Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives
Abstract
:1. Introduction
2. Vision, Mission and Guiding Principles of Recycled Concrete Aggregate (RCA)
3. Technical and Social Development for RCA
4. Economic Development for RCA
- Minimized tip-page and associated freight costs;
- Cheaper concrete sources than newly mined aggregates;
- Landfill space reduction needed for concrete debris;
- Utilizing RCAs as gravels minimizes the gravel mining need;
- High-grade aggregates for road constructions are increasingly available at longer. distances. This increases the costs related to environmental and economic impacts related to the greater haulage distance versus utilizing reclaimed aggregates.
5. Economic Development
6. Medium-Term Strategy: Maintaining Stability and Sustaining Growth of RCA
- The potentials to save virgin concretes and aggregates such as soils, stones and river sands;
- Their bulks that carried over longer distances for just disposal;
- They are occupying significant space at the sites of landfills;
- Their presence is spoiling the processing of recyclable and bio-degradable wastes.
7. Macroeconomic Management of the Utilization of RCA
- Narrowing resource loops: application of less material inputs for generation to have fewer outputs of wastes at end of life.
- Slowing loops: this implies the broadening of the application material phase.
- Closing resource loops: this may also be the same as the process of reclaiming the materials.
8. Restructuring the Public and Private Sectors to the Utilization of RCA
9. Social Development of the Utilization of RCA
10. Economic Development of the Utilization of RCA
11. Implementation, Monitoring and Evaluation of the Utilization of RCA
12. Conclusions
- Currently, the use of RCA is hampered by a number of disadvantages, which include the distance between processing plants and construction sites, low supply and demand, poor RCA quality, lack of standards and specifications, etc. While there is currently a lack of community awareness, applied research and a clear development strategy, this document and others like it do their part to fill these gaps.
- Concretes made with full replacement of the natural aggregate by RCAs can generate concrete of high quality. One possibility of improving the properties of concrete with RCA is the adoption of extended curing and adopting pozzolanic materials with the alteration of cement relations.
- A potential application of concretes with RCAs is in the manufacture of materials with high benefit, increasing the environmental and financial benefits. The RCAs have great potential in the development of a new generation of concretes, and encourage the economic activity of many countries, in addition to the optimization of natural resources.
- Economic benefits include minimized freight costs; cheaper concrete sources than newly mined aggregates; landfill space reduction needed for concrete debris; utilizing RCAs minimizes the gravel mining need etc.
- A proposed strategy may be to follow a series of demolition waste segregation, such as roof finishing, waterproof materials, exterior and interior finishing materials etc.
- Closing resource loops is the major approach used for effective frameworks in the recycling and reuse of construction and demolition wastes in production and recovery materials, particularly in the recycling and reuse of materials. In the lifecycle, the recirculation of recovered materials enables their application in new construction uses, avoiding the application of natural concrete aggregates.
- Government, design institutes, construction units, and project managers should be involved in the generation and utilization of RCA. During the demolition and construction, the project owners are the major players. Their obligations, expectations, and responsibilities must be properly coordinated.
- Over the last 20 years, recycled concrete aggregates that are obtained from demolition and construction waste have been viewed as alternatives to virgin concretes in structural concretes to minimize the environmental impacts of construction and demolition waste and conserve natural aggregate resources. Currently, it is appreciated that the applications of RCAs for the generation of RAC is a promising and highly attractive technology for reducing the ecological impact of the construction sector and conserving the natural resources.
- In the market, the sales price is not a hindrance affecting market applications of RCA since there are scenarios in which their costs are lesser than products of common construction materials. It is more a factor of market acceptance of recycled concrete aggregates. In the sector, the absence of accreditation identification systems and uniform quality certification and their narrow applications cause some marketing problems.
- With proper preparation of the RCA, the concretes with standard physical and mechanical properties and performance characteristics can be obtained.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Luo, W.; Wang, J.; Wang, Y.; Xu, Y.; Xiao, J. A review of life cycle assessment of recycled aggregate concrete. Constr. Build. Mater. 2019, 209, 115–125. [Google Scholar] [CrossRef]
- Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.; Murali, G.; Vatin, N.; Klyuev, S.; Ozbakkaloglu, T.; Vasilev, Y. Use of Recycled Concrete Aggregates in Production of Green Cement-Based Concrete Composites: A Review. Crystals 2021, 11, 232. [Google Scholar] [CrossRef]
- Kurad, R.; Silvestre, J.D.; de Brito, J.; Ahmed, H. Effect of incorporation of high volume of recycled concrete aggregates and fly ash on the strength and global warming potential of concrete. J. Clean. Prod. 2017, 166, 485–502. [Google Scholar] [CrossRef]
- Korsun, V.I.; Khon, K.; Ha, V.Q.; Baranov, A.O. Korsun, Strength and deformations of high-strength concrete under short-term heating conditions up to +90 °C. IOP Conf. Ser. Mater. Sci. Eng. 2020, 896, 012035. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A review of recycled aggregate in concrete applications (2000–2017). Constr. Build. Mater. 2018. [Google Scholar] [CrossRef]
- Jin, R.; Yuan, H.; Chen, Q. Science mapping approach to assisting the review of construction and demolition waste management research published between 2009 and 2018. Resour. Conserv. Recycl. 2019, 140, 175–188. [Google Scholar] [CrossRef]
- Tam, V.W.; Tam, C.M. A review on the viable technology for construction waste recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Statistics Explained; Europe Direct Contact Centre: Brussels, Belgium, 2016. [Google Scholar]
- Feduik, R. Reducing permeability of fiber concrete using composite binders. Spéc. Top. Rev. Porous Media 2018, 9, 79–89. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, H.; Zhang Hui, D.; Huabo, W.; Jiayuan, J.; Weiping, S.Q. Characterizing the generation and flows of construction and demolition waste in China. Constr. Build. Mater. 2017, 136, 405–413. [Google Scholar] [CrossRef] [Green Version]
- Damtoft, J.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Fediuk, R.; Pak, A.; Kuzmin, D. Fine-Grained Concrete of Composite Binder. IOP Conf. Ser. Mater. Sci. Eng. 2017. [Google Scholar] [CrossRef] [Green Version]
- Amran, Y.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Fediuk, R.; Yushin, A. Composite binders for concrete with reduced permeability. IOP Conf. Ser. Mater. Sci. Eng. 2016. [CrossRef]
- Amran, M.; Debbarma, S.; Ozbakkaloglu, T. Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Constr. Build. Mater. 2021, 270, 121857. [Google Scholar] [CrossRef]
- Amran, M.; Fediuk, R.; Murali, G.; Vatin, N.; Karelina, M.; Ozbakkaloglu, T.; Krishna, R.S.; Sahoo, A.K.; Das, S.K.; Mishra, J. Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications. Crystals 2021, 11, 168. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Khalid, N.H.A.; Fediuk, R.; Ozbakkaloglu, T.; Lee, Y.H.; Haruna, S.; Lee, Y.Y. Slag uses in making an ecofriendly and sustainable concrete: A review. Constr. Build. Mater. 2021, 272, 121942. [Google Scholar] [CrossRef]
- Zeyad, A.M.; Johari, M.A.M.; Alharbi, Y.R.; Abadel, A.A.; Amran, Y.M.; Tayeh, B.A.; Abutaleb, A. Influence of steam curing regimes on the properties of ultrafine POFA-based high-strength green concrete. J. Build. Eng. 2021, 38, 102204. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Fediuk, R.; Vatin, N.; Vasilev, Y.; Abdelgader, H. Palm Oil Fuel Ash-Based Eco-Efficient Concrete: A Critical Review of the Short-Term Properties. Materials 2021, 14, 332. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Haridharan, M.; Matheswaran, S.; Murali, G.; Abid, S.R.; Fediuk, R.; Amran, Y.M.; Abdelgader, H.S. Impact response of two-layered grouted aggregate fibrous concrete composite under falling mass impact. Constr. Build. Mater. 2020, 263, 120628. [Google Scholar] [CrossRef]
- Wijayasundara, M.; Mendis, P.; Zhang, L.; Sofi, M. Financial assessment of manufacturing recycled aggregate concrete in ready-mix concrete plants. Resour. Conserv. Recycl. 2016, 109, 187–201. [Google Scholar] [CrossRef]
- Tam, V.W.; Tam, C.M.; Wang, Y. Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach. Constr. Build. Mater. 2007, 21, 1928–1939. [Google Scholar] [CrossRef] [Green Version]
- Chernysheva, N.V.; Lesovik, V.S.; Drebezgova, M.Y.; Shatalova, S.V.; Alaskhanov, A.H. Composite Gypsum Binders with Silica-containing Additives. IOP Conf. Ser. Mater. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, C.; Ding, T.; Nezhad, A.A. A recycled aggregate concrete high-rise building: Structural performance and embodied carbon footprint. J. Clean. Prod. 2018, 199, 868–881. [Google Scholar] [CrossRef]
- Fediuk, R.S.; A Ibragimov, R.; Lesovik, V.S.; A Pak, A.; Krylov, V.V.; Poleschuk, M.M.; Stoyushko, N.Y.; A Gladkova, N. Processing equipment for grinding of building powders. IOP Conf. Ser. Mater. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, K.; Nezhad, A.A. Variability of stress-strain relationship for recycled aggregate concrete under uniaxial compression loading. J. Clean. Prod. 2018, 181, 753–771. [Google Scholar] [CrossRef]
- Lesovik, V.S. The reducing effect of argon in the plasma treatment of high-melting nonmetallic materials (a review). Glas. Ceram. 2001, 58, 362–364. [Google Scholar]
- O’Donnell, B.; Ives, C.J.; Mohiuddin, O.A.; Bunnell, B.A. Beyond the Present Constraints That Prevent a Wide Spread of Tissue Engineering and Regenerative Medicine Approaches. Front. Bioeng. Biotechnol. 2019, 7, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijayasundara, M.; Mendis, P.; Crawford, R.H. Methodology for the integrated assessment on the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 2017, 166, 321–334. [Google Scholar] [CrossRef]
- Chernysheva, N.; Lesovik, V.; Fediuk, R.; Vatin, N. Improvement of Performances of the Gypsum-Cement Fiber Reinforced Composite (GCFRC). Materials 2020, 13, 3847. [Google Scholar] [CrossRef]
- Abbas, A.; Fathifazl, G.; Isgor, O.B.; Razaqpur, A.G.; Fournier, B.; Foo, S. Durability of recycled aggregate concrete designed with equivalent mortar volume method. Cem. Concr. Compos. 2009, 31, 552–563. [Google Scholar] [CrossRef]
- Fediuk, R.; Mosaberpanah, M.A.; Lesovik, V. Development of fiber reinforced self-compacting concrete (FRSCC): Towards an efficient utilization of quaternary composite binders and fibers. Adv. Concr. Constr. 2020, 9, 387–395. [Google Scholar]
- Dean, S.W.; Abbas, A.; Fathifazl, G.; Isgor, O.B.; Razaqpur, A.G.; Fournier, B.; Foo, S. Proposed Method for Determining the Residual Mortar Content of Recycled Concrete Aggregates. J. ASTM Int. 2008, 5, 1–12. [Google Scholar] [CrossRef]
- Fediuk, R.S.; A Ibragimov, R.; Lesovik, V.S.; Akopian, A.K.; A Teleshev, A.; Khankhabaev, L.R.; Ivanov, A.S. Application of cementitious composites in mechanical engineering. IOP Conf. Ser. Mater. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Elistratkin, M.Y.; Lesovik, V.S.; Zagorodnjuk, L.H.; A Pospelova, E.; Shatalova, S.V. New point of view on materials development. IOP Conf. Ser. Mater. Sci. Eng. 2018. [Google Scholar] [CrossRef] [Green Version]
- Volodchenko, A.A.; Lesovik, V.S.; A Cherepanova, I.; Zagorodnjuk, L.H.; Elistratkin, M.Y.; Volodchenko, A.N. Peculiarities of non-autoclaved lime wall materials production using clays. IOP Conf. Ser. Mater. Sci. Eng. 2018. [Google Scholar] [CrossRef]
- Wijayasundara, M.; Mendis, P.; Crawford, R.H. Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J. Clean. Prod. 2018, 174, 591–604. [Google Scholar] [CrossRef]
- Karpikov, E.; Lukutcova, N.; Soboleva, G.; Golovin, S.; Cherenkova, Y. Effect of microfillers based on natural wollastonite on properties of fine-grained concrete. Constr. Mater. Prod. 2020, 2, 20–28. [Google Scholar] [CrossRef]
- Volodchenko, A.A.; Lesovik, V.S. Effective Composites Employing Fast-Hardening Gypsum Cement Binders for Additive Manufacturing. In Proceedings of the International Conference “Actual Issues Mechanical Engineering, Tomsk, Russia, 27 July 2017. [Google Scholar] [CrossRef] [Green Version]
- Tolstoy, A.; Lesovik, V.; Fediuk, R.; Amran, M.; Gunasekaran, M.; Vatin, N.; Vasilev, Y. Production of Greener High-Strength Concrete Using Russian Quartz Sandstone Mine Waste Aggregates. Materials 2020, 13, 5575. [Google Scholar] [CrossRef] [PubMed]
- Rashid, K.; Rehman, M.U.; de Brito, J.; Ghafoor, H. Multi-criteria optimization of recycled aggregate concrete mixes. J. Clean. Prod. 2020, 276, 124316. [Google Scholar] [CrossRef]
- Chernyshova, N.; Lesovik, V.; Fediuk, R.; Timokhin, R. Enhancement of fresh properties and performances of the eco-friendly gypsum-cement composite (EGCC). Constr. Build. Mater. 2020, 260, 120462. [Google Scholar] [CrossRef]
- Lesovik, V.; Popov, D.; Fediuk, R.; Glagolev, E.; Yoo, D.-Y. Improvement of Mechanical and Durability Behaviors of Textile Concrete: Effect of Polymineral Composite Binders and Superabsorbent Polymers. J. Mater. Civ. Eng. 2020, 32, 04020315. [Google Scholar] [CrossRef]
- Ferreira, R.L.S.; Anjos, M.A.S.; Maia, C.; Pinto, L.; de Azevedo, A.R.G.; de Brito, J. Long-term analysis of the physical properties of the mixed recycled aggregate and their effect on the properties of mortars. Constr. Build. Mater. 2021, 274, 121796. [Google Scholar] [CrossRef]
- Yuan-chen, G.; Xue, W.; Ke-wei, S.; Long-fei, C. Experiment study on drying shrinkage deformation of recycled aggregate concrete. In Proceedings of the Electric Technology and Civil Engineering (ICETCE), Lushan, China, 22–24 April 2011; pp. 1219–1222. [Google Scholar]
- Lesovik, V.S.; Zagorodnyuk, L.K.; Babaev, Z.K.; Dzhumaniyazov, Z.B. Analysis of the Causes of Brickwork Efflorescence in the Aral Sea Region. Glas. Ceram. 2020, 77, 277–279. [Google Scholar] [CrossRef]
- Elhakam, A.A.; Mohamed, A.E.; Awad, E. Influence of self-healing, mixing method and adding silica fume on mechanical properties of recycled aggregates concrete. Constr. Build. Mater. 2012, 35, 421–427. [Google Scholar] [CrossRef]
- Achtemichuk, S.; Hubbard, J.; Sluce, R.; Shehata, M.H. The utilization of recycled concrete aggregate to produce controlledlow-strength materials without using portland cement. Cem. Concr. Compos. 2009, 31, 564–569. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Karthikeyan, K.; Haridharan, M.; Amran, M.; Siva, A. Low-velocity impact response of novel prepacked expanded clay aggregate fibrous concrete produced with carbon nano tube, glass fiber mesh and steel fiber. Constr. Build. Mater. 2021, 284, 122749. [Google Scholar] [CrossRef]
- Salaimanimagudam, M.P.; Murali, G.; Vardhan, C.M.V.; Amran, M.; Vatin, N.; Fediuk, R.; Vasilev, Y. Impact Response of Preplaced Aggregate Fibrous Concrete Hammerhead Pier Beam Designed with Topology Optimization. Crystals 2021, 11, 147. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, W.; Zhang, J.; Yin, H. Experimental study on seismic performance of coupled shear walls with upper part using recycled concrete. J. Earthq. Eng. Eng. Vib. 2010, 1, 13. [Google Scholar]
- Lesovik, V.; Chernysheva, N.; Fediuk, R.; Amran, M.; Murali, G.; de Azevedo, A.R. Optimization of fresh properties and durability of the green gypsum-cement paste. Constr. Build. Mater. 2021, 287, 123035. [Google Scholar] [CrossRef]
- Rudenko, A.; Biryukov, A.; Kerzhentsev, O.; Fediuk, R.; Vatin, N.; Vasilev, Y.; Klyuev, S.; Amran, M.; Szelag, M. Nano- and Micro-Modification of Building Reinforcing Bars of Various Types. Crystals 2021, 11, 323. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.Y.; Du, J.; Li, X. Experimental study on mineral admixture and recycled aggregates affecting the rapid chloride permeability of high-performance recycled concrete. Chin. Concr. 2009, 2, 94–97. [Google Scholar]
- Murali, G.; Abid, S.R.; Amran, Y.M.; Abdelgader, H.S.; Fediuk, R.; Susrutha, A.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structures 2020, 28, 1502–1515. [Google Scholar] [CrossRef]
- Azreen, N.; Rashid, R.S.; Amran, Y.H.M.; Voo, Y.; Haniza, M.; Hairie, M.; Alyousef, R.; Alabduljabbar, H. Simulation of ultra-high-performance concrete mixed with hematite and barite aggregates using Monte Carlo for dry cask storage. Constr. Build. Mater. 2020, 263, 120161. [Google Scholar] [CrossRef]
- Jaishankar, P.; Murali, G.; Salaimanimagudam, M.P.; Amran, Y.H.M.; Fediuk, R.; Karthikeyan, K. Study of Topology Optimized Hammerhead Pier Beam Made with Novel Preplaced Aggregate Fibrous Concrete. Period. Polytech. Civ. Eng. 2020, 65, 287–298. [Google Scholar] [CrossRef]
- Cui, Z.L.; Lu, S.S.; Wang, Z.S. Influence of recycled aggregate on strength and anti-carbonation properties of recycled aggregate concrete. J. Build. Mater. 2012, 15, 264–267. [Google Scholar]
- Marvila, M.; Azevedo, A.; Alexandre, J.; Zanelato, E.; Azeredo, N.; Simonassi, N.; Monteiro, S. Correlation between the properties of structural clay blocks obtained by destructive tests and Ultrasonic Pulse Tests. J. Build. Eng. 2019, 26. [Google Scholar] [CrossRef]
- Marvila, M.T.; Azevedo, A.R.; Cecchin, D.; Costa, J.M.; Xavier, G.C.; Carmo, D.D.F.D.; Monteiro, S.N. Durability of coating mortars containing açaí fibers. Case Stud. Constr. Mater. 2020, 13, e00406. [Google Scholar] [CrossRef]
- Corinaldesi, V. Structural Concrete Prepared with Coarse Recycled Concrete Aggregate: From Investigation to Design. Adv. Civ. Eng. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Marvila, M.T.; Azevedo, A.R.; Barroso, L.; Barbosa, M.Z.; de Brito, J. Gypsum plaster using rock waste: A proposal to repair the renderings of historical buildings in Brazil. Constr. Build. Mater. 2020, 250, 118786. [Google Scholar] [CrossRef]
- França, B.R.; Azevedo, A.; Monteiro, S.N.; Filho, F.D.C.G.; Marvila, M.T.; Alexandre, J.; Zanelato, E.B. Durability of Soil-Cement Blocks with the Incorporation of Limestone Residues from the Processing of Marble. Mater. Res. 2018, 21, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Jiang, H. Experimental Study on Shear Behavior of Recycled Coarse Aggregate Concrete Beams. J. Shenyang Jianzhu Univ. Nat. Sci. 2009, 4, 13. [Google Scholar]
- Ahrari, A.; Haghani, A. A New Decision Support System for Optimal Integrated Project Scheduling and Resource Planning. Int. J. Inf. Technol. Proj. Manag. 2019, 10, 18–33. [Google Scholar] [CrossRef]
- Al-Bayati, H.K.A.; Das, P.K.; Tighe, S.L.; Baaj, H. Evaluation of various treatment methods for enhancing the physical and morphological properties of coarse recycled concrete aggregate. Constr. Build. Mater. 2016, 112, 284–298. [Google Scholar] [CrossRef]
- Zhou, J.; He, H.; Meng, X.; Yang, Y. Basic mechanical properties of recycled concrete experimental study. J. Shenyang Jianzhu Univ. Natural Sci. 2010, 26, 464–468. [Google Scholar]
- Al-Bayati, H.K.A.; Tighe, S.L.; Achebe, J. Influence of recycled concrete aggregate on volumetric properties of hot mix asphalt. Resour. Conserv. Recycl. 2018, 130, 200–214. [Google Scholar] [CrossRef]
- Al-Swaidani, A.M.; Khwies, W.T. Applicability of Artificial Neural Networks to Predict Mechanical and Permeability Properties of Volcanic Scoria-Based Concrete. Adv. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Anderson, K.W.; Uhlmeyer, J.S.; Russell, M. Use of Recycled Concrete Aggregate in PCCP: Literature Search; Washington State Department of Transportation (WSDOT): Olympia, WA, USA, 2009.
- Chatterjee, A.; Sui, T. Alternative fuels—Effects on clinker process and properties. Cem. Concr. Res. 2019, 123, 105777. [Google Scholar] [CrossRef]
- Illankoon IMChethana, S.; Tam Vivian, W.Y.; Le, K.N. Environmental, economic, and social parameters in international green building rating tools. J. Prof. Issues Eng. Educ. Pract. 2017, 143, 05016010. [Google Scholar] [CrossRef]
- Sandanayake, M.; Bouras, Y.; Haigh, R.; Vrcelj, Z. Current Sustainable Trends of Using Waste Materials in Concrete—A Decade Review. Sustainability 2020, 12, 9622. [Google Scholar] [CrossRef]
- Wu, P.; Mao, C.; Wang, J.; Song, Y.; Wang, X. A decade review of the credits obtained by LEED v2.2 certified green building projects. Build. Environ. 2016, 102, 167–178. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egypt. J. Pet. 2018, 27, 1275–1290. [Google Scholar] [CrossRef]
- Abdulmatin, A.; Tangchirapat, W.; Jaturapitakkul, C. Environmentally friendly interlocking concrete paving block containing new cementing material and recycled concrete aggregate. Eur. J. Environ. Civ. Eng. 2019, 23, 1467–1484. [Google Scholar] [CrossRef]
- Almeida, A.; Cunha, J. The implementation of an Activity-Based Costing (ABC) system in a manufacturing company. Procedia Manuf. 2017, 13, 932–939. [Google Scholar] [CrossRef]
- Babel, S.; Ta, A.T.; Liyanage, T.U.H. Current situation and challenges of waste management in Thailand. Sustain. Waste Manag. Chall. Dev. Ctries. 2020, 409–440. [Google Scholar] [CrossRef]
- Hall-Andersen, L.B.; Neumann, P.; Broberg, O. Integrating ergonomics knowledge into business-driven design projects: The shaping of resource constraints in engineering consultancy. Work 2016, 55, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Bartolacci, F.; Paolini, A.; Quaranta, A.G.; Soverchia, M. Assessing factors that influence waste management financial sustainability. Waste Manag. 2018, 79, 571–579. [Google Scholar] [CrossRef]
- De Brito, J.; Silva, R. Current status on the use of recycled aggregates in concrete: Where do we go from here? RILEM Tech. Lett. 2016, 1, 1–5. [Google Scholar] [CrossRef]
- Korsun, V.I.; Vatin, N.; Korsun, A.; Nemova, D. Physical-Mechanical Properties of the Modified Fine-Grained Concrete Subjected to Thermal Effects up to 200 °C. Appl. Mech. Mater. 2014, 633–634, 1013–1017. [Google Scholar] [CrossRef]
- Hui, J.; Toyama, K.; Pal, J.; Dillahunt, T. Making a Living My Way: Necessity-driven Entrepreneurship in Resource-Constrained Communities. In Proceedings ACM Human-Computer Interact; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–24. [Google Scholar]
- Jadhav, S.; Nagarajan, K.; Narwade, R. Best feasible transportation route analysis for delivering ready mixed concrete (RMC)-a Geographic Information System (GIS) Approach. Int. Res. J. Eng. Technol. 2019, 6, 2400–2405. [Google Scholar]
- Ma, J.; Sun, D.; Pang, Q.; Sun, G.; Hu, M.; Lu, T. Potential of recycled concrete aggregate pretreated with waste cooking oil residue for hot mix asphalt. J. Clean. Prod. 2019, 221, 469–479. [Google Scholar] [CrossRef]
- Meneses, E.J.; Gaussens, M.; Jakobsen, C.; Mikkelsen, P.S.; Grum, M.; Vezzaro, L. Coordinating Rule-Based and System-Wide Model Predictive Control Strategies to Reduce Storage Expansion of Combined Urban Drainage Systems: The Case Study of Lundtofte, Denmark. Water 2018, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.I.; Najim, K.B. Mechanical strength, flexural behavior and fracture energy of Recycled Concrete Aggregate self-compacting concrete. Structures 2020, 23, 34–43. [Google Scholar] [CrossRef]
- Poon, C.S.; Azhar, S.; Kou, S.C. Recycled aggregates for concrete applications. In Proceedings of the Mater. Sci. Technol. Eng. Conf. New Next, Hong Kong, China, 15–17 January 2003. [Google Scholar]
- Hou, Y.; Ji, X.; Su, X. Mechanical properties and strength criteria of cement-stabilised recycled concrete aggregate. Int. J. Pavement Eng. 2019, 20, 339–348. [Google Scholar] [CrossRef]
- Aliabdo, A.E.M.; Abd Elmoaty, A.M.; Fawzy, A.A. Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate. Constr. Build. Mater. 2018. [Google Scholar] [CrossRef]
- Andal, J.; Shehata, M.; Zacarias, P. Properties of concrete containing recycled concrete aggregate of preserved quality. Constr. Build. Mater. 2016, 125, 842–855. [Google Scholar] [CrossRef]
- Arredondo-Rea, S.P.; Corral-Higuera, R.; Gómez-Soberón, J.M.; Gámez-García, D.C.; Bernal-Camacho, J.M.; Rosas-Casarez, C.A.; Ungsson-Nieblas, M.J. Durability Parameters of Reinforced Recycled Aggregate Concrete: Case Study. Appl. Sci. 2019, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Aslani, F.; Ma, G.; Wan, D.L.Y.; Muselin, G. Development of high-performance self-compacting concrete using waste recycled concrete aggregates and rubber granules. J. Clean. Prod. 2018, 182, 553–566. [Google Scholar] [CrossRef]
- Ayzenshtadt, A.; Lesovik, V.; Frolova, M.; Tutygin, A.; Danilov, V. Nanostructured Wood Mineral Composite. Procedia Eng. 2015, 117, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Drozdyuk, T.; Ayzenshtadt, A.; Frolova, M.; Verma, R.S.R.S. Mineral wool composite with the use of saponite-containing mining industry waste. Constr. Mater. Prod. 2020, 3, 21–27. [Google Scholar] [CrossRef]
- Balan, M.A.; Thomas, C.A. Management. In Experimental Study and Optimisation of Best Performance Self-Compacting Recycled Aggregate Concrete; Springer: Berlin/Heidelberg, Germany, 2019; pp. 787–796. [Google Scholar]
- Poon, C.; Kou, S.; Lam, L. Use of recycled aggregates in molded concrete bricks and blocks. Constr. Build. Mater. 2002, 16, 281–289. [Google Scholar] [CrossRef]
- Bui, N.K.; Satomi, T.; Takahashi, H. Mechanical properties of concrete containing 100% treated coarse recycled concrete aggregate. Constr. Build. Mater. 2018, 163, 496–507. [Google Scholar] [CrossRef]
- Ratnayake, R.C.; Samarakoon, S.S. Structural integrity assessment and control of ageing onshore and offshore structures. Model. Simul. Tech. Struct. Eng. 2016. [Google Scholar] [CrossRef] [Green Version]
- Rattanachu, P.; Tangchirapat, W.; Jaturapitakkul, C. Water Permeability and Sulfate Resistance of Eco-Friendly High-Strength Concrete Composed of Ground Bagasse Ash and Recycled Concrete Aggregate. J. Mater. Civ. Eng. 2019. [Google Scholar] [CrossRef]
- Abdel-Hay, A.S. Properties of recycled concrete aggregate under different curing conditions. HBRC J. 2017, 13, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, N.; Miyazato, S.-I.; Yodsudjai, W. Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [Google Scholar] [CrossRef]
- Guo, H.; Shi, C.; Guan, X.; Zhu, J.; Ding, Y.; Ling, T.-C.; Zhang, H.; Wang, Y. Durability of recycled aggregate concrete—A review. Cem. Concr. Compos. 2018, 89, 251–259. [Google Scholar] [CrossRef]
- Teh, S.H.; Wiedmann, T.; Moore, S. Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials. J. Econ. Struct. 2018, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Thongkamsuk, P.; Sudasna, K.; Tondee, T. Waste generated in high-rise buildings construction: A current situation in Thailand. Energy Procedia 2017, 138, 411–416. [Google Scholar] [CrossRef]
- Dimitriou, P.; Savva, M.F.; Petrou, G. Enhancing mechanical and durability properties of recycled aggregate concrete. Constr. Build. Mater. 2018. [Google Scholar] [CrossRef]
- Verian, W.; Ashraf, Y.; Cao, K.P. Properties of recycled concrete aggregate and their influence in new concrete production. Resour. Conserv. Recycl. 2018. [Google Scholar] [CrossRef]
- Bogas, J.; De Brito, D.; Ramos, J.A. Freeze-thaw resistance of concrete produced with fine recycled concrete aggregates. J. Clean. Prod. 2016. [Google Scholar] [CrossRef]
- Zou, C.Y.; Wang, Y.; Hu, Q. Experimental Study and Model Predictive of Recycled Aggregate Concrete Creep. J. Wuhan Univ. Technol. 2009, 12, 25. [Google Scholar]
- Ajdukiewicz, A.; Kliszczewicz, A. Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Compos. 2002, 24, 269–279. [Google Scholar] [CrossRef]
- Bioubakhsh, S. The Penetration of Chloride in Concrete Subject to Wetting and Drying: Measurement and Modelling. Ph.D. Thesis, University College London, London, UK, 2011. [Google Scholar]
- Cao, W.L.; Yin, H.P.; Zhang, J.W.; Dong, H.Y.; Zhang, Y.Q. Seismic behavior experiment of recycled concrete frame structures. Beijing Gongye Daxue Xuebao J. Beijing Univ. Technol. 2011, 37, 191–198. [Google Scholar]
- Purushothaman, R.; Amirthavalli, R.R.; Karan, L. Influence of Treatment Methods on the Strength and Performance Characteristics of Recycled Aggregate Concrete. J. Mater. Civ. Eng. 2015. [Google Scholar] [CrossRef]
- Deng, Z.H.; Yang, H.F.; Lin, J.; Wen, S.H. Experimental study on the stress-strain curve of recycled concrete. Chin. Concr. J. 2008, 11, 22–24. [Google Scholar]
- Fathifazl, G.; Razaqpur, A.G.; Isgor, O.B.; Abbas, A.; Fournier, B.; Foo, S. Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Compos. 2011, 33, 1026–1037. [Google Scholar] [CrossRef]
- Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.; Serna, P.; Castaño-Tabares, J. Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 2545–2553. [Google Scholar] [CrossRef]
- Guoliang, L.I.U.; Chao, J.I.A.; Shengwei, Q.U.A.N.; Zonggang, B.A.I. Study on seismic behavior of recycled concrete frame joints under low cyclic load. In Proceedings of the 2nd International Conference Waste Engineering Management, Shanghai, China, 13 October 2010; pp. 638–644. [Google Scholar]
- Hansen, T.C. Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Mater. Struct. 1986, 19, 201–246. [Google Scholar] [CrossRef]
- Soutsos, M.N.; Tang, K.; Millard, S.G. Use of recycled demolition aggregate in precast products, phase II: Concrete paving blocks. Constr. Build. Mater. 2011, 25, 3131–3143. [Google Scholar] [CrossRef]
- Rahal, K. Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 2007, 42, 407–415. [Google Scholar] [CrossRef]
- Kang TH, K.; Kim, W.; Kwak, Y.K.; Hong, S.G. Flexural Testing of Reinforced Concrete Beams with Recycled Concrete Aggregates (with Appendix). ACI Struct. J. 2014, 111, 607–616. [Google Scholar]
- Kliszczewicz, A.; Ajdukiewicz, A. On behaviour of reinforced-concrete beams and columns made of recycle aggregate concrete, Arch. Civ. Eng. 2006, 52, 289–304. [Google Scholar]
- Zulkati, A.; Wong, Y.D.; Sun, D.D. Mechanistic Performance of Asphalt-Concrete Mixture Incorporating Coarse Recycled Concrete Aggregate. J. Mater. Civ. Eng. 2013, 25, 1299–1305. [Google Scholar] [CrossRef]
- Evangelista, L.; de Brito, J. Durability performance of concrete made with fine recycled concrete aggregates. Cem. Concr. Compos. 2010, 32, 9–14. [Google Scholar] [CrossRef]
- Liu, F.; Bai, G.L.; Chai, Y.Y.; Wu, S.H. Experimental research on recycled concrete shear strength of uniform depth beam., Hunningtu. Concrete 2010, 9, 14–16. [Google Scholar]
- Xu, J.; Zhao, X.; Yu, Y.; Xie, T.; Yang, G.; Xue, J. Parametric sensitivity analysis and modelling of mechanical properties of normal- and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks. Constr. Build. Mater. 2019, 211, 479–491. [Google Scholar] [CrossRef]
- Marinković, S.; Radonjanin, V.; Malešev, M.; Ignjatović, I. Comparative environmental assessment of natural and recycled aggregate concrete. Waste Manag. 2010, 30, 2255–2264. [Google Scholar] [CrossRef]
- Padmini, A.; Ramamurthy, K.; Mathews, M. Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 2009, 23, 829–836. [Google Scholar] [CrossRef]
- Peng, G.F.; Shen, D.Q.; Zhu, H.Y.; Liu, X. Comparison of mechanical properties between recycled aggregate concrete and control concrete at identical mix proportions. Chin. Concr. J. 2006, 2, 34–38. [Google Scholar]
- Korsun, V.; Korsun, A.; Volkov, A. Characteristics of mechanical and rheological properties of concrete under heating conditions up to 200 °C. In Proceedings of the MATEC Web Conference, Paris, France, 25–27 September 2013; Volume 6. [Google Scholar]
- Topçu, I.B.; Şengel, S. Properties of concretes produced with waste concrete aggregate. Cem. Concr. Res. 2004, 34, 1307–1312. [Google Scholar] [CrossRef]
- Sobolev, K.; Gutiérrez, M.F.; Society, T.A.C. How nanotechnology can change the concrete world. Am. Ceram. Soc. Bull. 2005. [Google Scholar] [CrossRef]
- Ulloa, V.A.; García-Taengua, E.; Pelufo, M.J.; Domingo, A.; Serna, P. New views on effect of recycled aggregates on concrete compressive strength. ACI Mater. J. 2013, 110, 1–10. [Google Scholar]
- Xiao, J.; Li, W.; Fan, Y.; Huang, X. An overview of study on recycled aggregate concrete in China (1996–2011). Constr. Build. Mater. 2012, 31, 364–383. [Google Scholar] [CrossRef]
- Xiao, J.; Li, L.; Tam, V.W.; Li, H. The state of the art regarding the long-term properties of recycled aggregate concrete. Struct. Concr. 2014, 15, 3–12. [Google Scholar] [CrossRef]
- Xiao, Z.; Chen, T.; Ding, B.; Xia, J. Effect of recycled aggregate concrete on the seismic behavior of DfD beam-column joints under cyclic loading. Adv. Struct. Eng. 2020. [Google Scholar] [CrossRef]
- Deakins, D.; Bensemann, J. Achieving innovation in a lean environment: How innovative small firms overcome resource constraints. Int. J. Innov. Manag. 2019. [Google Scholar] [CrossRef]
- Di Maria, A.; Eyckmans, J.; Van Acker, K. Downcycling versus recycling of construction and demolition waste: Combining LCA and LCC to support sustainable policy making. Waste Manag. 2018, 75, 3–21. [Google Scholar] [CrossRef]
- Ding, Z.; Yi, G.; Tam, V.W.; Huang, T. A system dynamics-based environmental performance simulation of construction waste reduction management in China. Waste Manag. 2016, 51, 130–141. [Google Scholar] [CrossRef]
- Du, Z.; Lin, B. Analysis of carbon emissions reduction of China’s metallurgical industry. J. Clean. Prod. 2018, 176, 1177–1184. [Google Scholar] [CrossRef]
- Durdyev, S.; Omarov, M.; Ismail, S. Causes of delay in residential construction projects in Cambodia. Cogent Eng. 2017. [Google Scholar] [CrossRef]
- Fraile-Garcia, E.; Ferreiro-Cabello, J.; López-Ochoa, L.M.; López-González, L.M. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production. Materials 2017, 10, 817. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Li, B.; Zhou, T.; Wanatowski, D.; Piroozfar, P. An empirical study of perceptions towards construction and demolition waste recycling and reuse in China. Resour. Conserv. Recycl. 2017, 126, 86–98. [Google Scholar] [CrossRef]
- Júnior, N.S.A.; Silva, G.A.; Dias, C.; Ribeiro, D.V. Concrete containing recycled aggregates: Estimated lifetime using chloride migration test. Constr. Build. Mater. 2019, 222, 108–118. [Google Scholar] [CrossRef]
- Khon, K. Effect of Short-Term Heating up to +90 °C on Deformation and Strength of High-Strength Concrete. Lect. Notes Civ. Eng. 2020, 70, 585–592. [Google Scholar]
- Poon, C.-S.; Chan, D. Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Constr. Build. Mater. 2007, 21, 164–175. [Google Scholar] [CrossRef]
- Poon, C.; Shui, Z.; Lam, L.; Fok, H.; Kou, S. Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem. Concr. Res. 2004, 34, 31–36. [Google Scholar] [CrossRef]
- Salamanova, M.; Bataev, D.; Uzayeva, A.; Gacayev, Z. Recipes of Knitting Systems Alkaline Activation Using Natural Raw Materials of the Chechen Republic. Mater. Sci. Forum 2020, 1011, 1–7. [Google Scholar] [CrossRef]
- Klyuev, A.V.; Klyuev, N.I.; Vatin, S.V. Fiber concrete for the construction industry. Mag. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Zegardlo, B.; Szeląg, M.; Ogrodnik, P. Ultra-high strength concrete made with recycled aggregate from sanitary ceramic wastes—The method of production and the interfacial transition zone. Constr. Build. Mater. 2016, 122, 736–742. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Wang, J.; Monteiro, P.J. Permeability of Concrete with Recycled Concrete Aggregate and Pozzolanic Materials under Stress. Materials 2016, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.S.; Domeneguetti, R.R.; Man, M.W.C.; Barud, H.S.; Teixeira-Neto, E.; Ribeiro, S.J.L. Bacterial cellulose–SiO2@TiO2 organic–inorganic hybrid membranes with self-cleaning properties. J. Sol Gel Sci. Technol. 2019, 89, 2–11. [Google Scholar] [CrossRef]
- Rao, K.N.; Jha, S.; Misra, A. Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 2007. [Google Scholar] [CrossRef]
- Tozzi, R. Characterization, Evaluation and Amangement of Construction Waste. PhD Thesis, University of Parana, Curitiba, Brazil, 2006. [Google Scholar]
- Mariano, L. Management of Construction Wastes with Structural Reuse. PhD Thesis, University of Parana, Cuartibo, Brazil, 2008. [Google Scholar]
- Xiao, J.; Li, W.; Sun, Z.; Shah, S.P. Crack propagation in recycled aggregate concrete under uniaxial compressive loading. ACI Mater. J. 2012, 109, 451–461. [Google Scholar]
- Zhou, J.; Yang, Y.; Jiao, X. Experimental Study on Axial Pressure Bearing Capacity of Recycled Concrete Columns. J. Shenyang Jianzhu Univ. Nat. Sci. 2008, 4, 11. [Google Scholar]
- Tabsh, S.W.; Abdelfatah, A.S. Influence of recycled concrete aggregates on strength properties of concrete. Constr. Build. Mater. 2009, 23, 1163–1167. [Google Scholar] [CrossRef]
Factors of Waste Management for Sustainable Construction | Elements |
---|---|
Environmental aspect |
|
Economic aspect |
|
Social aspect |
|
Materials | Moisture Content (%) | Unit Weight (ln/ft3) | Fitness Moduli |
---|---|---|---|
RCAs | 4.00 | 95.00 | 5.32 |
Fine aggregates | 5.81 | 95.10 | 3.01 |
Normal aggregates | 0.02 | 100.02 | 5.13 |
Materials | Test Method | Descriptions |
---|---|---|
Unit Weights | ASTM C138 | Determined by density |
Slumps | ASTM C143 | Determined by workability |
Air contents | ASTM C231 | Determined by freshly mixed concrete air content by pressure methods |
Compressive strength | ASTM C39 | Determined by a press |
Materials | % Replacements of Fly Ash | |||
---|---|---|---|---|
1st Trial (30%) | 2nd Trial (50%) | 3rd Trial (75%) | 4th Trial (100%) | |
RCA (Ibs) | 5427.00 | 904.00 | 1446.00 | 1717.00 |
Fine aggregate (Ibs) | 1578.00 | 1578.00 | 1578.00 | 1578.00 |
Normal aggregate (Ibs) | 1231.00 | 877.00 | 351.00 | 0 |
Cement (Ibs) | 433.00 | 433.00 | 433.00 | 433.00 |
Water/cement ratio | 0.750 | 0.750 | 0.750 | 0.750 |
Material | Regular Concrete | 100% Recycled Aggregates | |||
---|---|---|---|---|---|
Unit Cost ($/lb) | Quantity (Ibs/yd3) | Total Cost ($/yd3) | Quantity (Ibs/yd3) | Total Cost ($/yd3) | |
Recycled aggregates | 0.0066 | - | - | 1755.76 | 11.59 |
Fine aggregates | 0.0090 | 1583.24 | 13.46 | 1583.24 | 13.46 |
Coarse aggregates | 0.0098 | 1755.76 | 16.68 | 0 | |
Cement | 0.1380 | 433.33 | 56.33 | 433.33 | 56.33 |
Water | 0.0010 | 237.67 | 0.24 | 237.67 | 0.24 |
Total cost | - | - | 86.47 | - | 81.62 |
Material | Waste Quantity (kg/m2) | |||
---|---|---|---|---|
Monteiro et al. [153] | Bohne et al. [154] | Tozzi [155] | Mariano [156] | |
Ceramics | - | - | 17.65 | 2.55 |
Concrete | 87 | 19.11 | 3.0 | 9.08 |
EPS (expanded polystyrene) | - | 0.21 | - | - |
Fiber cement | - | 0 | - | 0.63 |
Glass | - | 0.12 | - | - |
Gypsum | - | 1.38 | - | - |
Hazardous | - | 0.07 | - | - |
Metals | - | - | 0.48 | - |
Mortar | 189.0 | - | 18.33 | 2.93 |
Others | - | 6.19 | - | 1.94 |
Paper | 21 | 0.46 | 0.58 | 0.16 |
Plastic | - | - | 2.43 | 0.04 |
Wood | 3.0 | 2.75 | 0.87 | 16.82 |
Total | 34.15 | 300.0 | 30.77 | 42.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Klyuev, S.; Chulkova, I.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Azevedo, A. Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives. Crystals 2021, 11, 695. https://doi.org/10.3390/cryst11060695
Makul N, Fediuk R, Amran M, Zeyad AM, Klyuev S, Chulkova I, Ozbakkaloglu T, Vatin N, Karelina M, Azevedo A. Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives. Crystals. 2021; 11(6):695. https://doi.org/10.3390/cryst11060695
Chicago/Turabian StyleMakul, Natt, Roman Fediuk, Mugahed Amran, Abdullah M. Zeyad, Sergey Klyuev, Irina Chulkova, Togay Ozbakkaloglu, Nikolai Vatin, Maria Karelina, and Afonso Azevedo. 2021. "Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives" Crystals 11, no. 6: 695. https://doi.org/10.3390/cryst11060695
APA StyleMakul, N., Fediuk, R., Amran, M., Zeyad, A. M., Klyuev, S., Chulkova, I., Ozbakkaloglu, T., Vatin, N., Karelina, M., & Azevedo, A. (2021). Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives. Crystals, 11(6), 695. https://doi.org/10.3390/cryst11060695