High-Efficiency Responsive Smart Windows Fabricated by Carbon Nanotubes Modified by Liquid Crystalline Polymers
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of CNT-PDB
2.1.1. Preparation of Phase-Transition Chiral LC Mixtures
2.1.2. Preparation of Photothermal Smart Windows
3. Results and Discussion
3.1. Synthesis and Characterization of CNT-PDB Polymer Brush and ChLCs
3.2. Orientation Behavior of the CNT-PDB Polymer Brush
3.3. Optical Performance of PSLC in the LC Cells Using the CNT-PDB Polymer Brush as Substrate
3.4. Photothermal Effect of CNT-PDB Polymer Brush
3.5. NIR Responsive Behavior of Photothermal Smart Windows
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy Consumption and Efficiency in Buildings: Current Status and Future Trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef] [Green Version]
- Berardi, U. A Cross-Country Comparison of the Building Energy Consumptions and Their Trends. Resour. Conserve. Recy. 2017, 123, 230–241. [Google Scholar] [CrossRef]
- Cao, X.; Dai, X.; Liu, J. Building Energy-Consumption Status Worldwide and the State-Of-The-Art Technologies for Zero-Energy Buildings During the Past Decade. Energy Build. 2016, 128, 198–213. [Google Scholar] [CrossRef]
- Omer, A.M. Energy, Environment and Sustainable Development. Renew. Sust. Energy. Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A Review on Buildings Energy Consumption Information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Llordés, A.; Wang, Y.; Fernandez-Martinez, A.; Xiao, P.; Lee, T.; Poulain, A.; Zandi, O.; Saez Cabezas, C.A.; Henkelman, G.; Milliron, D.J. Linear Topology in Amorphous Metal Oxide Electrochromic Networks Obtained via Low-Temperature Solution Processing. Nat. Mater. 2016, 15, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Zhou, C.; Zhou, Y.; Wang, S.; Chan, S.H.; Long, Y. Emerging Thermal-Responsive Materials and Integrated Techniques Targeting the Energy-Efficient Smart Window Application. Adv. Funct. Mater. 2018, 28, 1800113. [Google Scholar] [CrossRef]
- Khandelwal, H.; Schenning, A.P.H.J.; Debije, M.G. Infrared Regulating Smart Window Based on Organic Materials. Adv. Energy Mat. 2017, 7, 1602209. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P.S.; Long, Y. Smart Windows: Electro-, Thermo-, Mechano-, Photochromics, and Beyond. Adv. Energy Mat. 2019, 9, 1902066. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Mallick, T.K. Influence of Atmospheric Clearness on PDLC Switchable Glazing Transmission. Energy Build. 2018, 172, 257–264. [Google Scholar] [CrossRef]
- Ghosh, A.; Norton, B.; Mallick, T.K. Daylight Characteristics of a Polymer Dispersed Liquid Crystal Switchable Glazing. Sol. Energy Mater. Sol. Cells 2018, 174, 572–576. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; de Haan, L.T.; Khandelwal, H.; Schenning, A.P.H.J.; Nian, L.; Zhou, G. Cell Thickness Dependence of Electrically Tunable Infrared Reflectors Based on Polymer Stabilized Cholesteric Liquid Crystals. Sci. China Mater. 2018, 61, 745–751. [Google Scholar] [CrossRef]
- Kim, M.; Park, K.J.; Seok, S.; Ok, J.M.; Jung, H.T.; Choe, J.; Kim, D.H. Fabrication of Microcapsules for Dye-Doped Polymer-Dispersed Liquid Crystal-Based Smart Windows. ACS Appl. Mater. Interfaces 2015, 7, 17904–17909. [Google Scholar] [CrossRef]
- Lee, K.M.; Tondiglia, V.P.; White, T.J. Bistable Switching of Polymer Stabilized Cholesteric Liquid Crystals Between Transparent and Scattering Modes. MRS Commun. 2015, 5, 223–227. [Google Scholar] [CrossRef]
- Yoon, W.J.; Choi, Y.J.; Lim, S.I.; Koo, J.; Yang, S.; Jung, D.; Kang, S.W.; Jeong, K.U. A Single-Step Dual Stabilization of Smart Window by the Formation of Liquid Crystal Physical Gels and the Construction of Liquid Crystal Chambers. Adv. Funct. Mater. 2020, 30, 1906780. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Y.; Bi, Z.; Jia, S.; Guo, X.; Gao, X.; Li, X. Energy Storage Smart Window with Transparent-To-Dark Electrochromic Behavior and Improved Pseudocapacitive Performance. Chem. Eng. J. 2019, 370, 1459–1466. [Google Scholar] [CrossRef]
- Cai, G.; Wang, J.; Lee, P.S. Next-Generation Multifunctional Electrochromic Devices. Acc. Chem. Res. 2016, 49, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Eh, A.L.S.; Tan, A.W.M.; Cheng, X.; Magdassi, S.; Lee, P.S. Recent Advances in Flexible Electrochromic Devices: Prerequisites, Challenges, and Prospects. Energy Technol. 2018, 6, 33–45. [Google Scholar] [CrossRef]
- Yang, P.; Sun, P.; Mai, W. Electrochromic Energy Storage Devices. Mater. Today 2016, 19, 394–402. [Google Scholar] [CrossRef]
- Cai, G.; Eh, A.L.S.; Ji, L.; Lee, P.S. Recent Advances in Electrochromic Smart Fenestration. Adv. Sust. Syst. 2017, 1, 1700074. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Peng, J.; Tan, Y.; Li, C.; Boey, F.Y.C.; Long, Y. Liquid Thermo-Responsive Smart Window Derived from Hydrogel. Joule 2020, 4, 2458–2474. [Google Scholar] [CrossRef]
- Zhou, Y.; Layani, M.; Wang, S.; Hu, P.; Ke, Y.; Magdassi, S.; Long, Y. Fully Printed Flexible Smart Hybrid Hydrogels. Adv. Funct. Mater. 2018, 28, 1705365. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, Y.; Hu, X.; Long, Y. VO2/hydrogel Hybrid Nanothermochromic Material with Ultra-High Solar Modulation and Luminous Transmission. J. Mater. Chem. A 2015, 3, 1121–1126. [Google Scholar] [CrossRef]
- La, T.G.; Li, X.; Kumar, A.; Fu, Y.; Yang, S.; Chung, H.J. Highly Flexible, Multipixelated Thermosensitive Smart Windows Made of Tough Hydrogels. ACS Appl. Mater. Interfaces 2017, 9, 33100–33106. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Tazawa, M.; Yoshimura, K.; Ogiwara, A. Thermal Control of Transmittance/Diffraction States of Holographic Structures Composed of Polymer and Liquid Crystal Phases. Sol. Energy Mater. Sol. Cells 2010, 94, 1747–1752. [Google Scholar] [CrossRef]
- Liang, X.; Chen, M.; Chen, G.; Li, C.; Han, C.; Zhang, J.; Zhang, J.; Zhang, L.; Yang, H. Effects of Polymer Micro-Structures on the Thermo-Optical Properties of a Flexible Soft-Mater Film Based on Liquid Crystals /Polymer Composite. Polymer 2018, 146, 161–168. [Google Scholar] [CrossRef]
- De Bastiani, M.; Saidaminov, M.I.; Dursun, I.; Sinatra, L.; Peng, W.; Buttner, U.; Mohammed, O.F.; Bakr, O.M. Thermochromic Perovskite Inks for Reversible Smart Window Applications. Chem. Mater. 2017, 29, 3367–3370. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, G.; Yang, S.; Yi, Y.K.; Kamien, R.D.; Yin, J. Programmable Kiri-Kirigami Metamaterials. Adv. Mater. 2017, 29, 1604262. [Google Scholar] [CrossRef]
- Lee, H.Y.; Cai, Y.; Velioglu, S.; Mu, C.; Chang, C.J.; Chen, Y.L.; Song, Y.; Chew, J.W.; Hu, X.M. Thermochromic Ionogel: A New Class of Stimuli Responsive Materials with Super Cyclic Stability for Solar Modulation. Chem. Mater. 2017, 29, 6947–6955. [Google Scholar] [CrossRef]
- Ke, Y.; Wen, X.; Zhao, D.; Che, R.; Xiong, Q.; Long, Y. Controllable Fabrication of Two-Dimensional Patterned VO2 Nanoparticle, Nanodome, and Nanonet Arrays with Tunable Temperature-Dependent Localized Surface Plasmon Resonance. ACS Nano 2017, 11, 7542–7551. [Google Scholar] [CrossRef]
- Timmermans, G.H.; Hemming, S.; Baeza, E.; van Thoor, E.A.J.; Schenning, A.P.H.J.; Debije, M.G. Advanced Optical Materials for Sunlight Control in Greenhouses. Adv. Opt. Mater. 2020, 8, 2000738. [Google Scholar] [CrossRef]
- Wu, M.; Shi, Y.; Li, R.; Wang, P. Spectrally Selective Smart Window with High Near-Infrared Light Shielding and Controllable Visible Light Transmittance. ACS Appl. Mater. Interfaces 2018, 10, 39819–39827. [Google Scholar] [CrossRef] [Green Version]
- Hao, Q.; Li, W.; Xu, H.; Wang, J.; Yin, Y.; Wang, H.; Ma, L.; Ma, F.; Jiang, X.; Schmidt, O.G.; et al. VO2/TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications. Adv. Mater. 2018, 30, 1705421. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.T.; Chen, Y.C.; Lee, C.Y.; Chang, H.Y.; Tai, N.H. Switchable Transparency of Dual-Controlled Smart Glass Prepared with Hydrogel-Containing Graphene Oxide for Energy Efficiency. Sol. Energy Mater. Sol. Cells 2017, 166, 45–51. [Google Scholar] [CrossRef]
- Liang, X.; Chen, M.; Guo, S.; Zhang, L.; Li, F.; Yang, H. Dual-Band Modulation of Visible and Near-Infrared Light Transmittance in an All-Solution-Processed Hybrid Micro–Nano Composite Film. ACS Appl. Mater. Interfaces 2017, 9, 40810–40819. [Google Scholar] [CrossRef]
- Liang, X.; Chen, M.; Wang, Q.; Guo, S.; Zhang, L.; Yang, H. Active and Passive Modulation of Solar Light Transmittance in a Hybrid Thermochromic Soft-Matter System for Energy-Saving Smart Window Applications. J. Mater. Chem. C. 2018, 6, 7054–7062. [Google Scholar] [CrossRef]
- Liang, X.; Guo, C.; Chen, M.; Guo, S.; Zhang, L.; Li, F.; Guo, S.; Yang, H. A Roll-to-Roll Process for Multi-responsive Soft-Matter Composite Films Containing CsxWO3 Nanorods for Energy-Efficient Smart Window Applications. Nanoscale Horiz. 2017, 2, 319–325. [Google Scholar] [CrossRef]
- Liang, X.; Guo, S.; Chen, M.; Li, C.; Wang, Q.; Zou, C.; Zhang, C.; Zhang, L.; Guo, S.; Yang, H. A Temperature and Electric Field-Responsive Flexible Smart Film with Full Broadband Optical Modulation. Mater. Horiz. 2017, 4, 878–884. [Google Scholar] [CrossRef]
- Wang, L.; Bisoyi, H.K.; Zheng, Z.; Gutierrez-Cuevas, K.G.; Singh, G.; Kumar, S.; Bunning, T.J.; Li, Q. Stimuli-Directed Self-Organized Chiral Superstructures for Adaptive Windows Enabled by Mesogen-functionalized Graphene. Mater. Today 2017, 20, 230–237. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Yoon, T.H. Control of Transmittance by Thermally Induced Phase Transition in Guest–Host Liquid Crystals. Adv. Sustain. Syst. 2018, 2, 1800066. [Google Scholar] [CrossRef]
- Oh, S.W.; Kim, S.H.; Baek, J.M.; Yoon, T.H. Optical and Thermal Switching of Liquid Crystals for Self-Shading Windows. Adv. Sustain. Syst. 2018, 2, 1700164. [Google Scholar] [CrossRef]
- Yin, K.; He, Z.; Wu, S.T. Reflective Polarization Volume Lens with Small f-Number and Large Diffraction Angle. Adv. Opt. Mater. 2020, 8, 2000170. [Google Scholar] [CrossRef]
- He, Z.; Yin, K.; Wu, S.T. Passive Polymer-Dispersed Liquid Crystal Enabled Multi-Focal Plane Displays. Opt. Express. 2020, 28, 15294–15299. [Google Scholar] [CrossRef]
- Kuang, Z.Y.; Deng, Y.; Hu, J.; Tao, L.; Wang, P.; Chen, J.; Xie, H.L. Responsive Smart Windows Enabled by the Azobenzene Copolymer Brush with Photothermal Effect. ACS Appl. Mater. Interfaces 2019, 11, 37026–37034. [Google Scholar] [CrossRef]
- Qin, S.; Qin, D.; Ford, W.T.; Resasco, D.E.; Herrera, J.E. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate. J. Am. Chem. Soc. 2004, 126, 170–176. [Google Scholar] [CrossRef]
- Hu, J.; Kuang, Z.Y.; Tao, L.; Huang, Y.F.; Wang, Q.; Xie, H.L.; Yin, J.R.; Chen, E.Q. Programmable 3D Shape-Change Liquid Crystalline Elastomer Based on a Vertically Aligned Monodomain with Cross-link Gradient. ACS Appl. Mater. Interfaces 2019, 11, 48393–48401. [Google Scholar] [CrossRef]
- Seddon, J.M. Structural Studies of Liquid Crystals by X-ray Diffraction. In Handbook of Liquid Crystals; WILEY-VCH Verlag GmbH: Weinheim, Germany, 1998; Volume 1, pp. 635–679. [Google Scholar] [CrossRef]
Concentration (wt %) | 0.01 | 0.05 | 0.1 | 0.5 | 1 | 2 |
Contact angle θw (degrees) | 83 | 88 | 91 | 94 | 95 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Li, S.-Q.; Yang, Q.; Luo, Z.-W.; Xie, H.-L. High-Efficiency Responsive Smart Windows Fabricated by Carbon Nanotubes Modified by Liquid Crystalline Polymers. Crystals 2021, 11, 440. https://doi.org/10.3390/cryst11040440
Deng Y, Li S-Q, Yang Q, Luo Z-W, Xie H-L. High-Efficiency Responsive Smart Windows Fabricated by Carbon Nanotubes Modified by Liquid Crystalline Polymers. Crystals. 2021; 11(4):440. https://doi.org/10.3390/cryst11040440
Chicago/Turabian StyleDeng, Yuan, Shi-Qin Li, Qian Yang, Zhi-Wang Luo, and He-Lou Xie. 2021. "High-Efficiency Responsive Smart Windows Fabricated by Carbon Nanotubes Modified by Liquid Crystalline Polymers" Crystals 11, no. 4: 440. https://doi.org/10.3390/cryst11040440
APA StyleDeng, Y., Li, S. -Q., Yang, Q., Luo, Z. -W., & Xie, H. -L. (2021). High-Efficiency Responsive Smart Windows Fabricated by Carbon Nanotubes Modified by Liquid Crystalline Polymers. Crystals, 11(4), 440. https://doi.org/10.3390/cryst11040440