Bulk and Surface Conformations in Solid-State Lovastatin: Spectroscopic and Molecular Dynamics Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental
2.1.1. Materials
2.1.2. Infra-Red Spectroscopy
2.1.3. FT–Raman Spectroscopy
2.1.4. X-Ray Photoelectron Spectroscopy (XPS)
2.2. Computational
2.2.1. Gas-Phase Conformational Analysis and Simulated Spectra
2.2.2. Solid-State Molecular Dynamics and Simulated Spectra
3. Results
3.1. Conformational Flexibility
3.1.1. Gas-Phase Conformational Analysis
3.1.2. Solid-State Molecular Dynamics
3.1.3. Intramolecular Interactions
3.2. Vibrational Spectroscopy
3.2.1. IR Spectroscopy
3.2.2. Raman Spectroscopy
3.2.3. X-ray Photoelectron Spectroscopy (XPS)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hatcher, L.E.; Li, W.; Payne, P.; Benyahia, B.; Rielly, C.D.; Wilson, C.C. Tuning morphology in active pharmaceutical ingredients: Controlling the crystal habit of lovastatin through solvent choice and non-size-matched polymer additives. Cryst. Growth Des. 2020, 20, 5854–5862. [Google Scholar] [CrossRef]
- Turner, T.D.; Hatcher, L.E.; Wilson, C.C.; Roberts, K.J. Habit Modification of the Active Pharmaceutical Ingredient Lovastatin Through a Predictive Solvent Selection Approach. J. Pharm. Sci. 2019, 108, 1779–1787. [Google Scholar] [CrossRef] [Green Version]
- Dove, J.W.; Buckton, G.; Doherty, C. A comparison of two contact angle measurement methods and inverse gas chromatography to assess the surface energies of theophylline and caffeine. Int. J. Pharm. 1996, 138, 199–206. [Google Scholar] [CrossRef]
- Buckton, G.; Newton, J.M. Assessment of the wettability and surface energy of a pharmaceutical powder by liquid penetration. J. Pharm. Pharmacol. 1985, 37, 605–609. [Google Scholar] [CrossRef]
- Duncan-Hewitt, W.; Nisman, R. Investigation of the Surface Free Energy of Pharmaceutical Materials from Contact Angle, Sedimentation, and Adhesion Measurements. J. Adhes. Sci. Technol. 1993, 7, 263–283. [Google Scholar] [CrossRef]
- Modi, S.R.; Dantuluri, A.K.R.; Perumalla, S.R.; Sun, C.C.; Bansal, A.K. Effect of crystal habit on intrinsic dissolution behavior of celecoxib due to differential wettability. Cryst. Growth Des. 2014, 14, 5283–5292. [Google Scholar] [CrossRef]
- Sarisuta, N.; Lawanprasert, P.; Puttipipatkhachorn, S. The Influence of Drug-Excipient and Drug-Polymer Interactions on Butt Adhesive Strength of Ranitidine Hydrochloride Film-Coated Tablets. Drug Dev. Ind. Pharm. 2006, 32, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Williams, D. Particle Engineering in Pharmaceutical Solids Processing: Surface Energy Considerations. Curr. Pharm. Des. 2015, 21, 2677–2694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Cabeza, A.J.; Bernstein, J. Conformational polymorphism. Chem. Rev. 2014, 114, 2170–2191. [Google Scholar] [CrossRef]
- Nangia, A. Conformational polymorphism in organic crystals. Acc. Chem. Res. 2008, 41, 595–604. [Google Scholar] [CrossRef]
- Krimm, S. Interpreting infrared spectra of peptides and proteins. ACS Symp. Ser. 2000, 750, 38–53. [Google Scholar] [CrossRef]
- Fink, A.L.; Seshadri, S.; Khurana, R.; Oberg, K.A. Determination of secondary structure in protein aggregates using attenuated total reflectance FTIR. ACS Symp. Ser. 2000, 750, 132–144. [Google Scholar] [CrossRef]
- Baiz, C.R.; Błasiak, B.; Bredenbeck, J.; Cho, M.; Choi, J.-H.; Corcelli, S.A.; Dijkstra, A.G.; Feng, C.-J.; Garrett-Roe, S.; Ge, N.-H.; et al. Vibrational Spectroscopic Map, Vibrational Spectroscopy, and Intermolecular Interaction. Chem. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ouvrard, C.; Price, S.L. Toward crystal structure prediction for conformationally flexible molecules: The headaches illustrated by aspirin. Cryst. Growth Des. 2004, 4, 1119–1127. [Google Scholar] [CrossRef]
- Du, W.; Wang, H.; Wang, R.; Wang, X.; Cheng, P.; Zhang, J.; Tang, N.; Zhu, L.; Cui, P. Conformational Flexibility and Crystallization: The Case of 4-Hexyloxybenzoic Acid. Cryst. Growth Des. 2020. [Google Scholar] [CrossRef]
- Mary, Y.S.; Raju, K.; Panicker, C.Y.; Al-Saadi, A.A.; Thiemann, T. Molecular conformational analysis, vibrational spectra, NBO analysis and first hyperpolarizability of (2E)-3-(3-chlorophenyl)prop-2-enoic anhydride based on density functional theory calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 131, 471–483. [Google Scholar] [CrossRef]
- Sebastian, S.; Sylvestre, S.; Jayabharathi, J.; Ayyapan, S.; Amalanathan, M.; Oudayakumar, K.; Herman, I.A. Study on conformational stability, molecular structure, vibrational spectra, NBO, TD-DFT, HOMO and LUMO analysis of 3,5-dinitrosalicylic acid by DFT techniques. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1107–1118. [Google Scholar] [CrossRef]
- Sheena Mary, Y.; Raju, K.; Panicker, C.Y.; Al-Saadi, A.A.; Thiemann, T.; Van Alsenoy, C. Molecular conformational analysis, vibrational spectra, NBO analysis and first hyperpolarizability of (2E)-3-phenylprop-2-enoic anhydride based on density functional theory calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 638–646. [Google Scholar] [CrossRef]
- Singh, H.; Singh, S.; Srivastava, A.; Tandon, P.; Bharti, P.; Kumar, S.; Maurya, R. Conformational analysis and vibrational study of daidzein by using FT-IR and FT-Raman spectroscopies and DFT calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 120, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Kalaichelvan, S.; Sundaraganesan, N.; Dereli, O.; Sayin, U. Experimental, theoretical calculations of the vibrational spectra and conformational analysis of 2,4-di-tert-butylphenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 85, 198–209. [Google Scholar] [CrossRef]
- Mavromoustakos, T.; Kolocouris, A.; Zervou, M.; Roumelioti, P.; Matsoukas, J.; Weisemann, R. An effort to understand the molecular basis of hypertension through the study of conformational analysis of Losartan and Sarmesin using a combination of nuclear magnetic resonance spectroscopy and theoretical calculations. J. Med. Chem. 1999, 42, 1714–1722. [Google Scholar] [CrossRef]
- Gil, R.R. Constitutional, configurational, and conformational analysis of small organic molecules on the basis of NMR residual dipolar couplings. Angew. Chemie Int. Ed. 2011, 50, 7222–7224. [Google Scholar] [CrossRef] [PubMed]
- Brooks, C.L.; Case, D.A. Simulations of Peptide Conformational Dynamics and Thermodynamics. Chem. Rev. 1993, 93, 2487–2502. [Google Scholar] [CrossRef]
- Casalegno, M.; Moret, M.; Resel, R.; Raos, G. Surface Reconstructions in Organic Crystals: Simulations of the Effect of Temperature and Defectivity on Bulk and (001) Surfaces of 2,2′:6′,2″-Ternaphthalene. Cryst. Growth Des. 2016, 16, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemkevich, A.; Bürgi, H.B.; Spackman, M.A.; Corry, B. Molecular dynamics simulations of structure and dynamics of organic molecular crystals. Phys. Chem. Chem. Phys. 2010, 12, 14916–14929. [Google Scholar] [CrossRef]
- Tan, N.Y.; Zeitler, J.A. Probing phase transitions in simvastatin with terahertz time-domain spectroscopy. Mol. Pharm. 2015, 12, 810–815. [Google Scholar] [CrossRef]
- Pallipurath, A.R.; Skelton, J.M.; Erxleben, A.; McArdle, P. Shining Light on Growth-Dependent Surface Chemistry of Organic Crystals: A Polarized Raman Spectroscopic and Computational Study of Aspirin. Cryst. Growth Des. 2019, 19, 1288–1298. [Google Scholar] [CrossRef]
- Pallipurath, A.R.; Civati, F.; Sibik, J.; Crowley, C.; Zeitler, J.A.; McArdle, P.; Erxleben, A. A comprehensive spectroscopic study of the polymorphs of diflunisal and their phase transformations. Int. J. Pharm. 2017, 528, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, M. Control of crystallization. VDI Ber. 2005, 983–990. [Google Scholar] [CrossRef]
- Jackson, K.; Young, D.; Pant, S. Drug–excipient interactions and their affect on absorption. Pharm. Sci. Technol. Today 2000, 3, 336–345. [Google Scholar] [CrossRef]
- Beamson, G.; Pickup, B.T.; Li, W.; Mai, S.M. XPS Studies of chain conformation in PEG, PTrMO, and PTMG linear polyethers. J. Phys. Chem. B 2000, 104, 2656–2672. [Google Scholar] [CrossRef]
- Stevens, J.S.; Byard, S.J.; Schroeder, S.L.M. Salt or Co-Crystal? Determination of Protonation State by X-Ray Photoelectron Spectroscopy (XPS). J. Pharm. Sci. 2010, 99, 4453–4457. [Google Scholar] [CrossRef] [PubMed]
- Atzmony, L.; Lim, Y.H.; Hamilton, C.; Leventhal, J.S.; Wagner, A.; Paller, A.S.; Choate, K.A. Topical cholesterol/lovastatin for the treatment of porokeratosis: A pathogenesis-directed therapy. J. Am. Acad. Dermatol. 2020, 82, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bilski, P.; Drużbicki, K.; Jenczyk, J.; Mielcarek, J.; Wąsicki, J. Molecular and Vibrational Dynamics in the Cholesterol-Lowering Agent Lovastatin: Solid-State NMR, Inelastic Neutron Scattering, and Periodic DFT Study. J. Phys. Chem. B 2017, 121, 2776–2787. [Google Scholar] [CrossRef]
- Yoshida, M.I.; Oliveira, M.A.; Gomes, E.C.L.; Mussel, W.N.; Castro, W.V.; Soares, C.D.V. Thermal characterization of lovastatin in pharmaceutical formulations. J. Therm. Anal. Calorim. 2011, 106, 657–664. [Google Scholar] [CrossRef]
- Nghiem, D.T.; Nguyen, T.C.; Do, M.T.; Nguyen, T.H.; Tran, D.L.; Hoang, T.D.; Le, V.Q.; Vu, Q.T.; Nguyen, D.T.; Thai, H. Influence of the preparation method on some characteristics of alginate/chitosan/lovastatin composites. Adv. Polym. Technol. 2020, 2020. [Google Scholar] [CrossRef]
- Mulder, K.C.L.; Mulinari, F.; Franco, O.L.; Soares, M.S.F.; Magalhães, B.S.; Parachin, N.S. Lovastatin production: From molecular basis to industrial process optimization. Biotechnol. Adv. 2015, 33, 648–665. [Google Scholar] [CrossRef]
- McGinty, J.; Chong, M.W.S.; Manson, A.; Brown, C.J.; Nordon, A.; Sefcik, J. Effect of process conditions on particle size and shape in continuous antisolvent crystallisation of lovastatin. Crystals 2020, 10, 925. [Google Scholar] [CrossRef]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Rothrock, J.; Lopez, M.; Joshua, H.; Harris, E.; et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Hata, T.; Tsujita, Y.; Terahara, A.; Tamura, C. The structure of monacolin K, C24H26O5. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1984, 40, 195–198. [Google Scholar] [CrossRef]
- CasaXPS. Processing Software for XPS Spectra; CasaXPS: Teignmouth, UK, 2009. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 09 (Revision D.2); Gaussian, Inc.: Pittsburgh, PA, USA, 2009. [Google Scholar]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 720–723. [Google Scholar] [CrossRef]
- Mazzanti, A.; Casarini, D. Recent trends in conformational analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 613–641. [Google Scholar] [CrossRef]
- Tardio, S.; Cumpson, P.J. Practical estimation of XPS binding energies using widely available quantum chemistry software. Surf. Interface Anal. 2018, 5–12. [Google Scholar] [CrossRef]
- Izumi, K.M. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar]
- Contreras-García, J.; Johnson, E.R.; Keinan, S.; Chaudret, R.; Piquemal, J.P.; Beratan, D.N.; Yang, W. NCIPLOT: A program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 2011, 7, 625–632. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Abinitio molecular-dynamics for liquid-metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burken, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Comput. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511. [Google Scholar] [CrossRef] [Green Version]
- Parlinski, K.; Li, Z.Q.; Kawazoe, Y. First-principles determination of the soft mode in cubic ZrO2. Phys. Rev. Lett. 1997, 78, 4063–4066. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Skelton, J.M.; Burton, L.A.; Jackson, A.J.; Oba, F.; Parker, S.C.; Walsh, A. Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: Vibrational spectra and thermal transport. Phys. Chem. Chem. Phys. 2017, 12452–12456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajdoš Hummer, K.; Kresse, G.; Furthmüller, J.; Bechstedt, F.M. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 2006, 73, 45112. [Google Scholar] [CrossRef] [Green Version]
- Gunn, D.S.D.; Skelton, J.M.; Burton, L.A.; Metz, S.; Parker, S.C. Thermodynamics, Electronic Structure, and Vibrational Properties of Snn(S1-xSex)m Solid Solutions for Energy Applications. Chem. Mater. 2019, 31, 3672–3685. [Google Scholar] [CrossRef]
- Huang, H.; Yang, L.; Facchetti, A.; Marks, T.J. Organic and Polymeric Semiconductors Enhanced by Noncovalent Conformational Locks. Chem. Rev. 2017, 117, 10291–10318. [Google Scholar] [CrossRef]
- Altmann, L.S.; Herzig, P. Point-Group Theory Tables; Clarendon Press: Oxford, UK, 1994; Volume xii, ISBN 0198552262. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 978-0-470-09307-8. [Google Scholar]
- Belwal, C.; Patel, D.; Chauhan, K.; Parmar, Y.; Rawat, A.S.; Vardhan, A. Isolation, identification and characterization of unknown impurity in fermentation based active pharmaceutical ingredient Lovastatin. Res. Rev. J. Pharm. Anal. 2014, 3, 32–41. [Google Scholar]
- Albrecht, A.C.; Hutley, M.C. On the dependence of vibrational roman intensity on the wavelength of incident light. J. Chem. Phys. 1971, 55, 4438–4443. [Google Scholar] [CrossRef]
- Li, J.; Tilbury, C.J.; Kim, S.H.; Doherty, M.F. A design aid for crystal growth engineering. Prog. Mater. Sci. 2016, 82, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.S.; Schroeder, S.L.M. Quantitative analysis of saccharides by X-ray photoelectron spectroscopy. Surf. Interface Anal. 2009, 41, 453–462. [Google Scholar] [CrossRef]
- Stevens, J.S.; Coultas, S.; Jaye, C.; Fischer, D.A.; Schroeder, S.L.M. Core level spectroscopies locate hydrogen in the proton transfer pathway-identifying quasi-symmetrical hydrogen bonds in the solid state. Phys. Chem. Chem. Phys. 2020, 22, 4916–4923. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Takahagi, T.; Soeda, F.; Ishitani, A.; Shimomura, M.; Kunitake, T. XPS study of oriented organic molecules. Vesicles of azobenzene-containing alkyl ammonium amphiphiles. J. Colloid Interface Sci. 1988, 122, 464–474. [Google Scholar] [CrossRef]
Conformer 1 | Conformer 2 | Conformer 3 | Conformer 4 | |
---|---|---|---|---|
ΔE (kJ mol−1) | 0 | 2.54 | 4.54 | 5.70 |
Occurrence probability pn at T = 290 K | 0.627 | 0.218 | 0.095 | 0.059 |
τ1 (°) | 177 | 180 | 177 | 92.1 |
τ2 (°) | −61.9 | 60.5 | 62.2 | −61.3 |
τ3 (°) | 0.4 | −2.0 | −2.9 | 3.8 |
(C19-C28-C20-C17) (butyl) (°) | 66.0 | 66.1 | 66.0 | 66.8 |
(C10-C28-C20-C17) (butyl, hexahydronaphthenyl) (°) | −172.3 | −167.3 | −167.6 | −165.1 |
(O48-C11-C5-C4) (between S-butanoate/pyrnyl groups) (°) | 90.7 | 91.2 | 90.3 | 92.1 |
d(C=O) (S-butanoate) (Å) | 1.217 | 1.217 | 1.217 | 1.216 |
d(C-O) (S-butanoate) (Å) | 1.352 | 1.351 | 1.352 | 1.357 |
d(C=O) (pyranyl) (Å) | 1.211 | 1.210 | 1.211 | 1.212 |
d(C-O) (pyranyl) (Å) | 1.353 | 1.357 | 1.353 | 1.351 |
d(O-H) (pyranyl) (Å) | 0.966 | 0.967 | 0.966 | 0.966 |
Solid-State | Experimental | Tentative Assignment | Conformer 1 (Gas Phase) | Conformer 2 (Gas Phase) | Conformer 3 (Gas Phase) | Conformer 4 (Gas Phase) |
---|---|---|---|---|---|---|
- | 655 | O-H out-of-plane deformation | 652 | 656 | - | - |
790 (br, w), 730 (br, w) | 698, 714 (w), 739, 752, 760, 782, 796 (sh), 802 | C-H out-of-plane deformation in conjugated vinylenes | 808, 784, 756, 744, 704 | 808, 772, 756, 744, 708 | 808, 796, 772, 756, 744, 708 | 812, 756, 748, 692 |
870 (br, w) | 833 (w), 841 (w), 870 | Aliphatic C-CH3 stretches | 876 (sh), 836 | - | 876 | 872 |
976 (w), 966(w) | 890, 903, 923, 939 (w), 950 (w), 968 | Out-of-plane C-H deformation in cis vinylenes | 960, 916, 896 (sh), 884 | 976 (w), 960 (w), 928, 912, 888, | 976, 960, 920 (w), 888 | 924, 900, 884 |
1063, 1051, 1031 | 990, 1014, 1028, 1033 (sh), 1043, 1054 | Aliphatic C-H deformation | 1156, 1140, 1128, 1112, 1096, 1076, 1068, 1056, 1040, 1020, 1004, 984 | 1144, 1136, 1124 (w), 1120, 1096, 1084, 1068 (w), 1056, 1036, 1032, 1020 (w), 1004, 984 | 1116, 1096, 1084, 1068 (sh), 1056 (sh), 1036, 1020, 1004, 988, 984 | 1108, 1092, 1072, 1056, 1036, 1004, 992 |
1149, 1115, 1105 | 1074, 1080, 1107, 1111, 1115, 1126, 1153 | Coupled C-O stretches | 1340 (s), 1368 (w) | 1376 (s), 1340 (br), | 1320, 1336 | 1340 (br), 1372 (w) |
1210 (sh), 1199 | 1168, 1193, 1215 | Asymmetric C-O-C stretching | 1224 (vw), 1204 (s), 1180 (sh), 1176, 1168 (sh) | 1224 (w), 1194 (s), 1176, 1160 (w) | 1224 (w), 1200 (w), 1172, 1160 (sh) | 1224 (s), 1200 (w), 1180, 1172 (sh) |
1285 (br), 1264 (br, sh), 1246 (br) | 1246, 1261, 1297, 1329, 1360, 1369 | In-plane O-H deformation and symmetric C-H deformation | 1272, 1252, 1296, | 1320, 1292, 1276, 1260, 1244 (sh) | 1276, 1252, 1296, | 1248 (sh), 1268, 1256, 1292, 1316, |
1395 (w), 1442 (br) | 1382, 1444 | In-plane O-H deformation coupled with C-H wagging | 1420 (sh), 1412, 1384, 1392 | 1452, 1428, 1424, 1412 (sh), 1384 (br, sh) | 1424 (sh), 1412, 1384 | 1424 (sh), 1412, 1384 |
1455, 1461 | Asymmetric C-H deformation | 1516, 1500, 1484 | 1520 (sh), 1508, 1500, 1488 (sh) | 1508, 1500, 1488 (sh) | 1516, 1500, 1488 | |
1664 | 1698 | C=C symmetric stretching in dienes | 1677, 1706 (vw) | 1677, 1706 (vw) | 1677, 1707 (vw) | 1675, 1704 (vw) |
1697, 1677 (sh) | 1711, 1724 | C=O in esters and secondary amides (also seen in thiol esters) | 1808, 1776 | 1812, 1772 | 1808, 1772 | 1800, 1772 |
- | 2173 (w) | C-H overtones | - | - | - | - |
- | 2323 (w), 2343 (w), 2362 (w) | Free S-H stretching? | - | - | - | - |
2972, 2942, 2918 | 2989 (sh), 2966, 2950, 2930, 2864 | Aliphatic C-H stretching (symmetric and asymmetric in CH2 and CH3) | 3052 (sh), 3036, 3012, 2992 | 3048 (sh), 3036, 3012, 2988 | 3052 (sh), 3036, 3012, 2988 | 3052 (s), 3040,3012, 2988 |
3079, 3041 (s, br) | 3014, 3048 (w) | Olefinic C-H stretching | 3172, 3132, 3116, 3112 (sh), 3104, 3096 (sh), 3080 | 3172, 3136, 3120, 3112 (sh), 3100, 3084 (w), 3072 (sh) | 3172, 3132, 3120, 3104, 3080 | 3172, 3144, 3128, 3116, 3104, 3088, 3072 (w) |
3538 | 3538 | O-H stretching (with intermolecular H-bonding) | 3824 | 3820 | 3824 | 3824 |
Solid-State | Experimental | Tentative Assignment | Conformer 1 (Gas Phase) | Conformer 2 (Gas Phase) | Conformer 3 (Gas Phase) | Conformer 4 (Gas Phase) |
---|---|---|---|---|---|---|
185, 138, 84, 76 | 173, 142, 110, 73 | Lattice phonon modes | Phonon bands not observed in gas-phase molecules | |||
224, 268, 297 | (Unsaturated) CH3 torsional vibration | 300, 292, 268 | 296, 284, 268 | 300, 280, 264 | 300, 280, 260 | |
343 (sh), 347, 374, 399 | 404, 380, 357 | C-O out-of-plane deformation vibration | 376, 368, 356, 340, 316 (vw) | 364, 356, 344, | 368, 356, 340, | 360, 348, 316 |
570, 536, 527, 490 (sh), 480, 454, 432 | Not visible above FT noise | Aliphatic C-CH3 stretches/ring deformation/C-O in-plane deformation vibration | 584, 548, 536, 512, 488, 472, 432, 400 | 588, 560, 548, 528, 516, 508, 484, 472, 436, 404 | 588, 560, 548, 528, 508, 484, 472, 436, 404 | 616, 592, 560, 532, 516, 484, 464, 428, 416, 400 |
631 | 655 | O-H out-of-plane deformation | 652 | 640 | 640 | 656 |
785, 757, 735, 710, 687, 664 | 703 | C-H out-of-plane deformation in conjugated vinylenes | 788, 772, 756, 744, 720, 704, 652 | 796, 772, 756 (w), 740, 720 (sh), 708, 664 | 796, 772, 756, 744, 720, 708, 664 | 796, 756, 748, 720, 692 |
868, 829, 818 | 873, 831 | Aliphatic C-CH3 stretches | 852, 840, 804 (sh), 800 | 844 (sh), 836 (sh), 832, 808 (sh) | 848 (sh), 836, 808 | 860,856, 840, 812 |
926, 900, 884 | Not visible above FT noise | Out-of-plane C-H deformation in cis vinylenes | 988, 984 (sh), 960, 948, 932, 916, 884 | 984, 976, 960, 948 (w), 932 (w), 928 (w), 912, 896, 888 | 976 (sh), 960, 932 (w), 912 (w), 888 (w) | 972, 956, 940, 920, 900, 884, 872 |
1076, 1062, 1037, 1029, 1022, 976, 957, | 990, 1014, 1028, 1033 (sh), 1043, 1054 | Aliphatic C-H deformation | 1096, 1076 (sh), 1068, 1056, 1044, 1004 | 1096, 1080, 1072, 1056, 1044, 1032 (sh), 1004, 992 | 1096, 1080, 1068, 1056, 1044, 1032, 1004, 992 | 1092, 1084, 1072 1048, 1032, 992 |
1151, 1115 | Not visible above FT noise | Coupled C-O stretches | 1188, 1168, 1156, 1140, 1128, 1112, 1108 (all w) | 1188, 1176, 1160, 1144, 1132, 1108 (all w) | 1188, 1172, 1160, 1144, 1140, 1132, 1116, 1108 (all w) | 1188, 1172, 1160, 1156 (sh), 1144, 1132, 1128, 1108 (all w) |
1241, 1217, 1200, 1189 | Not visible above FT noise | Asymmetric C-O-C stretching | 1260 (sh), 1256, 1248 (sh), 1224, 1220 (w), 1212, 1204 | 1260 (sh), 1256, 1244, 1228, 1224, 1216, 1204, 1196 (vw) | 1260, 1252, 1224, 1204 | 1256, 1244, 1236. 1216, 1200 |
1338 (w), 1320 (w), 1298 (sh), 1285 | Not visible above FT noise | In-plane O-H deformation and symmetric C-H deformation | 1340, 1324, 1304 (w), 1292 (w), 1276 (sh), 1272 | 1344, 1336, 1328, 1324, 1304 (w), 1276 (sh), 1272 | 1344, 1340, 1326, 1304 (w), 1276, 1272 | 1336, 1324, 1316 (w), 1268 |
1391, 1366 (w, br) | 1377, 1404 | In-plane O-H deformation coupled with C-H wagging | 1384, 1376, 1360 | 1384, 1376, 1368, 1364 | 1384, 1364 | 1372, 1352 |
1462 (sh), 1436, 1416 (sh) | 1446, 1467 | Asymmetric C-H deformation | 1516 (sh), 1500, 1484 (sh), 1456, 1436, 1432, 1412, 1400, 1396 | 1516 (br, sh), 1500 (br), 1484 (sh), 1452, 1436, 1432, 1396 | 1516, 1500 (br), 1496, 1460, 1436, 1432, 1412, 1396 | 1516 (sh), 1508 (sh), 1500 (br) 1488, 1460, 1432, 1428 (sh), 1416, 1392 |
1641, 1663 (sh), 1676 (sh) | 1647 (br) | C=C symmetric stretching in dienes, C=O in esters? | 1808, 1716 (sh), 1712 (sh), 1708, 1704 (s), 1700 (sh) | 1812, 1716 (sh), 1712 (sh), 1708 (s), 1704, 1700 (sh) | 1808, 1712 (sh), 1708, 1704, 1700 (sh) | 1800, 1708 (sh), 1704, 1700 (sh) |
3008 (sh), 2981, 2964, 2944 (sh), 2917 | 2989 (sh), 2966, 2950, 2930, 2864 | Aliphatic C-H stretching (both symmetric and asymmetric In CH2 and CH3) | 3060 (sh), 3048, 3040, 3012, 2988 | 3060 (sh), 3052, 3044, 3036, 3012, 2988 | 3052, 3046, 3012, 2988 | 3060 (sh), 3052, 3040, 3028 (sh), 3012, 2988 |
3082, 3063, 3045 | 3015 (s) | Olefinic C-H stretching | 3172, 3148, 3136 (sh), 3132, 3116, 3104, 3080 (w) | 3172, 3148 (w), 3136, 3120, 3100, 3084 (w) | 3172, 3148, 3136, 3120, 3104, 3076 (w) | 3172, 3148, 3132, 3104, 3088 (sh) |
3538 | Not visible above FT noise | O-H stretching (with intermolecular H-bonding) | 3828 | 3820 | 3828 | 3828 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pallipurath, A.R.; Skelton, J.M.; Britton, A.; Willneff, E.A.; Schroeder, S.L.M. Bulk and Surface Conformations in Solid-State Lovastatin: Spectroscopic and Molecular Dynamics Studies. Crystals 2021, 11, 509. https://doi.org/10.3390/cryst11050509
Pallipurath AR, Skelton JM, Britton A, Willneff EA, Schroeder SLM. Bulk and Surface Conformations in Solid-State Lovastatin: Spectroscopic and Molecular Dynamics Studies. Crystals. 2021; 11(5):509. https://doi.org/10.3390/cryst11050509
Chicago/Turabian StylePallipurath, Anuradha R., Jonathan M. Skelton, Andrew Britton, Elizabeth A. Willneff, and Sven L. M. Schroeder. 2021. "Bulk and Surface Conformations in Solid-State Lovastatin: Spectroscopic and Molecular Dynamics Studies" Crystals 11, no. 5: 509. https://doi.org/10.3390/cryst11050509
APA StylePallipurath, A. R., Skelton, J. M., Britton, A., Willneff, E. A., & Schroeder, S. L. M. (2021). Bulk and Surface Conformations in Solid-State Lovastatin: Spectroscopic and Molecular Dynamics Studies. Crystals, 11(5), 509. https://doi.org/10.3390/cryst11050509