Prediction on Permeability of Engineered Cementitious Composites
Abstract
:1. Introduction
2. Theoretical Analysis
2.1. Darcy’s Law
2.2. Permeability of ECC Cement Paste
2.3. Permeability of ECC
3. Experimental Program
3.1. Materials and Mix Proportions
3.2. Water Permeability Test Method
4. Results and Discussion
4.1. Calculation of κp
4.2. Calculation of κECC
4.3. Results of Water Permeability Tests
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, T.; Zhang, P.; Li, Q.; Hu, S.; Ling, Y. Durability Assessment of PVA Fiber-Reinforced Cementitious Composite Containing Nano-SiO2 Using Adaptive Neuro-Fuzzy Inference System. Crystals 2020, 10, 347. [Google Scholar] [CrossRef]
- Li, V.C. From micromechanics to structural engineering-the design of cementitious composites for Civil engineering applications. Proc. Jpn. Soc. Civ. Eng. 1993, 471, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Li, V.C.; Leung, C.K.Y. Steady-state and multiple cracking of short random fiber composites. J. Eng. Mech. 1992, 118, 2246–2264. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Banthia, N.; Sun, W. Water permeability of repair mortars under an applied compressive stress at early ages. Mater. Struct. 2018, 51, 6. [Google Scholar] [CrossRef]
- Lepech, M.D.; Li, V.C. Water permeability of engineered cementitious composites. Cem. Concr. Comp. 2009, 31, 744–753. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Gu, C.; Su, H.; Li, V.C. Influence of microcrack self-healing behavior on the permeability of Engineered Cementitious Composites. Cem. Concr. Comp. 2017, 82, 14–22. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Gu, C.; Su, H.; Li, V.C. Influence of micro-cracking on the permeability of engineered cementitious composites. Cem. Concr. Comp. 2016, 72, 104–113. [Google Scholar] [CrossRef]
- Wagner, C.; Villmann, B.; Slowik, V.; Mechtcherine, V. Water permeability of cracked strain-hardening cement-based composites. Cem. Concr. Comp. 2017, 82, 234–241. [Google Scholar] [CrossRef]
- Wang, Q.; Banthia, N. Water permeability of Eco-Friendly Ductile Cementitious Composites (EDCC) under an applied compressive stress. Cem. Concr. Comp. 2020, 107, 103500. [Google Scholar] [CrossRef]
- Zhang, M.; He, Y.; Ye, G.; Lange, D.A.; Breugel, K.V. Computational investigation on mass diffusivity in Portland cement paste based on X-ray computed microtomography (μCT) image. Constr. Build. Mater. 2012, 27, 472–481. [Google Scholar] [CrossRef]
- Christensen, B.J.; Mason, T.O.; Jennings, H.M. Comparison of measured and calculated permeabilities for hardened cement pastes. Cem. Concr. Res. 1996, 26, 1325–1334. [Google Scholar] [CrossRef]
- El-Dieb, A.S.; Hooton, R.D. Evaluation of the Katz-Thompson model for estimating the water permeability of cement-based materials from mercury intrusion porosimetry data. Cem. Concr. Res. 1994, 24, 443–455. [Google Scholar] [CrossRef]
- Koster, M.; Hannawald, J.; Brameshuber, W. Simulation of water permeability and water vapor diffusion through hardened cement paste. Comput. Mech. 2006, 37, 163–172. [Google Scholar] [CrossRef]
- Park, S.S.; Kwon, S.J.; Jung, S.H.; Sang, W.L. Modeling of water permeability in early aged concrete with cracks based on micro pore structure. Constr. Build. Mater. 2012, 27, 597–604. [Google Scholar] [CrossRef]
- Cui, L.; Cahyadi, J.H. Permeability and pore structure of OPC paste. Cem. Concr. Res. 2001, 31, 277–282. [Google Scholar] [CrossRef]
- Zhang, M. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-Based Materials. Doctoral Thesis, Delft University of Technology, Delft, The Netherlands, 2013. [Google Scholar]
- Li, L.; Xia, J.; Lin, S. A multi-phase model for predicting the effective diffusion coefficient of chlorides in concrete. Constr. Build. Mater. 2012, 26, 295–301. [Google Scholar] [CrossRef]
- Hashin, Z. Thin interphase/imperfect interface in conduction. J. Appl. Phys. 2001, 89, 2261–2267. [Google Scholar] [CrossRef]
- Garboczi, E.J.; Bentz, D.P. Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete. Adv. Cem. Based Mater. 1998, 8, 77–88. [Google Scholar] [CrossRef]
- Oh, B.H.; Jang, S.Y. Prediction of diffusivity of concrete based on simple analytic equations. Cem. Concr. Res. 2004, 34, 463–480. [Google Scholar] [CrossRef]
- Marchand, J.; Gerard, B. Microstructure-based models for predicting transport properties. In Penetration and Permeability of Concrete: Barriers to Organic and Contaminating Liquids; Reinhardt, H.W., Ed.; E & FN Spon: London, UK, 1997; pp. 41–81. [Google Scholar]
- Hu, J.; Stroeven, P. Application of image analysis to assessing critical pore size for permeability prediction of cement paste. Image Anal. Stereol. 2003, 22, 97–103. [Google Scholar] [CrossRef]
- Powers, T.C. Structure and Physical Properties of Hardened Portland Cement Paste. J. Am. Ceram. Soc. 1958, 41, 1–6. [Google Scholar] [CrossRef]
- Bentz, D.P.; Garboczi, E.J.; Martys, N.S. Application of digital-image-based models to microstructure, transport properties, and degradation of cement-based materials. In The Modelling of Microstructure and Its Potential for Studying Transport Properties and Durability; Jennings, H., Kropp, J., Scrivener, K., Eds.; Springer: Dordrecht, The Netherlands, 1996; pp. 167–185. [Google Scholar] [CrossRef]
- Zhang, M. Pore-scale modelling of relative permeability of cementitious materials using X-ray computed microtomography images. Cem. Concr. Res. 2017, 95, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Zhu, J.; Li, N.; Fu, C. Experimental Research and Finite Element Analysis on Mechanical Property of SFRC T-Beam. Adv. Civ. Eng. 2017, 2017, 2721356. [Google Scholar] [CrossRef]
- Van Breugel, K. Simulation of Hydration and Formation of Structure in Hardening Cement-Based Materials. Doctoral Thesis, Delft University of Technology, Delft, The Netherlands, 1997. [Google Scholar]
- Bentz, D.P. Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development. J. Am. Ceram. Soc. 1997, 80, 3–21. [Google Scholar] [CrossRef]
- Bishnoi, S.; Scrivener, K.L. µic: A new platform for modelling the hydration of cements. Cem. Concr. Res. 2009, 39, 266–274. [Google Scholar] [CrossRef]
- Maekawa, K.; Chaube, R.; Kishi, T. Modelling of Concrete Performance: Hydration, Microstructure and Mass Transport; E & FN Spon: London, UK, 2014. [Google Scholar]
- Ye, G.; Van Breugel, K.; Fraaij, A. Three-dimensional microstructure analysis of numerically simulated cementitious materials. Cem. Concr. Res. 2003, 33, 215–222. [Google Scholar] [CrossRef]
- Gu, C. Chloride Transport Property and Service Life Prediction of UHPFRCC under Flexural Load. Doctoral Thesis, Southeast University, Nanjing, China, 2016. (In Chinese). [Google Scholar]
- Zhang, M.; Ye, G.; Van Breugel, K. Microstructure-based modeling of water diffusivity in cement paste. Constr. Build. Mater. 2011, 25, 2046–2052. [Google Scholar] [CrossRef]
- Andrade, C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 1993, 23, 724–742. [Google Scholar] [CrossRef]
- Zheng, J.; Li, C.; Zhou, X. Characterization of microstructure of interfacial transition zone in concrete. ACI Mater. J. 2005, 102, 265–271. [Google Scholar]
- Sun, G. Transport Behaviors and Multi-Scale Modeling of Chloride Ions in Cement-Based Composite Materials. Doctoral Thesis, Southeast University, Nanjing, China, 2014. (In Chinese). [Google Scholar]
- Katz, A.J.; Thompson, A.H. Quantitative Prediction of Permeability and Electrical-Conductivity in Porous Rock. Geophysics 1987, 52, 378. [Google Scholar]
- Scrivener, K.L.; Crumbie, A.K.; Laugesen, P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete. Interface. Sci. 2004, 12, 411–421. [Google Scholar] [CrossRef]
- Bhargava, A.; Banthia, N. Measurement of concrete permeability under stress. Exp. Tech. 2006, 30, 28–31. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Muñoz-Martialay, R. Oven-drying as a preconditioning method for air permeability test on concrete. Mater. Lett. 1996, 27, 263–268. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, Z.; Zhou, Y. Time-dependent water permeation behavior of concrete under constant hydraulic pressure. Water Sci. Eng. 2008, 1, 61–66. [Google Scholar] [CrossRef]
- Argiz, C.; Sanjuán, M.A.; Muñoz-Martialay, R. Effect of the aggregate grading on the concrete air permeability. Mater. Constr. 2014, 64, 315. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan, M.A.; Muñoz-Martialay, R. Influence of the water/cement ratio on the air permeability of concrete. J. Mater. Sci. 1996, 31, 2829–2832. [Google Scholar] [CrossRef]
- Sanjuán, M.A.; Muñoz-Martialay, R. Variability of the concrete air permeability coefficient with time. Build. Environ. 1997, 32, 51–55. [Google Scholar] [CrossRef]
- Roque, R.; Kim, N.; Kim, B.; George, L. Durability of Fiber-Reinforced Concrete in Florida Environments; University of Florida: Gainesville, FL, USA, 2009. [Google Scholar]
- Sun, G.; Sun, W.; Zhang, Y.; Liu, Z. Multi-scale Modeling of the Effective Chloride Ion Diffusion Coefficient in Cement-based Composite Materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2012, 27, 364–373. [Google Scholar] [CrossRef]
- Gu, C.; Ye, G.; Sun, W. A review of the chloride transport properties of cracked concrete: Experiments and simulations. J. Zhejiang Univ. Sci. A 2015, 16, 81–92. [Google Scholar] [CrossRef]
Ingredient | ECC | Mortar |
---|---|---|
Cement, ASTM Type I | 385 | 385 |
Fly ash, Class C | 770 | 770 |
Silica fume | 77 | 77 |
Natural sand, maximum size of 1.19 mm | 462 | 462 |
Water | 333 | 333 |
Superplasticizer | 2 | 1.7 |
PVA fiber | 26 | 0 |
Mesh Size (mm) | 1.18 | 0.6 | 0.3 | 0.15 |
Percentage of sieve residue (%) | - | 43.73 | 48.18 | 7.89 |
Age (d) | φp (%) | rpeak (nm) | VC-S-H (%) | κp (m2) |
---|---|---|---|---|
7 | 28.7 | 140 | 31.2 | 1.80 × 10−18 |
28 | 21.1 | 77 | 40.7 | 4.85 × 10−20 |
90 | 15.8 | 42 | 61.0 | 7.83 × 10−22 |
Age (d) | φi/φp | φi (%) | ri (nm) | κi (m2) | κm (m2) | κECC (m2) |
---|---|---|---|---|---|---|
7 | 1.53 | 43.8 | 214 | 2.44 × 10−16 | 2.68 × 10−18 | 2.63 × 10−18 |
28 | 1.61 | 33.8 | 123 | 8.15 × 10−17 | 7.88 × 10−20 | 7.72 × 10−20 |
90 | 1.76 | 27.9 | 74 | 2.91 × 10−17 | 1.28 × 10−21 | 1.26 × 10−21 |
Age (d) | Matrix | ECC | ||||
---|---|---|---|---|---|---|
Km (m/s) | Deviation (%) | KECC (m/s) | Deviation (%) | |||
7 | 2.62 × 10−11 | 2.15 × 10−11 | 21.9 | 2.57 × 10−11 | 2.03 × 10−11 | 26.6 |
28 | 7.72 × 10−13 | 8.78 × 10−13 | 12.7 | 7.56 × 10−13 | 8.39 × 10−13 | 9.8 |
90 | 1.26 × 10−14 | 1.72 × 10−14 | 27.1 | 1.23 × 10−14 | 1.48 × 10−14 | 16.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, G.; Tong, Y.; Gu, C. Prediction on Permeability of Engineered Cementitious Composites. Crystals 2021, 11, 526. https://doi.org/10.3390/cryst11050526
Wang Q, Zhang G, Tong Y, Gu C. Prediction on Permeability of Engineered Cementitious Composites. Crystals. 2021; 11(5):526. https://doi.org/10.3390/cryst11050526
Chicago/Turabian StyleWang, Qiannan, Guoshuai Zhang, Yunyun Tong, and Chunping Gu. 2021. "Prediction on Permeability of Engineered Cementitious Composites" Crystals 11, no. 5: 526. https://doi.org/10.3390/cryst11050526
APA StyleWang, Q., Zhang, G., Tong, Y., & Gu, C. (2021). Prediction on Permeability of Engineered Cementitious Composites. Crystals, 11(5), 526. https://doi.org/10.3390/cryst11050526