Synthesis of a Novel Photocatalyst MVO4/g-C3N4 (M = La, Gd) with Better Photocatalytic Activity for Tetracycline Hydrochloride Degradation under Visible-Light Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MVO4/g-C3N4 (M = La, Gd) Nanocomposite
2.3. Characterization of Samples
2.4. Photodegradation Measurements
3. Results and Discussion
3.1. Characterization Studies
3.2. Photocatalytic Performance
3.3. Photodegradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jallouli, N.; Pastrana-Martínez, L.M.; Ribeiro, A.R.; Moreira, N.F.F.; Faria, J.L.; Hentati, O.; Silva, A.M.T.; Ksibi, M. Heterogeneous photocatalytic degradation of ibuprofen in ultrapure water, municipal and pharmaceutical industry wastewaters using a TiO2/UV-LED system. Chem. Eng. J. 2018, 334, 976–984. [Google Scholar] [CrossRef]
- Caban, M.; Lis, E.; Kumirska, J.; Stepnowski, P. Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS(SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Sci. Total Environ. 2015, 538, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.J.; Kim, H.Y.; Choi, S.D.; Kwon, J.H.; Oh, J.E. Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water. J. Hazard. Mater. 2013, 248–249, 219–227. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, G.; Li, J.; Li, Y.; Wu, X. 0D/2D Z-Scheme heterojunctions of bismuth tantalate quantum Dots/Ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics. ACS Appl. Mater. Interfaces 2017, 9, 43704–43715. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch. Environ. Contam. Toxicol. 2002, 42, 263–271. [Google Scholar] [CrossRef] [PubMed]
- López-Peñalver, J.J.; Sánchez-Polo, M.; Gómez-Pacheco, C.V.; Rivera-Utrilla, J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. J. Chem. Technol. Biotechnol. 2010, 85, 1325–1333. [Google Scholar] [CrossRef]
- Golub, L.M.; Lee, H.M.; Ryan, M.E.; Giannobile, W.V.; Payne, J.; Sorsa, T. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv. Dent. Res. 1998, 12, 12–26. [Google Scholar] [CrossRef]
- Piumetti, M.; Fino, D.; Russo, N. Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl. Catal. B Environ. 2015, 163, 277–287. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chemie Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Mohini, R.; Lakshminarasimhan, N. Coupled semiconductor nanocomposite g-C3N4/TiO2 with enhanced visible light photocatalytic activity. Mater. Res. Bull. 2016, 76, 370–375. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Che, H.; Ngaw, C.K.; Hu, P.; Wang, J.; Li, Y.; Wang, X.; Teng, W. Fabrication of molybdenum doped carbon nitride nanosheets for efficiently photocatalytic water splitting. J. Alloys Compd. 2020, 849, 156440. [Google Scholar] [CrossRef]
- Veldurthi, N.K.; Eswar, N.K.R.; Singh, S.A.; Madras, G. Cocatalyst free Z-schematic enhanced H2 evolution over LaVO4/BiVO4 composite photocatalyst using Ag as an electron mediator. Appl. Catal. B Environ. 2018, 220, 512–523. [Google Scholar] [CrossRef]
- Huang, H.; Li, D.; Lin, Q.; Zhang, W.; Shao, Y.; Chen, Y.; Sun, M.; Fu, X. Efficient degradation of benzene over LaVO4/TiO2 nanocrystalline heterojunction photocatalyst under visible light irradiation. Environ. Sci. Technol. 2009, 43, 4164–4168. [Google Scholar] [CrossRef]
- Wang, N.; Li, J.; Wu, L.; Li, X.; Shu, J. MnO2 and carbon nanotube co-modified C3N4 composite catalyst for enhanced water splitting activity under visible light irradiation. Int. J. Hydrogen Energy 2016, 41, 22743–22750. [Google Scholar] [CrossRef]
- Thirumalai, K.; Shanthi, M.; Swaminathan, M. Natural sunlight active GdVO4-ZnO nanomaterials for photo-electrocatalytic and self-cleaning applications. J. Water Process Eng. 2017, 17, 149–160. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, J.; Xie, M.; Jing, L.; Xu, H.; She, X.; Li, H.; Xie, J. Construction of novel CNT/LaVO4 nanostructures for efficient antibiotic photodegradation. Chem. Eng. J. 2019, 357, 487–497. [Google Scholar] [CrossRef]
- Silversmit, G.; Depla, D.; Poelman, H.; Marin, G.B.; De Gryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectros. Relat. Phenom. 2004, 135, 167–175. [Google Scholar] [CrossRef]
- Sivakumar, V.; Suresh, R.; Giribabu, K.; Narayanan, V. Characterization and visible light driven photocatalytic activity of (M = Bi, La)MVO4@poly(o-phenylenediamine) nanocomposite. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019, 240, 41–48. [Google Scholar] [CrossRef]
- Thakur, H.; Singh, B.P.; Kumar, R.; Gathania, A.K.; Singh, S.K.; Singh, R.K. Synthesis, structural analysis, upconversion luminescence and magnetic properties of Ho3+/Yb3+ co-doped GdVO4 nanophosphor. Mater. Chem. Phys. 2020, 253, 123333. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; John Peter, A.; Venkatakrishnan, M.; Krishnan, R. Hydrothermal synthesis, characterization and luminescence properties of CaGd2(MoO4)4:Eu3+ ovoid like structures. New J. Chem. 2017, 41, 14977–14986. [Google Scholar] [CrossRef]
- Vairapperumal, T.; Natarajan, D.; Manikantan Syamala, K.; Kalarical Janardhanan, S.; Balachandran Unni, N. Catechin caged lanthanum orthovanadate nanorods for nuclear targeting and bioimaging applications. Sens. Actuators B Chem. 2017, 242, 700–709. [Google Scholar] [CrossRef]
- Zhang, F.; Tang, J.; Wang, Z.; Qin, L.C. Graphene-carbon nanotube composite aerogel for selective detection of uric acid. Chem. Phys. Lett. 2013, 590, 121–125. [Google Scholar] [CrossRef]
- Chu, S.; Wang, Y.; Guo, Y.; Feng, J.; Wang, C.; Luo, W.; Fan, X.; Zou, Z. Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3, 912–919. [Google Scholar] [CrossRef]
- Shandilya, P.; Mittal, D.; Sudhaik, A.; Soni, M.; Raizada, P.; Saini, A.K.; Singh, P. GdVO4 modified fluorine doped graphene nanosheets as dispersed photocatalyst for mitigation of phenolic compounds in aqueous environment and bacterial disinfection. Sep. Purif. Technol. 2019, 210, 804–816. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Chen, X.; Wu, Z.; Liang, J.; Zhang, J.; Wang, H.; Wang, H. Phosphorus- and sulfur-codoped g-C3N4: facile preparation, mechanism insight, and application as efficient photocatalyst for tetracycline and methyl orange degradation under visible light irradiation. ACS Sustain. Chem. Eng. 2017, 5, 5831–5841. [Google Scholar] [CrossRef]
- Khataee, A.; Soltani, R.D.C.; Karimi, A.; Joo, S.W. Sonocatalytic degradation of a textile dye over Gd-doped ZnO nanoparticles synthesized through sonochemical process. Ultrason. Sonochem. 2015, 23, 219–230. [Google Scholar] [CrossRef]
- Chang, W.S.; Li, Y.C.M.; Chung, T.W.; Lin, Y.S.; Huang, C.M. Toluene decomposition using silver vanadate/SBA-15 photocatalysts: DRIFTS study of surface chemistry and recyclability. Appl. Catal. A Gen. 2011, 407, 224–230. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Z.; Jiang, J.; Li, H. Ultrasound-Assisted hydrothermal fabrication of AgI/MFeO3/g-C3N4 (M = Y, Gd, La) nano sheet-sphere-sheet photocatalysts with enhanced photodegradation activities for norfloxacin. Catalysts 2020, 4, 373. [Google Scholar] [CrossRef] [Green Version]
Sample Name | Degradation (%) | K (min−1) | R2 |
---|---|---|---|
g-C3N4 | 25.3% | 0.00 166 | 0.99 093 |
LaVO4 | 32.8% | 0.00 225 | 0.97 831 |
GdVO4 | 51.0% | 0.00 453 | 0.97 748 |
10% LaVO4/g-C3N4 | 63.2% | 0.00 503 | 0.96 199 |
20% LaVO4/g-C3N4 | 79.1% | 0.00 717 | 0.94 071 |
30% LaVO4/g-C3N4 | 69.8% | 0.00 565 | 0.93 048 |
40% LaVO4/g-C3N4 | 53.6% | 0.00 399 | 0.82 037 |
50% LaVO4/g-C3N4 | 52.4% | 0.00 430 | 0.97 268 |
10% GdVO4/g-C3N4 | 68.0% | 0.00 651 | 0.99 711 |
20% GdVO4/g-C3N4 | 73.4% | 0.00 759 | 0.99 278 |
30% GdVO4/g-C3N4 | 82.4% | 0.01 097 | 0.95 985 |
40% GdVO4/g-C3N4 | 91.0% | 0.01 578 | 0.96 861 |
50% GdVO4/g-C3N4 | 84.9% | 0.01 302 | 0.95 533 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Han, S.; Cao, Y.; Jiang, J. Synthesis of a Novel Photocatalyst MVO4/g-C3N4 (M = La, Gd) with Better Photocatalytic Activity for Tetracycline Hydrochloride Degradation under Visible-Light Irradiation. Crystals 2021, 11, 756. https://doi.org/10.3390/cryst11070756
Zhu Z, Han S, Cao Y, Jiang J. Synthesis of a Novel Photocatalyst MVO4/g-C3N4 (M = La, Gd) with Better Photocatalytic Activity for Tetracycline Hydrochloride Degradation under Visible-Light Irradiation. Crystals. 2021; 11(7):756. https://doi.org/10.3390/cryst11070756
Chicago/Turabian StyleZhu, Zhengru, Songlin Han, Yongqiang Cao, and Junchao Jiang. 2021. "Synthesis of a Novel Photocatalyst MVO4/g-C3N4 (M = La, Gd) with Better Photocatalytic Activity for Tetracycline Hydrochloride Degradation under Visible-Light Irradiation" Crystals 11, no. 7: 756. https://doi.org/10.3390/cryst11070756
APA StyleZhu, Z., Han, S., Cao, Y., & Jiang, J. (2021). Synthesis of a Novel Photocatalyst MVO4/g-C3N4 (M = La, Gd) with Better Photocatalytic Activity for Tetracycline Hydrochloride Degradation under Visible-Light Irradiation. Crystals, 11(7), 756. https://doi.org/10.3390/cryst11070756