Effect of High Pressure on the Solidification of Al–Ni Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
The Stable Growing Wavelength of Intermetallic Compound Al3Ni with Nil Solid Solubility
4. Phase Selection under High Pressure
5. Potential Energy of Hypo-Eutectic Al–Ni Alloy at Different Pressures
6. Conclusions
- (1)
- When the initial concentration of the Al–Ni alloy is lower than 25at.%Ni, no constitutional undercooling exists at the frontier of the Al3Ni solid–liquid interface.
- (2)
- Under the effect of high pressure, the interface temperature of the Al3Ni2 phase is lower than that of the Al3Ni phase.
- (3)
- The Debye temperatures of Al–38wt.%Ni alloys synthesized under ambient pressure, 2 GPa, and 4 GPa are 504.4 K, 508.71 K and 515.36 K, respectively. The potential energy in the lowest point decreases with the increase of pressure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pope, D.P.; Ezz, S.S. Mechanical Properties of Ni3Al and Nickel-Base Alloys with High Volume Fraction of γ′. Int. Met. Rev. 1984, 29, 136–167. [Google Scholar] [CrossRef]
- Wolfenstine, J.; Kim, H.K.; Earthman, J.C. Creep characteristics of single crystalline Ni3Al(Ta,B). Met. Mater. Trans. A 1994, 25, 2477–2482. [Google Scholar] [CrossRef]
- Li, G.Y.; Jiang, W.M.; Guan, F.; Zhu, J.W.; Zhang, Z.; Fan, Z.T. Microstructure, Mechanical Properties and Corrosion Resistance of A356 Aluminum/AZ91D Magnesium Bimetal Prepared by a Compound Casting Combined with a Novel Ni-Cu Composite In-Terlayer. J. Mater. Process Tech. 2021, 288, 116874. [Google Scholar] [CrossRef]
- Liu, C.T. Recent Advances in Ordered Intermetallics. Mater. Chem. Phys. 1995, 42, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Zhao, J.; Bai, F.; Li, T. First-Principle Studies of Al–Ru Intermetallic Compounds. Intermet. 2008, 16, 333–339. [Google Scholar] [CrossRef]
- Hilpert, K.; Kobertz, D.; Venugopal, V.; Miller, M.; Gerads, H.; Bremer, F.J.; Nickel, H. Phase Diagram Studies on the Al- Ni System. Zeitschrift für Naturforschung A 1987, 42, 1327–1332. [Google Scholar] [CrossRef]
- Pasturel, A.; Colinet, C.; Paxton, A.; Van Schilfgaarde, M. First-Principles Determination of the Ni-Al Phase Diagram. J. Phys. Condens. Matter 1992, 4, 945–959. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Zou, C.; Wei, Z.; Uwatoko, Y.; Gouchi, J.; Nishio-Hamane, D.; Gotou, H. The Effects of High Pressure and Superheating on the Planar Growth of Al3Ni Phase in Hypo-Peritectic Al-30wt%Ni Alloy. J. Alloys Compd. 2019, 772, 1052–1060. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wei, Z.; Zou, C. Al3Ni Alloy Synthesized at High Pressures and its Debye Temperature. J. Alloys Compd. 2019, 774, 364–369. [Google Scholar] [CrossRef]
- Zhai, W.; Wei, B. Direct Nucleation and Growth of Peritectic Phase Induced by Substantial Undercooling Condition. Mater. Lett. 2013, 108, 145–148. [Google Scholar] [CrossRef]
- Gegner, J.; Shuleshova, O.; Kobold, R.; Holland-Moritz, D.; Yang, F.; Hornfeck, W.; Bednarcik, J.; Herlach, D.M. In Situ Observation of The Phase Selection from the Undercooled Melt in Cu-Zr. J. Alloys Compd. 2013, 576, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Kubin, L.; Estrin, Y. The Portevin-Le Chatelier Effect in Deformation with Constant Stress Rate. Acta Met. 1985, 33, 397–407. [Google Scholar] [CrossRef]
- Caroli, B.; Caroli, C.; Roulet, B. Interface Kinetics and Solidification of Alloys: A Discussion of Some Phenomenological Models. Acta Met. 1986, 34, 1867–1877. [Google Scholar] [CrossRef]
- Fredriksson, H. Metals Handbook, 1st ed.; ASM: Materials Park, OH, USA, 1988. [Google Scholar]
- Gill, S.C.; Kurz, W. Rapidly Solidified Al–Cu Alloys—II. Calculation of The Microstructure Selection Map. Acta Metall. Mater. 1995, 43, 139–151. [Google Scholar] [CrossRef]
- Umeda, T.; Okane, T.; Kurz, W. Phase Selection During Solidification of Peritectic Alloys. Acta Mater. 1996, 44, 4209–4216. [Google Scholar] [CrossRef]
- Vandyoussefi, M.; Kerr, H.; Kurz, W. Two-Phase Growth in Peritectic Fe–Ni Alloys. Acta Mater. 2000, 48, 2297–2306. [Google Scholar] [CrossRef]
- Boettinger, W.; Coriell, S.R.; Trivedi, R. Rapid Solidification Processing: Principles and Technologies IV; Mehrabian, R., Parrish, P.A., Eds.; Claitor: Baton Rouge, LA, USA, 1988. [Google Scholar]
- Lipton, J.; Glicksman, M.; Kurz, W. Dendritic Growth into undercooled alloy metals. Mater. Sci. Eng. 1984, 65, 57–63. [Google Scholar] [CrossRef]
- Lipton, J.; Kurz, W.; Trivedi, R. Rapid Dendrite Growth in Undercooled Alloys. Acta Met. 1987, 35, 957–964. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Su, Y.; Luo, L.; Guo, J.; Fu, H. Solute Redistribution During Planar Growth of Intermetallic Compound with Nil Solubility. Intermet. 2012, 26, 131–135. [Google Scholar] [CrossRef]
- Ma, P.; Zou, C.; Wang, H.; Scudino, S.; Fu, B.; Wei, Z.; Kühn, U.; Eckert, J. Effects of High Pressure and SiC Content on Microstructure and Precipitation Kinetics of Al–20Si Alloy. J. Alloys Compd. 2014, 586, 639–644. [Google Scholar] [CrossRef]
- Liu, X.; Ma, P.; Jia, Y.D.; Wei, Z.J.; Suo, C.J.; Ji, P.C.; Shi, X.R.; Yu, Z.S.; Prashanth, K.G. Solidification of Al-xCu Alloy under High Pressures. J. Mater. Res. Technol. 2020, 9, 2983–2991. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, D.; Zou, C.; Wei, Z. Evolution of the Microstructure and Nanohardness of Ti–48at.%Al Alloy Solidified under High Pressure. Mater. Des. 2012, 34, 488–493. [Google Scholar] [CrossRef]
- Huang, X.R.; Han, Z.Q.; Liu, B.C. Study on the Effect of Pressure on the Equilibrium and Stability of the Solid-liquid Interface in Solidification of Binary Alloys. Sci. China Tech. Sci. 2011, 54, 479–483. [Google Scholar] [CrossRef]
- Emuna, M.; Greenberg, Y.; Hevroni, R.; Korover, I.; Yahel, E.; Makov, G. Phase Diagrams of Binary Alloys under Pressure. J. Alloys Compd. 2016, 687, 360–369. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, Z.; Yin, X.; Zhang, Y.; Zhao, M. Effects of Pressure on the Eutectic or Eutectoid Temperatures of the Cd–Pb, Cd–Sn, Pb–Sn and Cd–Pb-Sn Systems. J. Less Common Met. 1988, 143, 59–69. [Google Scholar] [CrossRef]
- Siethoff, H. Debye Temperature, Self-Diffusion and Elastic Constants of Intermetallic Compounds. Intermet. 1997, 5, 625–632. [Google Scholar] [CrossRef]
- Kumar, V.; Jha, V.; Shrivastava, A.K. Debye Temperature and Melting Point of II–VI and III–V semiconductors. Cryst. Res. Technol. 2010, 45, 920–924. [Google Scholar] [CrossRef]
- Lindemann, F.A. The Calculation of Molecular Natural Frequencies. Phys. Z. 1910, 11, 609–612. [Google Scholar]
- Daoud, S. Simplifified Expressions for Calculating Debye Temperature and Melting Point of II–VI and III–V Semiconductors. J. Pharmacol. Exp. Ther. 2015, 3, 275–279. [Google Scholar]
- Abrahams, S.C.; Hsu, F.S.L. Debye Temperatures and Cohesive Properties. J. Chem. Phys. 1975, 63, 1162–1165. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D. Fundamentals of Solidification; Trans Tech. Publ. Ltd.: Uetikon-Zuerich, Switzerland, 1998. [Google Scholar]
- Wolfram Research, Mathematica’s Element Data function. Available online: https://periodictable.com/Properties/A/FusionHeat.an.html (accessed on 20 April 2021).
- Stüber, S.; Holland-Moritz, D.; Unruh, T.; Meyer, A. Ni Self-Diffusion in Refractory Al–Ni Melts. Phys. Rev. B 2010, 81, 024204. [Google Scholar] [CrossRef]
- Xie, Y.Q. New Potential Energy Functions for Multi-Atomic Interaction in Solid. Chin. Sci. 1992, 8, 880–890. (In Chinese) [Google Scholar]
- Benenson, W.; Harris, J.W.; Stocker, H.; Lutz, H. Handbook of Physics, 2nd ed.; Springer-Verlag: New York, NY, USA, 2006. [Google Scholar]
- Mei, P. Interrelation Among Bond Energy, Melting Point, and Boiling Point of Metals. J. Jianghan Univ. 1991, 8, 68–70. (In Chinese) [Google Scholar]
- Xu, S.Q. A Method for Calculating the Thermal Expansion Coefficient of Metals. J. Shanghai Nonferr. Metal 1980, 6, 78–88. (In Chinese) [Google Scholar]
Physical Quantities | Symbol (unit) |
---|---|
z’—distance to the solid-liquid (S-L) interface | m |
z—distance to the beginning of solidification | m |
D—diffusion coefficient | m2/s |
V—solidification velocity | m/s |
—initial alloy concentration | at.% |
CL—The solute distribution at the frontier of Al3Ni interface | at.% |
—liquid composition at S- L interface | at.% |
—Al3Ni concentration | at.% |
—melting temperature | K |
G—actual temperature gradient in front of S-L interface | K/m |
Γ—Gibbs Thompson coefficient | K·m |
—velocity of the perturbation interface | m/s |
a—thermal diffusivity | m2/s |
—curvature | /m |
—latent heat of the metal | J/mol |
—sound speed in the liquid | m/s |
—gas constant | J/mol·K |
—latent heat of fusion | J/m3 |
c—volumetric specific heat | J/m3·K |
R—radius of the dendrite tip | m |
—the undercooling of the dendrite tip | K |
—liquidus temperature | K |
—heat undercooling | K |
—solute undercooling | K |
—curvature undercooling | K |
—kinetic undercooling | K |
—liquid slop under high pressure | K/at.% |
—stability constant = 1/4π2 | - |
—solute stability parameter | - |
—solute stability parameter | - |
—solutal Ivantsov function | - |
—thermal Péclet number = VR/2a | - |
—solute Péclet number = VR/2D | - |
-kinetic coefficient | - |
—function related to Péclet number | - |
—function related to Péclet number | - |
Physical Quantities | Symbol (unit) | Al–38wt.%Ni |
---|---|---|
Liquidus temperature | TL (K) | 1240 |
Density (Alsolid) a | ρSAl (g/cm3) | 2.7 |
Density (Alliquid) a | ρLAl (g/cm3) | 2.375 |
Density (Nisolid) a | ρSNi (g/cm3) | 8.908 |
Density (Niliquid) a | ρLNi (g/cm3) | 7.81 |
Thermal conductivity of Al a | κAl (W/m·K) | 235 |
Thermal conductivity of Ni a | κNi (W/m·K) | 91 |
Mole specific heat | CP (J/mol·K) | 29.3 |
Liquidus slope of β | mLβ (K/%) | 18.5 |
Diffusion coefficient | DL (m2/s) | 1 × 10−7 exp(−6.02 × 10−20/kB·T) [35] |
Parameter | Ambient Pressure | 1 GPa | 2 GPa | 3 GPa | 4 GPa |
---|---|---|---|---|---|
Linear expansion coefficient (×10−6 °C−1) | 19.98 | 9.56 | 8.98 | 8.48 | 8.05 |
Bond energy (KJ/mol) | 261.0 | 274.0 | 287.0 | 380.1 | 313.2 |
Bulk modulus (GPa) | 87.8371 | 94.794 | 101.68 | 108.57 | 115.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-H.; Dong, D.; Yang, X.-H. Effect of High Pressure on the Solidification of Al–Ni Alloy. Crystals 2021, 11, 478. https://doi.org/10.3390/cryst11050478
Wang X-H, Dong D, Yang X-H. Effect of High Pressure on the Solidification of Al–Ni Alloy. Crystals. 2021; 11(5):478. https://doi.org/10.3390/cryst11050478
Chicago/Turabian StyleWang, Xiao-Hong, Duo Dong, and Xiao-Hong Yang. 2021. "Effect of High Pressure on the Solidification of Al–Ni Alloy" Crystals 11, no. 5: 478. https://doi.org/10.3390/cryst11050478
APA StyleWang, X. -H., Dong, D., & Yang, X. -H. (2021). Effect of High Pressure on the Solidification of Al–Ni Alloy. Crystals, 11(5), 478. https://doi.org/10.3390/cryst11050478