Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume?
Abstract
:1. Introduction
2. Experimental Section
2.1. Synthesis, Exposition and STM/STS Measurements
2.2. Numerical Simulation
3. Results and Discussion
3.1. Measurements
3.2. Considering the Electronic Structure
3.3. Barrier Symmetry Analysis
3.4. Band Gap Mapping
3.5. Quantum Chemical Simulation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C.M.; Baumer, M. Nanoporous Gold Catalysts for Selective Gas-Phase Oxidative Coupling of Methanol at Low Temperature. Science 2010, 327, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Raptis, C.; Garcia, H.; Stratakis, M. Selective Isomerization of Epoxides to Allylic Alcohols Catalyzed by TiO2-Supported Gold Nanoparticles. Angew. Chem. Int. Ed. 2009, 48, 3133–3136. [Google Scholar] [CrossRef]
- Taylor, S.F.R.; Sa, J.; Hardacre, C. Friedel-Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica. ChemCatChem 2011, 3, 119–121. [Google Scholar] [CrossRef]
- Meyer, R.; Shaikhutdinov, S.K.; Freund, H.-J. Surface Chemistry of Catalysis by Gold. Gold Bull. 2004, 37, 72–124. [Google Scholar] [CrossRef] [Green Version]
- Hashmi, A.S.K.; Hutchings, G.J. Gold Catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896–7936. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, L.; Jiang, Z.; Pei, S.; Xie, S.; Qiao, M.; Fan, K.J. Heteroepitaxial Growth of Gold on Flowerlike Magnetite: An Efficacious and Magnetically Recyclable Catalyst for Chemoselective Hydrogenation of Crotonaldehyde to Crotyl Alcohol. J. Catal. 2011, 281, 106–118. [Google Scholar] [CrossRef]
- Corma, A.; Serna, P. Chemoselective Hydrogenation of Nitro Compounds with Supported Gold Catalysts. Science 2006, 313, 332–334. [Google Scholar] [CrossRef]
- Liu, X.; Hu, B.; Fujimoto, K.; Haruta, M.; Tokunaga, M. Hydroformylation of Olefins by Au/Co3O4 Catalysts. Appl. Catal. B 2009, 92, 411. [Google Scholar] [CrossRef]
- Ikariya, T.; Blacker, A.J. Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts. Acc. Chem. Res. 2007, 40, 1300–1308. [Google Scholar] [CrossRef]
- Su, F.-Z.; He, L.; Ni, J.; Cao, Y.; He, H.-Y.; Fan, K.-N. Efficient and Chemoselective Reduction of Carbonyl Compounds with Supported Gold Catalysts under Transfer Hydrogenation Conditions. Chem. Commun. 2008, 30, 3531–3533. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Qian, Y.; Ding, R.-S.; Liu, Y.-M.; He, H.-Y.; Fan, K.-N.; Cao, Y. Highly Efficient Heterogeneous Gold-Catalyzed Direct Synthesis of Tertiary and Secondary Amines from Alcohols and Urea. ChemSusChem 2012, 5, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Uozumi, Y.; Hamasaka, G. Hydrochlorination of Alkynes with Titania-Supported Gold Nanoparticles. Synfacts 2017, 13, 0890. [Google Scholar] [CrossRef]
- Barton, D.G.; Podkolzin, S.G. Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles. J. Phys. Chem. B 2005, 109, 2262–2274. [Google Scholar] [CrossRef] [PubMed]
- Bus, E.; van Bokhoven, J.A. Hydrogen Chemisorption on Supported Platinum, Gold, and Platinum–Gold–Alloy Catalysts. Phys. Chem. Chem. Phys. 2007, 9, 2894–2902. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Miyamoto, Y.; Kawasaki, T.; Tanji, T.; Tai, Y.; Satsuma, A.J. Chemoselective Hydrogenation of Nitroaromatics by Supported Gold Catalysts: Mechanistic Reasons of Size-and Support-Dependent Activity and Selectivity. Phys. Chem. C 2009, 113, 17803–17810. [Google Scholar] [CrossRef]
- Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev. 2012, 112, 4469–4506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Nano-gold catalysis in fine chemical synthesis. Chem. Rev. 2012, 112, 2467–2505. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef]
- Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 2013, 15, 2636–2654. [Google Scholar] [CrossRef]
- Takale, B.S.; Bao, M.; Yamamoto, Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem. 2014, 12, 2005–2027. [Google Scholar] [CrossRef]
- Ide, M.S.; Davis, R.J. The important role of hydroxyl on oxidation catalysis by gold nanoparticles. Acc. Chem. Res. 2014, 47, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; He, L.; Liu, Y.-M.; Cao, Y. Supported gold catalysis: From small molecule activation to green chemical synthesis. Acc. Chem. Res. 2014, 47, 793–804. [Google Scholar] [CrossRef]
- Stratakis, M.; Lykakis, I.N. Nanogold(0)-catalyzed addition of heteroelement σ linkages to functional groups. Synthesis 2019, 51, 2435–2454. [Google Scholar] [CrossRef]
- Manzoli, M.; Chiorino, A.; Vindigni, F.; Boccuzzi, F. Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A FTIR study. Catal. Today 2012, 181, 62–67. [Google Scholar] [CrossRef]
- Watkins, W.L.; Borensztein, Y. Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 2017, 19, 27397–27405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, L.; Hackett, P.A.; Rayner, D.M. Relativistic effects in reactions of the coinage metal dimers in the gas phase. J. Chem. Phys. 1993, 99, 2583–2590. [Google Scholar] [CrossRef]
- Stobiński, L. Molecular and atomic deuterium chemisorption on thin gold films at 78 K: An isotope effect. Appl. Surf. Sci. 1996, 103, 503–508. [Google Scholar] [CrossRef]
- Grishin, M.V.; Gatin, A.K.; Dokhlikova, N.V.; Kirsankin, A.A.; Kulak, A.I.; Nikolaev, S.A.; Shub, B.R. Adsorption and Interaction of Hydrogen and Oxygen on the Surface of Separate Crystalline Gold Nanoparticles. Kinet. Catal. 2015, 56, 532–539. [Google Scholar] [CrossRef]
- Dokhlikova, N.V.; Kolchenko, N.N.; Grishin, M.V.; Shub, B.R. Electron delocalization in heterogeneous systems AunHm. Nanotechnol. Russ. 2016, 11, 7–11. [Google Scholar] [CrossRef]
- Gatin, A.K.; Grishin, M.V.; Dokhlikova, N.V.; Sarvadii, S.Y.; Shub, B.R. Hydrogenation of HOPG-supported Gold Nanoparticles: Features of Initial Stages. Crystals 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Freund, H.-J. Model Systems in Heterogeneous Catalysis: Selectivity Studies at the Atomic Level. Top. Catal. 2008, 48, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Stobiński, L.; Duś, R. Atomic hydrogen solubility in thin gold films and its influence on hydrogen thermal desorption spectra from the surface. Appl. Surf. Sci. 1992, 62, 77–82. [Google Scholar] [CrossRef]
- Fitzer, E.; Kochling, K.-H.; Boehm, H.P.; Marsh, H. Recommended terminology for the description of carbon as a solid (IUPAC recommendations 1995). Pure Appl. Chem. 1995, 67, 473–506. [Google Scholar] [CrossRef]
- Otto, K.; Oja Acik, I.; Krunks, M.; Tõnsuaadu, K.; Mere, K. Thermal decomposition study of HAuCl4·3H2O and AgNO3 as precursors for plasmonic metal nanoparticles. J. Therm. Anal. Calorim. 2014, 118, 1065–1072. [Google Scholar] [CrossRef]
- Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S. Selection of a Suitable Method for the Synthesis of Copper Nanoparticles. Nano Brief Rep. Rev. 2012, 7, 1230005. [Google Scholar] [CrossRef]
- Güntherodt, H.J.; Wiesendanger, R. (Eds.) Scanning Tunneling Microscopy I: General Principles and Applications to Clean and Absorbate-Covered Surfaces; Springer: Berlin, Germany, 1994; p. 280. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H.; Berber, C.; Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178–180. [Google Scholar] [CrossRef] [Green Version]
- Meyer, E.; Hug, H.J.; Bennewitz, R. (Eds.) Scanning Probe Microscopy; Springer: Berlin/Heidelberg, Germany, 2004; p. 210. [Google Scholar] [CrossRef] [Green Version]
- Hamers, R.J.; Wang, Y.J. Atomically-resolved studies of the chemistry and bonding at silicon surfaces. Chem. Rev. 1996, 96, 1261–1290. [Google Scholar] [CrossRef]
- OpenMX (Open source package for Material eXplorer). Available online: http://www.openmx-square.org/ (accessed on 25 May 2021).
- Simmons, J.G. Image Force in Metal-Oxide-Metal Tunnel Junctions. In Tunneling Phenomena in Solids; Burstein, E., Lundqvist, S., Eds.; Plenum Press: New York, NY, USA, 1969; p. 579. [Google Scholar] [CrossRef]
- Dokhlikova, N.V.; Kolchenko, N.N.; Grishin, M.V.; Gatin, A.K.; Shub, B.R. Substrate effect on hydrogen adsorption on gold cluster. Nanotechnol. Russ. 2016, 11, 735–742. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarvadii, S.Y.; Gatin, A.K.; Dokhlikova, N.V.; Kharitonov, V.A.; Ozerin, S.A.; Doronin, S.V.; Grishin, M.V.; Shub, B.R. Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume? Crystals 2021, 11, 597. https://doi.org/10.3390/cryst11060597
Sarvadii SY, Gatin AK, Dokhlikova NV, Kharitonov VA, Ozerin SA, Doronin SV, Grishin MV, Shub BR. Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume? Crystals. 2021; 11(6):597. https://doi.org/10.3390/cryst11060597
Chicago/Turabian StyleSarvadii, Sergey Yu., Andrey K. Gatin, Nadezhda V. Dokhlikova, Vasiliy A. Kharitonov, Sergey A. Ozerin, Sergey V. Doronin, Maxim V. Grishin, and Boris R. Shub. 2021. "Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume?" Crystals 11, no. 6: 597. https://doi.org/10.3390/cryst11060597
APA StyleSarvadii, S. Y., Gatin, A. K., Dokhlikova, N. V., Kharitonov, V. A., Ozerin, S. A., Doronin, S. V., Grishin, M. V., & Shub, B. R. (2021). Hydrogenation of HOPG-Supported Gold Nanoparticles: Surface or Volume? Crystals, 11(6), 597. https://doi.org/10.3390/cryst11060597