p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells
Abstract
:1. Introduction
2. Experimental
2.1. Fabrication of Perovskite Solar Cells
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Best Research-Cell Efficiency Chart. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 8 June 2021).
- Green, M.A.; Ho-Baillie, A.; Snaith, H.J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514. [Google Scholar] [CrossRef]
- Sun, J.; Li, F.; Yuan, J.; Ma, W. Advances in Metal Halide Perovskite Film Preparation: The Role of Anti-Solvent Treatment. Small Methods 2021, 5, 7ff6. [Google Scholar] [CrossRef]
- Bi, D.; Yi, C.; Luo, J.; Décoppet, J.-D.; Zhang, F.; Zakeeruddin, S.M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142. [Google Scholar] [CrossRef]
- Qin, P.-L.; Yang, G.; Ren, Z.-w.; Cheung, S.H.; So, S.K.; Chen, L.; Hao, J.; Hou, J.; Li, G. Stable and Efficient Organo-Metal Halide Hybrid Perovskite Solar Cells via π-Conjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Adv. Mater. 2018, 30, 1706126. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Y.; Pang, G.; Koh, C.W.; Djurišić, A.B.; Wu, Y.; Tu, B.; Liu, F.-z.; Chen, R.; Woo, H.Y.; et al. Conjugated Polymer–Assisted Grain Boundary Passivation for Efficient Inverted Planar Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1808855. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Yang, Y.; Lai, X.; Su, Q.; Wu, D.; Li, G.; Wang, K.; Chen, S.; Sun, X.W.; et al. Defects Passivation With Dithienobenzodithiophene-based π-conjugated Polymer for Enhanced Performance of Perovskite Solar Cells. Sol. RRL 2019, 3, 1900029. [Google Scholar] [CrossRef]
- Islam, M.S. Ionic transport in ABO3 perovskite oxides: A computer modelling tour. J. Mater. Chem. 2000, 10, 1027–1038. [Google Scholar] [CrossRef]
- Xing, J.; Wang, Q.; Dong, Q.; Yuan, Y.; Fang, Y.; Huang, J. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 2016, 18, 30484–30490. [Google Scholar] [CrossRef]
- Richardson, G.; O’Kane, S.E.; Niemann, R.G.; Peltola, T.A.; Foster, J.M.; Cameron, P.J.; Walker, A.B. Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ. Sci. 2016, 9, 1476–1485. [Google Scholar] [CrossRef] [Green Version]
- Zuo, W.-W.; Li, M.; Zong, W.-S.; Xu, S.-G.; Liu, Y.-L.; Su, Z.-H.; Gao, X.-Y.; Cao, S.-K.; Wang, Z.-K. Stabilization of Intrinsic Ions in Perovskite Solar Cells by Employment of a Bipolar Star-Shaped Organic Molecule as a Charge Transport Buffer. ACS Appl. Energy Mater. 2020, 3, 10632–10641. [Google Scholar] [CrossRef]
- Carrillo, J.; Guerrero, A.; Rahimnejad, S.; Almora, O.; Zarazua, I.; Mas-Marza, E.; Bisquert, J.; Garcia-Belmonte, G. Ionic reactivity at contacts and aging of methylammonium lead triiodide perovskite solar cells. Adv. Energy Mater. 2016, 6, 1502246. [Google Scholar] [CrossRef]
- Hermes, I.M.; Hou, Y.; Bergmann, V.W.; Brabec, C.J.; Weber, S.A. The interplay of contact layers: How the electron transport layer influences interfacial recombination and hole extraction in perovskite solar cells. J. Phys. Chem. Lett. 2018, 9, 6249–6256. [Google Scholar] [CrossRef]
- Kim, S.; Bae, S.; Lee, S.-W.; Cho, K.; Lee, K.D.; Kim, H.; Park, S.; Kwon, G.; Ahn, S.-W.; Lee, H.-M. Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Ono, L.K.; Lee, M.V.; Wang, S.; Raga, S.R.; Qi, Y. Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interfaces 2015, 2, 1500195. [Google Scholar] [CrossRef]
- Lin, Y.; Firdaus, Y.; Isikgor, F.H.; Nugraha, M.I.; Yengel, E.; Harrison, G.T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C. Self-assembled monolayer enables hole transport layer-free organic solar cells with 18% efficiency and improved operational stability. ACS Energy Lett. 2020, 5, 2935–2944. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, S.; Li, Y.; Li, J.; Liu, L.; Qin, Y.; Guo, Z.-X.; Dai, L.; Ye, C.; Zhu, D. PVK-modified single-walled carbon nanotubes with effective photoinduced electron transfer. Macromolecules 2003, 36, 6286–6288. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Li, W.; Hu, X.; Sun, K.; Zang, Z. Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 2019, 7, 26421–26428. [Google Scholar] [CrossRef]
- Nguyen, W.H.; Bailie, C.D.; Unger, E.L.; McGehee, M.D. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro (TFSI)2 in perovskite and dye-sensitized solar cells. J. Am. Chem. Soc. 2014, 136, 10996–11001. [Google Scholar] [CrossRef]
- O’Brien, D.F.; Burrows, P.E.; Forrest, S.R.; Koene, B.E.; Loy, D.E.; Thompson, M.E. Hole Transporting Materials with High Glass Transition Temperatures for Use in Organic Light-Emitting Devices. Adv. Mater. 1998, 10, 1108–1112. [Google Scholar] [CrossRef]
- Cooper, T.G.; Hejczyk, K.E.; Jones, W.; Day, G.M. Molecular polarization effects on the relative energies of the real and putative crystal structures of valine. J. Chem. Theory Comput. 2008, 4, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Saliba, M.; Matsui, T.; Seo, J.Y.; Domanski, K.; Correa-Baena, J.P.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Tress, W.; Abate, A.; Hagfeldt, A.; et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Env. Sci. 2016, 9, 1989–1997. [Google Scholar] [CrossRef] [Green Version]
- Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O.E.; Hull, T.D.; Yaffe, O.; Owen, J.S.; Kowalsky, W.; Pucci, A. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2913–2918. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Liu, X.; Lyu, L.; Niu, D.; Wang, Q.; Huang, J.; Gao, Y. Effects of precursor ratios and annealing on electronic structure and surface composition of CH3NH3PbI3 perovskite films. J. Phys. Chem. C 2015, 120, 215–220. [Google Scholar] [CrossRef]
- Philippe, B.; Park, B.-W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E.M.; Rensmo, H.k. Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures A Photoelectron Spectroscopy Investigation. Chem. Mater. 2015, 27, 1720–1731. [Google Scholar] [CrossRef]
- Grasso, V.; Silipigni, L. X-ray photoemission spectra and x-ray excited Auger spectrum investigation of the electronic structure of Pd3(PS4)2. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, 860–865. [Google Scholar] [CrossRef]
- Khadka, D.B.; Shirai, Y.; Yanagida, M.; Masuda, T.; Miyano, K. Enhancement in efficiency and optoelectronic quality of perovskite thin films annealed in MACl vapor. Sustain. Energy Fuels 2017, 1, 755–766. [Google Scholar] [CrossRef]
Perovskite (Scan Direction) | JSC (mA/cm2) | VOC (mV) | FF (%) | PCE (%) | RS (Ω cm2) | RSh (Ω cm2) | HI |
---|---|---|---|---|---|---|---|
PTPA-mCP (Reverse) | 21.70 | 1134 | 78 | 19.15 | 4.4 | 5953.8 | 0.11 |
PTPA-mCP (Forward) | 21.66 | 1146 | 69 | 17.12 | 5.3 | 1903.0 | |
PCz-mCP (Reverse) | 21.61 | 1122 | 77 | 18.54 | 4.0 | 3591.0 | 0.10 |
PCz-mCP (Forward) | 21.62 | 1096 | 71 | 16.76 | 4.7 | 2327.2 | |
control (Reverse) | 21.81 | 1169 | 69 | 17.62 | 6.1 | 3079.0 | 0.20 |
control (Forward) | 21.74 | 1030 | 63 | 14.15 | 6.2 | 1315.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, W.-W.; Fu, W.; Zong, W.-S.; Xu, S.-G.; Liu, Y.-L.; Cao, S.-K. p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells. Crystals 2021, 11, 654. https://doi.org/10.3390/cryst11060654
Zuo W-W, Fu W, Zong W-S, Xu S-G, Liu Y-L, Cao S-K. p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells. Crystals. 2021; 11(6):654. https://doi.org/10.3390/cryst11060654
Chicago/Turabian StyleZuo, Wei-Wei, Weifei Fu, Wan-Sheng Zong, Shen-Gang Xu, Ying-Liang Liu, and Shao-Kui Cao. 2021. "p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells" Crystals 11, no. 6: 654. https://doi.org/10.3390/cryst11060654
APA StyleZuo, W. -W., Fu, W., Zong, W. -S., Xu, S. -G., Liu, Y. -L., & Cao, S. -K. (2021). p-Type Polymers for Templated Crystallization of Perovskite Films and Interface Optimization for High Performance Solar Cells. Crystals, 11(6), 654. https://doi.org/10.3390/cryst11060654