Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Surface Roughness
3.2. Surface Morphology
3.3. Cross-Sectional Microstructure and EDS
3.4. XRD Analysis
3.5. Microhardness
3.6. Coating Adhesion
3.7. Corrosion Resistance
4. Conclusions
- (1)
- The Ni-W/SiC (6 g L−1 of SiC) nanocomposite fabricated on the grit-blasted 45 steel substrates exhibited the highest hardness compared to the one fabricated on polished 45 substrates.
- (2)
- The adhesion of the Ni-W/SiC (6 g L−1) nanocomposite coating pretreated by grit blasting was 33 ± 0.75 N, which was higher than the one pretreated by polishing.
- (3)
- The Ni-W/SiC (6 g L−1 of SiC) nanocomposite fabricated on the grit-blasted 45 steel substrates exhibited the highest corrosion resistance compared to the one fabricated on polished 45 substrates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, M.; Zhu, W.Z. Surface Treatment of 45 Steel by Plasma-Arc Melting. Surf. Coat. Technol. 1997, 91, 183–191. [Google Scholar] [CrossRef]
- Lu, Y.; Li, H.; Zhang, H.; Huang, G.; Xu, H.; Qin, Z.; Lu, X. Zr-Based Metallic Glass Coating for Corrosion Resistance Improvement of 45 Steel. Mater. Trans. 2017, 58, 1319–1321. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Meng, F.; Gao, X.; Hu, J. Effect of QPQ Nitriding Time on Wear and Corrosion Behavior of 45 Carbon Steel. Appl. Surf. Sci. 2012, 261, 411–414. [Google Scholar] [CrossRef]
- Liu, H.; Wang, C.; Zhang, X.; Jiang, Y.; Cai, C.; Tang, S. Improving the Corrosion Resistance and Mechanical Property of 45 Steel Surface by Laser Cladding with Ni60CuMoW Alloy Powder. Surf. Coat. Technol. 2013, 228, S296–S300. [Google Scholar] [CrossRef]
- Huang, G.; Qu, L.; Lu, Y.; Wang, Y.; Li, H.; Qin, Z.; Lu, X. Corrosion Resistance Improvement of 45 Steel by Fe-Based Amorphous Coating. Vacuum 2018, 153, 39–42. [Google Scholar] [CrossRef]
- Holmberg, K.; Matthew, A.; Ronkainen, H. Chapter 2 Surface Coating Methods. In Tribology Series; Elsevier BV: Amsterdam, The Netherlands, 1994; Volume 28, pp. 7–32. [Google Scholar] [CrossRef]
- Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 2019, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Garg, J.; Singh, P.; Singh, G.; Kumar, K.; Singh, J.; Kumar, S.; Singh, J.P. Effect of Hard Faced Cr-Alloy on Abrasive Wear of Low Carbon Rotavator Blades Using Design of Experiments. Mater. Today Proc. 2018, 5, 3390–3395. [Google Scholar] [CrossRef]
- Chen, H.; Ren, X.R.; Zhang, X.H.; Li, J.H. Wear and Corrosion Properties of Crystalline Ni-W Alloy Coatings Prepared by Electrodeposition. Mater. Sci. 2016, 849, 671–676. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, Y.; Ge, H.; Wei, G.; Jiang, L. Study on Mechanical and Anticorrosion Performance of NiW Alloy Coatings Prepared by Induced Codeposition. Int. J. Electrochem. Sci. 2019, 14, 1649–1657. [Google Scholar] [CrossRef]
- Elias, L.; Hegde, A.C. Effect of Magnetic Field on Corrosion Protection Efficacy of Ni-W Alloy Coatings. J. Alloys Compd. 2017, 712, 618–626. [Google Scholar] [CrossRef]
- Pramod Kumar, U.; Liang, T.; Kennady, C.J.; Nandha Kumar, R.; Prabhu, J. Influence of Positional Isomeric Spacers of Naphthalene Derivatives on Ni–W Alloy Electrodeposition: Electrochemical and Microstructural Properties. ACS Omega 2020, 5, 3376–3388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasekar, N.P.; Latha, S.M.; Ramakrishna, M.; Rao, D.S.; Sundararajan, G. Pulsed Electrodeposition and Mechanical Properties of Ni-W/SiC Nano-Composite Coatings. Mater. Des. 2016, 112, 140–150. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, C.; Li, B. Synthesis and Properties of Ni–W/ZrO2 Nanocomposite Coating Fabricated by Pulse Electrodeposition. Results Phys. 2019, 13, 102242. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W. Microstructural, Surface and Electrochemical Properties of Pulse Electrodeposited Ni–W/Si3N4 Nanocomposite Coating. Ceram. Int. 2018, 44, 19907–19918. [Google Scholar] [CrossRef]
- Allahyarzadeh, M.H.; Aliofkhazraei, M.; Rouhaghdam, A.R.S.; Torabinejad, V. Electrodeposition of Ni–W–Al2O3 Nanocomposite Coating with Functionally Graded Microstructure. J. Alloys Compd. 2016, 666, 217–226. [Google Scholar] [CrossRef]
- Lai, G.; Liu, H.; Chen, B.; Niu, D.; Lei, B.; Jiang, W. Electrodeposition of Functionally Graded Ni-W/Er2O3 Rare Earth Nanoparticle Composite Film. Int. J. Min. Met. Mater. 2020, 27, 818–829. [Google Scholar] [CrossRef]
- Mbugua, N.S.; Kang, M.; Zhang, Y.; Ndiithi, N.J.; Bertrand, G.V.; Yao, L. Electrochemical Deposition of Ni, NiCo Alloy and NiCo-Ceramic Composite Coatings—A Critical Review. Materials 2020, 13, 3475. [Google Scholar] [CrossRef]
- Hosseini, M.G.; Abdolmaleki, M.; Ghahremani, J. Investigation of Corrosion Resistance of Electrodeposited Ni-W/SiC Composite Coatings. Corros. Eng. Sci. Technol. 2014, 49, 247–253. [Google Scholar] [CrossRef]
- Humam, S.B.; Gyawali, G.; Dhakal, D.R.; Choi, J.H.; Lee, S.W. Effect of Pulse and Direct Current Electrodeposition on Microstructure, Surface, and Scratch Resistance Properties of Ni–W Alloy and Ni–W–SiC Composite Coatings. Acta Met. Sin. 2020, 33, 1321–1330. [Google Scholar] [CrossRef]
- Li, B.; Zhang, W.; Zhang, W.; Huan, Y. Preparation of Ni-W/SiC Nanocomposite Coatings by Electrochemical Deposition. J. Alloys Compd. 2017, 702, 38–50. [Google Scholar] [CrossRef]
- Ghara, T.; Paul, S.; Bandyopadhyay, P.P. Effect of Grit Blasting Parameters on Surface and Near-Surface Properties of Different Metal Alloys. J. Therm. Spray Technol. 2021, 30, 251–269. [Google Scholar] [CrossRef]
- Li, D.; Wu, J.; Miao, B.; Zhao, X.; Mao, C.; Wei, W.; Hu, J. Enhancement of Wear Resistance by Sand Blasting-Assisted Rapid Plasma Nitriding for 304 Austenitic Stainless Steel. Surf. Eng. 2020, 36, 524–530. [Google Scholar] [CrossRef]
- Cheng, A.Y.; Sheu, H.H.; Liu, Y.M.; Hou, K.H.; Hsieh, P.Y.; Ger, M. Der. Effect of Pretreatment Process on the Adhesion and Corrosion Resistance of Nickel-Boron Coatings Deposited on 8620H Alloy Steel. Int. J. Electrochem. Sci. 2020, 15, 68–79. [Google Scholar] [CrossRef]
- Amiriafshar, M.; Rafieazad, M.; Duan, X.; Nasiri, A. Fabrication and Coating Adhesion Study of Superhydrophobic Stainless Steel Surfaces: The Effect of Substrate Surface Roughness. Surf. Interfaces 2020, 20, 100526. [Google Scholar] [CrossRef]
- Arifvianto, B.; Mahardika, M. Effect of Sandblasting and Surface Mechanical Attrition Treatment on Surface Roughness, Wettability, and Microhardness Distribution of AISI 316L. Key Eng. Mater. 2011, 462–463, 738–743. [Google Scholar] [CrossRef]
- Fu, X.; Shen, Z.; Chen, X.; Lin, J.; Cao, H. Influence of Element Penetration Region on Adhesion and Corrosion Performance of Ni-Base Coatings. Coatings 2020, 10, 895. [Google Scholar] [CrossRef]
- Hammouda, N.; Belmokre, K. Effect of Surface Treatment by Sandblasting on the Quality and Electrochemical Corrosion Properties of a C-1020 Carbon Steel Used by an Algerian Oil Company. MATEC Web of Conference. In Proceedings of the 2018 2nd International Conference on Functional Materials and Chemical Engineering, Abu Dhabi, United Arab Emirates, 20–22 November 2018; Volume 272, p. 01001. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Yuan, J.; Zhu, M.; Chen, J.; Wang, Z. The Influence of Substrate Surface Treatment on the Electrodeposition of (Co,Mn)3O4 Spinel Precursor Coatings. Mater. Res. Express 2020, 7, 076405. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, Z.; Wu, H.; Li, L.; Fu, X. Study on Preparation of Superhydrophobic Ni-Co Coating and Corrosion Resistance by Sandblasting–Electrodeposition. Coatings 2020, 10, 1164. [Google Scholar] [CrossRef]
- Nyambura, S.M.; Kang, M.; Zhu, J.; Liu, Y.; Zhang, Y.; Ndiithi, N.J. Synthesis and Characterization of Ni-W/Cr2O3 Nanocomposite Coatings Using Electrochemical Deposition Technique. Coatings 2019, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Torbati-Sarraf, H.; Poursaee, A. The Influence of the Sandblasting as a Surface Mechanical Attrition Treatment on the Electrochemical Behavior of Carbon Steel in Different PH Solutions. Surf. Coat. Technol. 2018, 352, 112–119. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, W. Electroless Nickel Plating on AZ91 Mg Alloy Substrate. Surf. Coat. Technol. 2006, 200, 5087–5093. [Google Scholar] [CrossRef]
- Vitry, V.; Kanta, A.-F.; Delaunois, F. Initiation and Formation of Electroless Nickel–Boron Coatings on Mild Steel: Effect of Substrate Roughness. Mater. Sci. Eng. B 2010, 175, 266–273. [Google Scholar] [CrossRef]
- Ahmadkhaniha, D.; Eriksson, F.; Leisner, P.; Zanella, C. Effect of SiC Particle Size and Heat-Treatment on Microhardness and Corrosion Resistance of NiP Electrodeposited Coatings. J. Alloys Compd. 2018, 769, 1080–1087. [Google Scholar] [CrossRef]
- Jiang, W.; Shen, L.; Xu, M.; Wang, Z.; Tian, Z. Mechanical Properties and Corrosion Resistance of Ni-Co-SiC Composite Coatings by Magnetic Field-Induced Jet Electrodeposition. J. Alloys Compd. 2019, 791, 847–855. [Google Scholar] [CrossRef]
- Temam, H.B.; Zeroual, L.; Chala, A.; Rahmane, S.; Nouveau, C. Microhardness and Corrosion Behavior of Ni-SiC Electrodeposited Coatings. Plasma Process. Polym. 2007, 4, S618–S621. [Google Scholar] [CrossRef] [Green Version]
- Cabral-Miramonte, J.A.; Bastidas, D.M.; Baltazar, M.A.; Zambrano-Robledo, P.; Bastidas, J.M.; Almeraya-Calderón, F.M.; Gaona-Tiburcio, C. Corrosion Behavior of Zn-TiO2 and Zn-ZnO Electrodeposited Coatings in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 2019, 14, 4226–4239. [Google Scholar] [CrossRef]
- Jin, P.; Sun, C.; Zhang, Z.; Zhou, C.; Williams, T. Fabrication of the Ni-W-SiC Thin Film by Pulse Electrodeposition. Surf. Coat. Technol. 2020, 392, 125738. [Google Scholar] [CrossRef]
- Gyawali, G.; Tripathi, K.; Joshi, B.; Lee, S.W. Mechanical and Tribological Properties of Ni-W-TiB2 Composite Coatings. J. Alloys Compd. 2017, 721, 757–763. [Google Scholar] [CrossRef]
- Xing, S.; Wang, L.; Jiang, C.; Liu, H.; Zhu, W.; Ji, V. Influence of Y2O3 Nanoparticles on Microstructures and Properties of Electrodeposited Ni–W–Y2O3 Nanocrystalline Coatings. Vacuum 2020, 181, 109665. [Google Scholar] [CrossRef]
- Fan, Y.; He, Y.; Luo, P.; Shi, T.; Chen, X. Pulse Current Electrodeposition and Properties of Ni-W-GO Composite Coatings. J. Electrochem. Soc. 2016, 163, D68–D73. [Google Scholar] [CrossRef]
- Kumar, K.A.; Kalaignan, G.P.; Muralidharan, V.S. Direct and Pulse Current Electrodeposition of Ni–W–TiO2 Nanocomposite Coatings. Ceram. Int. 2013, 39, 2827–2834. [Google Scholar] [CrossRef]
- Jiang, W.; Shen, L.; Qiu, M.; Wang, X.; Fan, M.; Tian, Z. Preparation of Ni-SiC Composite Coatings by Magnetic Field-Enhanced Jet Electrodeposition. J. Alloys Compd. 2018, 762, 115–124. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Li, K.; Zhong, Q.; Bui, Q.B. Preparation of Ni-W-SiO2 Nanocomposite Coating and Evaluation of Its Hardness and Corrosion Resistance. Ceram. Int. 2015, 41, 79–84. [Google Scholar] [CrossRef]
- Li, H.; He, Y.; Fan, Y.; Xu, W.; Yang, Q. Pulse Electrodeposition and Corrosion Behavior of Ni–W/MWCNT Nanocomposite Coatings. RSC Adv. 2015, 5, 68890–68899. [Google Scholar] [CrossRef]
- Rogal, Ł.; Kalita, D.; Tarasek, A.; Bobrowski, P.; Czerwinski, F. Effect of SiC Nano-Particles on Microstructure and Mechanical Properties of the CoCrFeMnNi High Entropy Alloy. J. Alloys Compd. 2017, 708, 344–352. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.F. Mechanistic Aspects of Electrodeposition of Ni-Co-SiC Compositenano-Coating on Carbon Steel. Electrochim. Acta. 2013, 109, 638–644. [Google Scholar] [CrossRef]
- Mahmudi, R. Grain Boundary Strengthening in a Fine Grained Aluminium Alloy. Scr. Met. Mater. 1995, 32, 781–786. [Google Scholar] [CrossRef]
Process | Fluid Type | Chemical Composition | Concentration (g·L−1) |
---|---|---|---|
Degreasing | Electro-hydrostatic Fluid | NaOH | 25 |
Na2CO3 | 21.7 | ||
Na3PO4 | 50 | ||
NaCl | 2.4 | ||
Pickling | Strong Activation Solution | HCl | 25 |
NaCl | 140.1 | ||
Weak Activation Solution | NaC6H5O7·2H2O | 141.2 | |
H3C6H5O7·H2O | 94.2 | ||
NiCl2·H2O | 3 |
Bath Component | Concentration (g·L−1) | Function |
---|---|---|
Nickel sulphate (NiSO4·7H2O) | 18 | Ni source |
Sodium tungstate (Na2WO4·2H2O) | 46 | W source |
Trisodium citrate dihydrate (Na3C6H5O7·2H2O) | 145 | Complexer for Ni and W |
Sodium bromide (NaBr) | 16 | Conductivity increase |
Sodium dodecyl sulphate (SDS) | 0.3 | Surfactant |
Ammonium Chloride (NH4Cl) | 26 | Buffer |
SiC (40 nm) | 0, 3, 6, 12 | Nanoparticles |
Deposition Parameters | Values |
---|---|
Plating temperature (℃) | 60 |
Current density (A.dm−2) | 5 |
Stirring rate (rpm) | 300 |
pH | 7.5 |
Electrodeposition time (min) | 60 |
Current type | DC |
Anode material | Pure Ni (99%) |
Parameters | Polished Sample | Grit-Blasted Sample |
---|---|---|
Sa (µm) | 0.0047 ± 0.0007 | 1.0243 ± 0.3 |
Sq (µm) | 0.0057 ± 0.0007 | 1.4237 ± 0.410 |
Specimens | Ecorr (mVSCE) | icorr (µA cm−2) | rcorr (mm year−1) | βa (mV dec−1) | βb (mV dec−1) | Rp (kΩ cm−2) |
---|---|---|---|---|---|---|
Polished | −957 | 29 | 0.57 | 523.04 | 88.97 | 1.13 |
Grit-Blasted | −830 | 27.86 | 0.243 | 1212.5 | 429.82 | 4.95 |
Ni-W(P) | −744 | 19.3 | 0.17 | 181.42 | 193.01 | 2.13 |
Ni-W(GB) | −696 | 14.12 | 0.12 | 1507.7 | 489.62 | 11.4 |
Ni-W/6SiC(P) | −640 | 5.15 | 0.05 | 219.72 | 189.2 | 8.57 |
Ni-W/6SiC (GB) | −560 | 3.71 | 0.03 | 155.2 | 357.24 | 12.7 |
Specimens | Rs (Ω cm−2) | CPE-T (10−5 F cm−2) | CPE-P | Rct (kΩ cm−2) |
---|---|---|---|---|
Polished | 3.72 | 34.95 | 0.79 | 0.665 |
Grit-Blasted | 3.14 | 68.04 | 0.77 | 0.940 |
Ni-W(P) | 3.40 | 25 | 0.85 | 1.49 |
Ni-W(GB) | 3.408 | 42.3 | 0.70 | 2.27 |
Ni-W/6SiC(P) | 2.69 | 37 | 0.78 | 2.21 |
Ni-W/6SiC (GB) | 3.427 | 86.6 | 0.703 | 4.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gbenontin, B.V.; Kang, M.; Ndiithi, N.J.; Nyambura, S.M.; Awuah, E.; Zhang, Y. Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate. Crystals 2021, 11, 729. https://doi.org/10.3390/cryst11070729
Gbenontin BV, Kang M, Ndiithi NJ, Nyambura SM, Awuah E, Zhang Y. Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate. Crystals. 2021; 11(7):729. https://doi.org/10.3390/cryst11070729
Chicago/Turabian StyleGbenontin, Bertrand Vigninou, Min Kang, Ndumia Joseph Ndiithi, Samuel Mbugua Nyambura, Emmanuel Awuah, and Yin Zhang. 2021. "Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate" Crystals 11, no. 7: 729. https://doi.org/10.3390/cryst11070729
APA StyleGbenontin, B. V., Kang, M., Ndiithi, N. J., Nyambura, S. M., Awuah, E., & Zhang, Y. (2021). Effect of Grit Blasting and Polishing Pretreatments on the Microhardness, Adhesion and Corrosion Properties of Electrodeposited Ni-W/SiC Nanocomposite Coatings on 45 Steel Substrate. Crystals, 11(7), 729. https://doi.org/10.3390/cryst11070729