Temperature Stable, High-Quality Factor Li2TiO3-Li4NbO4F Microwave Dielectric Ceramics
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, D.; Chen, J.; Wang, G.; Lu, Z.; Sun, S.; Li, J.; Jiang, J.; Zhou, D.; Song, K.; Reaney, I.M. Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications. J. Am. Ceram. Soc. 2020, 103, 6237–6244. [Google Scholar] [CrossRef]
- Wang, D.; Siame, B.; Zhang, S.; Wang, G.; Ju, X.; Li, J.; Lu, Z.; Vardaxoglou, Y.; Whittow, W.; Cadman, D.; et al. Direct integration of cold sintered, temperature-stable Bi2Mo2O9-K2MoO4 ceramics on printed circuit boards for satellite navigation antennas. J. Eur. Ceram. Soc. 2020, 40, 4029–4034. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, S.; Wang, G.; Vardaxoglou, Y.; Whittow, W.; Cadman, D.; Zhou, D.; Song, K.; Reaney, I.M. Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas. Appl. Mater. Today 2020, 18, 100519. [Google Scholar] [CrossRef]
- Ratheesh, R.; Sebastian, M.T.; Mohanan, P.; Tobar, M.E.; Hartnett, J.; Woode, R.; Blair, D.G. Microwave characterization of BaCe2Ti5O15 and Ba5Nb4O15 ceramic dielectric resonators using whispering gallery mode method. Mater. Lett. 2000, 45, 279–285. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Yang, H.; Zou, J.L.; Wang, H.P. Sintering and microwave dielectric properties of LTCC-zinc titanate multilayers. Mater. Lett. 2005, 59, 880–884. [Google Scholar] [CrossRef]
- Lei, W.; Lu, W.Z.; Zhu, J.H.; Wang, X.H. Microwave dielectric properties of ZnAl2O4–TiO2 spinel-based composites. Mater. Lett. 2007, 61, 4066–4069. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, R. A novel Li2TiO3–Li2CeO3 ceramic composite with excellent microwave dielectric properties for low-temperature cofired ceramic applications. J. Eur. Ceram. Soc. 2018, 38, 119–123. [Google Scholar] [CrossRef]
- Bian, J.; Liang, Z.; Wang, L. Structural evolution and microwave dielectric properties of Li3− 3xM4xNb1− xO4 (M = Mg, Zn; 0 ≤ x ≤ 0.9). J. Am. Ceram. Soc. 2011, 94, 1447–1453. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, H.; Pang, L.-X.; Yao, X.; Wu, X.-G. Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver. J. Am. Ceram. Soc. 2008, 91, 4115–4117. [Google Scholar] [CrossRef]
- Ding, Y.; Bian, J. Structural evolution, sintering behavior and microwave dielectric properties of (1− x)Li2TiO3+ xLiF ceramics. Mater. Res. Bull. 2013, 48, 2776–2781. [Google Scholar] [CrossRef]
- Wang, F.; Yao, C.F.; Zeng, Q.; Zhou, H.; Zhou, Z.Y. Structures, Dielectric Properties and Luminescence Properties of Nb Doped Li2TiO3 Solid Solution Ceramics//Key Engineering Materials; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2017; Volume 748, pp. 137–142. [Google Scholar]
- Hao, Y.Z.; Yang, H.; Chen, G.H.; Zhang, Q.L. Microwave dielectric properties of Li2TiO3 ceramics doped with LiF for LTCC applications. J. Alloy. Compd. 2013, 552, 173–179. [Google Scholar] [CrossRef]
- Xu, N.X.; Zhou, J.H.; Yang, H.; Zhang, Q.; Wang, M.; Hu, L. Structural evolution and microwave dielectric properties of MgO–LiF co-doped Li2TiO3 ceramics for LTCC applications. Ceram. Int. 2014, 40, 15191–15198. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, Z.; Luo, Y.; Zhang, X.; Li, L. Novel low-firing forsterite-based microwave dielectric for LTCC applications. J. Am. Ceram. Soc. 2016, 99, 1122–1124. [Google Scholar] [CrossRef]
- Chu, X.; Jiang, J.; Wang, J.; Wu, Y.; Gan, L.; Zhang, T. A new high-Q× f Li4NbO4F microwave dielectric ceramic for LTCC applications. Ceram. Int. 2021, 47, 4344–4351. [Google Scholar] [CrossRef]
- Lou, W.; Song, K.; Hussain, F.; Liu, B.; Bafrooei, H.B.; Lin, H.; Su, W.; Shi, F.; Wang, D. Bond characteristics and microwave dielectric properties of (Li0. 5Ga0. 5)2+ doped Mg2Al4Si5O18 ceramics. Ceram. Int. 2020, 46, 28631–28638. [Google Scholar] [CrossRef]
- Tan, Z.; Song, K.; Bafrooei, H.B.; Liu, B.; Wu, J.; Xu, J.; Lin, H.; Wang, D. The effects of TiO2 addition on microwave dielectric properties of Y3MgAl3SiO12 ceramic for 5G application. Ceram. Int. 2020, 46, 15665–15669. [Google Scholar] [CrossRef]
- Song, Z.; Song, K.; Liu, B.; Zheng, P.; Bafrooei, H.B.; Su, W.; Lin, H.; Shi, F.; Wang, D.; Reaney, I.M. Temperature-dependent dielectric and Raman spectra and microwave dielectric properties of gehlenite-type Ca2Al2SiO7 ceramics. Int. J. Appl. Ceram. Technol. 2020, 17, 771–777. [Google Scholar] [CrossRef]
- Narang, S.B.; Bahel, S. Low loss dielectric ceramics for microwave applications: A review. J. Ceram. Process. Res. 2010, 11, 316–321. [Google Scholar]
- Izquierdo, G.; West, A.R. Phase equilibria in the system Li2O-TiO2. Mater. Res. Bull. 1980, 15, 1655–1660. [Google Scholar] [CrossRef]
- Mikkelsen, J.C., Jr. Pseudobinary phase relations of Li2Ti3O7. J. Am. Ceram. Soc. 1980, 63, 331–335. [Google Scholar] [CrossRef]
- Castellanos, M.; West, A.R. Order-disorder phenomena in oxides with rock salt structures: The system Li2TiO3-MgO. J. Mater. Sci. 1979, 14, 450–454. [Google Scholar] [CrossRef]
- Bian, J.J.; Dong, Y.F. New high Qf microwave dielectric ceramics with rock salt structures:(1 − x)Li2TiO3+ xMgO system (0 ≤ x ≤ 0.5). J. Eur. Ceram. Soc. 2010, 30, 325–330. [Google Scholar] [CrossRef]
- Bian, J.J.; Dong, Y.F. Sintering behavior, microstructure and microwave dielectric properties of Li2+ xTiO3 (0 ≤ x ≤ 0.2). Mater. Sci. Eng. B 2011, 176, 147–151. [Google Scholar] [CrossRef]
- Sebastian, M.T. Dielectric Materials for Wireless Communication; Elsevier: Amsterdam, Netherlands, 2010. [Google Scholar]
- Kleykamp, H. Phase equilibria in the Li–Ti–O system and physical properties of Li2TiO3. Fusion Eng. Des. 2002, 61, 361–366. [Google Scholar] [CrossRef]
- Penn, S.J.; Alford, N.M.N.; Templeton, A.; Wang, X.; Xu, M.; Reece, M.; Schrapel, K. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 1997, 80, 1885–1888. [Google Scholar] [CrossRef]
- Dai, Q.; Zuo, R.; Xu, Y.; He, L. A novel temperature-stable Ba2-xCaxMgTi5O13 microwave dielectric ceramic. J. Eur. Ceram. Soc. 2020, 40, 376–380. [Google Scholar] [CrossRef]
- Xia, W.S.; Yang, F.Y.; Zhang, G.Y.; Han, K.; Guo, D.C. New low-dielectric-loss NiZrNb2O8 ceramics for microwave application. J. Alloy. Compd. 2016, 656, 470–475. [Google Scholar] [CrossRef]
- Song, X.Q.; Du, K.; Zhang, X.Z.; Li, J.; Lu, W.Z.; Wang, X.C.; Lei, W. Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloy. Compd. 2018, 750, 996–1002. [Google Scholar] [CrossRef]
- Bafrooei, H.B.; Feizpour, M.; Sayyadi-Shahraki, A.; Song, K.X. High-performance ZnTiNb2O8 microwave dielectric ceramics produced from ZnNb2O6–TiO2 nano powders. J. Alloy. Compd. 2020, 834, 155082. [Google Scholar] [CrossRef]
- Cheng, K.; Tang, Y.; Xiang, H.; Li, C.; Fang, L.; Sun, Y. Two novel low permittivity microwave dielectric ceramics Li2TiMO5 (M= Ge, Si) with abnormally positive τf. J. Eur. Ceram. Soc. 2019, 39, 2680–2684. [Google Scholar] [CrossRef]
- Pei, C.; Hou, C.; Li, Y.; Yao, G.; Ren, Z.; Liu, P.; Zhang, H. A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics. J. Alloy. Compd. 2019, 792, 46–49. [Google Scholar] [CrossRef]
- Fang, Z.; Tang, B.; Si, F.; Zhang, S. Temperature stable and high-Q microwave dielectric ceramics in the Li2Mg3 − xCaxTiO6 system (x = 0.00–0.18). Ceram. Int. 2017, 43, 1682–1687. [Google Scholar] [CrossRef]
- Huang, C.L.; Liu, S.S. Low-loss microwave dielectrics in the (Mg1 − xZnx)2TiO4 ceramics. J. Am. Ceram. Soc. 2008, 91, 3428–3430. [Google Scholar] [CrossRef]
(1-x)Li2TiO3-xLi4NbO4F | Phase | a (Å) | a (Å) | a (Å) | α (°C) | β (°C) | γ (°C) | V (Å3) | wt% | Rwp |
---|---|---|---|---|---|---|---|---|---|---|
x = 0.05 | monoclinic | 5.07065 | 8.77898 | 9.76376 | 90 | 100.0477 | 90 | 427.969 | 39.06 | 9.16 |
cubic | 4.14846 | 4.14846 | 4.14846 | 90 | 90 | 90 | 71.394 | 60.94 | ||
x = 0.10 | monoclinic | 5.08391 | 8.88845 | 9.73513 | 90 | 100.8609 | 90 | 432.032 | 27.00 | 10.5 |
cubic | 4.14991 | 4.14991 | 4.14991 | 90 | 90 | 90 | 71.468 | 73.00 | ||
x = 0.15 | monoclinic | 6.96 | ||||||||
cubic | 4.15168 | 4.15168 | 4.15168 | 90 | 90 | 90 | 71.560 | 100.00 | ||
x = 0.20 | monoclinic | 6.18 | ||||||||
cubic | 4.15476 | 4.15476 | 4.15476 | 90 | 90 | 90 | 71.720 | 100.00 |
Material | εr | Qf (GHz) | τf (ppm/°C) | Sintering Temperature (°C) | Reference |
---|---|---|---|---|---|
Ba1.85Ca0.15MgTi5O13 | 29.3 | 30,870 | +2.1 | 1160 | [28] |
NiZrNb2O8 | 23.77 | 40,280 | −27.5 | 1200 | [29] |
Ca3Sn0.95Ti0.05Si2O9 | 11.07 | 42,400 | −5.1 | 1325 | [30] |
ZnTiNb2O8 | 35.5 | 52,500 | −60 | 1050 | [31] |
0.9Li2TiO3-0.1Li4NbO4F | 18.7 | 61,388 | +0.9 | 1050 | this work |
Li2TiGeO5 | 9.43 | 65,300 | +24.1 | 1140 | [32] |
Li3Mg2SbO6 | 10.5 | 84,600 | -9.0 | 1300 | [33] |
Li2Mg2.88Ca0.12TiO6 | 17.8 | 102,246 | −0.7 | 1280 | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Jiang, J.; Cheng, Z.; Chen, X.; Sun, S.; Wang, D.; Zhang, T. Temperature Stable, High-Quality Factor Li2TiO3-Li4NbO4F Microwave Dielectric Ceramics. Crystals 2021, 11, 741. https://doi.org/10.3390/cryst11070741
Xu S, Jiang J, Cheng Z, Chen X, Sun S, Wang D, Zhang T. Temperature Stable, High-Quality Factor Li2TiO3-Li4NbO4F Microwave Dielectric Ceramics. Crystals. 2021; 11(7):741. https://doi.org/10.3390/cryst11070741
Chicago/Turabian StyleXu, Shangrui, Juan Jiang, Zelai Cheng, Xiangyi Chen, Shikuan Sun, Dawei Wang, and Tianjin Zhang. 2021. "Temperature Stable, High-Quality Factor Li2TiO3-Li4NbO4F Microwave Dielectric Ceramics" Crystals 11, no. 7: 741. https://doi.org/10.3390/cryst11070741
APA StyleXu, S., Jiang, J., Cheng, Z., Chen, X., Sun, S., Wang, D., & Zhang, T. (2021). Temperature Stable, High-Quality Factor Li2TiO3-Li4NbO4F Microwave Dielectric Ceramics. Crystals, 11(7), 741. https://doi.org/10.3390/cryst11070741