Structural Phase Transition in (NH4)3GeF7–Raman Spectroscopy Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, J.; Yang, Y.; Zhao, J.P.; Liu, X.S.; Endres, F.; Chi, C.X.; Wang, B.S.; Liu, X.X.; Li, Y. Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries. Nanoscale 2017, 9, 8481–8488. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.W.; Cao, M.H. Multidimensional germanium-based materials as anodes for Lithium-ion batteries. Chem. Asian J. 2016, 20, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, Y.; Zhang, X.; Cheng, L.W.; Qian, M.M.; Wei, W.; Wang, H. Germanium-based high-performance dual-ion batteries. Nanoscale 2020, 12, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, L.C.; Monconduit, L.; Seznec, V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: A perspective from structure to electrochemical mechanism. Small 2020, 16, e1905260. [Google Scholar] [CrossRef]
- Kalem, S.; Werner, P.; Talalaev, V. Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: Effect of HF treatment. Appl. Phys. A 2013, 112, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Kalem, S.; Arthursson, Ö.; Romandic, I. Formation of germanates on germanium by chemical vapor treatment. Thin. Solid Films 2010, 518, 2377–2380. [Google Scholar] [CrossRef] [Green Version]
- Yota, J.; Burrows, V.A. An infrared-study of thin-film formation on Si and Gk surfaces treated with aqueous NH4F and HF. J. Appl. Phys. 1991, 69, 7369–7371. [Google Scholar] [CrossRef]
- Plitzko, C.; Meyer, G. Crystal structure of triammonium heptafluorogermanate (NH4)3GeF7. Z. Kristallogr. 1998, 213, 475. [Google Scholar] [CrossRef] [Green Version]
- Meyer, G. The Oxidation of metals with Liebig acids. Z Anorg. Allg. Chem. 2008, 634, 201–222. [Google Scholar] [CrossRef]
- D’yachenko, A.N.; Kraidenko, R.I. Fluorination of germanium concentrates with ammonium fluorides. Russ. J. Appl. Chem. 2008, 81, 952–955. [Google Scholar] [CrossRef]
- Mel’nikova, S.V.; Molokeev, M.S.; Laptash, N.M.; Pogoreltsev, E.I.; Misyul, S.V.; Flerov, I.N. Sequence of phase transitions in (NH4)3SiF7. Dalton Trans. 2017, 46, 2609–2617. [Google Scholar] [CrossRef] [Green Version]
- Mel’nikova, S.V.; Molokeev, M.S.; Laptash, N.M.; Misyul, S.V. A non-typical sequence of phase transitions in (NH4)3GeF7: Optical and structural characterization. Dalton Trans. 2016, 45, 5321–5327. [Google Scholar] [CrossRef] [Green Version]
- Molokeev, M.; Misjul, S.V.; Flerov, I.N.; Laptash, N.M. Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra. Acta. Cryst. 2014, B70, 924–931. [Google Scholar] [CrossRef]
- Flerov, I.N.; Molokeev, M.S.; Laptash, N.M.; Udovenko, A.A.; Pogoreltsev, E.I.; Mel’nikova, S.V.; Misyul, S.V. Structural transformation between two cubic phases of (NH4)3SnF7. J. Fluorine Chem. 2015, 178, 86–92. [Google Scholar] [CrossRef]
- Pogoreltsev, E.I.; Bogdanov, E.V.; Kartashev, A.V.; Molokeev, M.S.; Flerov, I.N.; Laptash, N.M. Thermal properties of (NH4)2MeF6∙NH4F (Me: Ti, Sn) crystals undergoing transformation between two cubic phases. Ferroelectrics 2016, 501, 20–25. [Google Scholar] [CrossRef]
- Bogdanov, E.V.; Kartashev, A.V.; Pogoreltsev, E.I.; Gorev, M.V.; Laptash, N.M.; Flerov, I.N. Anomalous behaviour of thermodynamic properties at successive phase transitions in (NH4)3GeF7. J. Solid State Chem. 2017, 256, 162–167. [Google Scholar] [CrossRef]
- Mel’nikova, S.V.; Pogoreltsev, E.I.; Flerov, I.N.; Laptash, N.M. Unusual sequence of phase transitions in (NH4)3TiF7 detected by optic and calorimetric studies. J. Fluorine Chem. 2014, 165, 14–19. [Google Scholar] [CrossRef]
- Pogoreltsev, E.I.; Flerov, I.N.; Kartashev, A.V.; Bogdanov, E.V.; Laptash, N.M. Heat capacity, entropy, dielectric properties and T–p phase diagram of (NH4)3TiF7. J. Fluorine Chem. 2014, 168, 247–250. [Google Scholar] [CrossRef]
- Kartashev, A.V.; Gorev, M.V.; Bogdanov, E.V.; Flerov, I.N.; Laptash, N.M. Thermal properties and phase transition in the fluoride, (NH4)3SnF7. J. Solid State Chem. 2016, 237, 269–273. [Google Scholar] [CrossRef]
- Gerasimova, Y.V.; Krylov, A.S.; Vtyurin, A.N.; Laptash, N.M.; Krylova, S.N. Ferroelastic phase transition in the family of double fluoride crystals by Raman spectroscopy. Ferroelectrics 2020, 568, 185–190. [Google Scholar] [CrossRef]
- Krylov, A.S.; Kolesnikova, E.M.; Isaenko, L.I.; Krylova, S.N.; Vtyurin, A.N. Measurement of Raman-scattering spectra of Rb2KMoO3F3 crystal: Evidence for controllable disorder in the lattice structure. Cryst. Growth Des. 2014, 14, 923–927. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th ed.; Wiley: New York, NY, USA, 2009; p. 419. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerasimova, Y.; Laptash, N.; Krylov, A.; Vonog, V.; Vtyurin, A. Structural Phase Transition in (NH4)3GeF7–Raman Spectroscopy Data. Crystals 2021, 11, 506. https://doi.org/10.3390/cryst11050506
Gerasimova Y, Laptash N, Krylov A, Vonog V, Vtyurin A. Structural Phase Transition in (NH4)3GeF7–Raman Spectroscopy Data. Crystals. 2021; 11(5):506. https://doi.org/10.3390/cryst11050506
Chicago/Turabian StyleGerasimova, Yulia, Natalia Laptash, Alexander Krylov, Vita Vonog, and Alexander Vtyurin. 2021. "Structural Phase Transition in (NH4)3GeF7–Raman Spectroscopy Data" Crystals 11, no. 5: 506. https://doi.org/10.3390/cryst11050506
APA StyleGerasimova, Y., Laptash, N., Krylov, A., Vonog, V., & Vtyurin, A. (2021). Structural Phase Transition in (NH4)3GeF7–Raman Spectroscopy Data. Crystals, 11(5), 506. https://doi.org/10.3390/cryst11050506