, C.; Shi, Y.; Xie, Z.; Yi, H.; Liang, A.; He, S.; He, J.; Peng, Y.; et al. Strong Anisotropy of Dirac Cones in SrMnBi2 and CaMnBi2 Revealed by Angle-Resolved Photoemission Spectroscopy. Sci. Rep. 2014, 4, 5385. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.F.; Princep, A.J.; Zhang, X.; Manuel, P.; Khalyavin, D.; Mazin, I.I.; Shi, Y.G.; Boothroyd, A.T. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 2014, 90, 075120. [Google Scholar] [CrossRef] [Green Version]
- Rahn, M.C.; Princep, A.J.; Piovano, A.; Kulda, J.; Guo, Y.F.; Shi, Y.G.; Boothroyd, A.T. Spin dynamics in the antiferromagnetic phases of the Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 2017, 95, 134405. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Wang, L.; Petrovic, C. Large magnetothermopower effect in Dirac materials (Sr/Ca)MnBi2. Appl. Phys. Lett. 2012, 100, 112111. [Google Scholar]
- Wang, A.; Graf, D.; Wu, L.; Wang, K.; Bozin, E.; Zhu, Y.; Petrovic, C. Interlayer electronic transport in CaMnBi2 antiferromagnet. Phys. Rev. B 2016, 94, 125118. [Google Scholar] [CrossRef] [Green Version]
- Corasaniti, M.; Yang, R.; Pal, A.; Chinotti, M.; Degiorgi, L.; Wang, A.; Petrovic, C. Fermi surface gapping in the Dirac material Ca1−xNaxMnBi2. Phys. Rev. B 2019, 100, 041107. [Google Scholar] [CrossRef]
- Yang, R.; Corasaniti, M.; Le, C.C.; Liao, Z.Y.; Wang, A.F.; Du, Q.; Petrovic, C.; Qiu, X.G.; Hu, J.P.; Degiorgi, L. Spin-Canting-Induced Band Reconstruction in the Dirac Material Ca1−xNaxMnBi2. Phys. Rev. Lett. 2020, 124, 137201. [Google Scholar] [CrossRef]
- Tanner, D.B. Use of x-ray scattering functions in Kramers-Kronig analysis of reflectance. Phys. Rev. B 2015, 91, 035123. [Google Scholar] [CrossRef] [Green Version]
- Hosur, P.; Parameswaran, S.A.; Vishwanath, A. Charge Transport in Weyl Semimetals. Phys. Rev. Lett. 2012, 108, 046602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bácsi, Á.; Virosztek, A. Low-frequency optical conductivity in graphene and in other scale-invariant two-band systems. Phys. Rev. B 2013, 87, 125425. [Google Scholar] [CrossRef] [Green Version]
- Ashby, P.E.C.; Carbotte, J.P. Chiral anomaly and optical absorption in Weyl semimetals. Phys. Rev. B 2014, 89, 245121. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.; Mele, E.J.; Min, H. Electrodynamics on Fermi Cyclides in Nodal Line Semimetals. Phys. Rev. Lett. 2017, 119, 147402. [Google Scholar] [CrossRef] [Green Version]
- Carbotte, J.P. Optical response of a line node semimetal. J. Phys. Condens. Matter 2017, 29, 045301. [Google Scholar] [CrossRef]
- Schilling, M.B.; Löhle, A.; Neubauer, D.; Shekhar, C.; Felser, C.; Dressel, M.; Pronin, A.V. Two-channel conduction in YbPtBi. Phys. Rev. B 2017, 95, 155201. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, D.; Cheng, B.; Yaresko, A.; Gibson, Q.D.; Cava, R.J.; Armitage, N.P. Optical investigation of the strong spin-orbit-coupled magnetic semimetal YbMnBi2. Phys. Rev. B 2017, 96, 075151. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, D.; Yaresko, A.; Li, W.; Löhle, A.; Hübner, R.; Schilling, M.B.; Shekhar, C.; Felser, C.; Dressel, M.; Pronin, A.V. Optical conductivity of the Weyl semimetal NbP. Phys. Rev. B 2018, 98, 195203. [Google Scholar] [CrossRef] [Green Version]
- Kemmler, R.; Hübner, R.; Löhle, A.; Neubauer, D.; Voloshenko, I.; Schoop, L.M.; Dressel, M.; Pronin, A.V. Free-carrier dynamics in Au2Pb probed by optical conductivity measurements. J. Phys.: Condens. Matter 2018, 30, 485403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maulana, L.Z.; Manna, K.; Uykur, E.; Felser, C.; Dressel, M.; Pronin, A.V. Optical conductivity of multifold fermions: The case of RhSi. Phys. Rev. Research 2020, 2, 023018. [Google Scholar] [CrossRef] [Green Version]
- Maulana, L.Z.; Li, Z.; Uykur, E.; Manna, K.; Polatkan, S.; Felser, C.; Dressel, M.; Pronin, A.V. Broadband optical conductivity of the chiral multifold semimetal PdGa. Phys. Rev. B 2021, 103, 115206. [Google Scholar] [CrossRef]
- Dressel, M.; Gürner, G. Electrodynamics of Solids; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Van der Marel, D.; Molegraaf, H.J.A.; Zaanen, J.; Nussinov, Z.; Carbone, F.; Damascelli, A.; Eisaki, H.; Greven, M.; Kes, P.H.; Li, M. Quantum critical behaviour in a high-Tc superconductor. Nature 2003, 425, 271–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioffe, L.B.; Millis, A.J. Zone-diagonal-dominated transport in high-Tc cuprates. Phys. Rev. B 1998, 58, 11631–11637. [Google Scholar] [CrossRef]
- Van der Marel, D. Anisotropy of the optical conductivity of high-Tc cuprates. Phys. Rev. B 1999, 60, R765. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.W. Infrared conductivity of cuprate metals: Detailed fit using Luttinger-liquid theory. Phys. Rev. B 1997, 55, 11785–11788. [Google Scholar] [CrossRef] [Green Version]
- Schilling, M.B.; Schoop, L.M.; Lotsch, B.V.; Dressel, M.; Pronin, A.V. Flat Optical Conductivity in ZrSiS due to Two-Dimensional Dirac Bands. Phys. Rev. Lett. 2017, 119, 187401. [Google Scholar] [CrossRef] [Green Version]
- Brechtel, E.; Cordier, G.; Schäfer, H. Zur Darstellung und Struktur von CaMnBi2. Z. Naturforsch. B 1980, 35, 1–3. [Google Scholar] [CrossRef]
- Sayetat, F.; Fertey, P.; Kessler, M. An Easy Method for the Determination of Debye Temperature from Thermal Expansion Analyses. J. Appl. Cryst. 1998, 31, 121–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilling, M.B.; Wang, C.X.; Shi, Y.G.; Kremer, R.K.; Dressel, M.; Pronin, A.V. Fractional Power-Law Intraband Optical Conductivity in the Low-Dimensional Dirac Material CaMnBi2. Crystals 2021, 11, 428. https://doi.org/10.3390/cryst11040428
Schilling MB, Wang CX, Shi YG, Kremer RK, Dressel M, Pronin AV. Fractional Power-Law Intraband Optical Conductivity in the Low-Dimensional Dirac Material CaMnBi2. Crystals. 2021; 11(4):428. https://doi.org/10.3390/cryst11040428
Chicago/Turabian StyleSchilling, M. B., C. X. Wang, Y. G. Shi, R. K. Kremer, M. Dressel, and A. V. Pronin. 2021. "Fractional Power-Law Intraband Optical Conductivity in the Low-Dimensional Dirac Material CaMnBi2" Crystals 11, no. 4: 428. https://doi.org/10.3390/cryst11040428
APA StyleSchilling, M. B., Wang, C. X., Shi, Y. G., Kremer, R. K., Dressel, M., & Pronin, A. V. (2021). Fractional Power-Law Intraband Optical Conductivity in the Low-Dimensional Dirac Material CaMnBi2. Crystals, 11(4), 428. https://doi.org/10.3390/cryst11040428