Photoconduction of Polar and Nonpolar Cuts of Undoped Sr0.61Ba0.39Nb2O6 Single Crystals
Abstract
:1. Introduction
- Wavelength in the range between 750 and 350 nm (i.e., 1.65–3.54 eV) revealing and discussing distinct spectral features being present already without distinct doping ions;
- Time in order to describe the (pronounced long-term) relaxation behavior, which suggests special care in incorporating the material in nanoelectronic device concepts on the one hand and in interpreting optical-spectroscopy data results of any kind on the other hand;
- Intensity for selected wavelength in order to link the results to known literature values recorded for doped SBN crystals;
- Measuring voltage, which allows us to evaluate the current–voltage hysteresis behavior and extracting of the coercive voltage(s).
2. Materials and Methods
2.1. Crystal Growth
2.2. Photoexcitation and Electrical-Measurement Configuration
3. Results and Discussion
3.1. Wavelength Dependence of the Resistance between 350 and 750 nm
3.2. Resistance Relaxation Behavior upon Switching the Photoexcitation on and off
- For 700 nm and 600 nm illumination (Figure 4a,e) a small but clear photoconductance not exceeding normalized values of 1 (z-cut) or 0.5 (x-cut) is observed.
- With wavelengths of 500 nm or 450 nm (Figure 4b,f), a pronounced PC is achieved, corresponding to almost one order of magnitude of resistance decrease at 450 nm for the z-cut sample.
- For excitation wavelengths of 420 nm and below (Figure 4c,g), PC values larger than 9 are measured, which is equivalent to a resistance drop of more than one order of magnitude. After a maximum around the bandgap, the effect again appears to weaken, the smaller the exciting wavelength gets (especially at 360 nm), probably due to the decreasing penetration depth of the photons and thus the lower probed volume.
3.3. Sublinear Intensity-Dependence
3.4. Current–Voltage Characteristics in the Dark and under Sub- and Super-Bandgap Light
4. Summary and Outlook
- First, the wavelength dependence was recorded (“photoconductance spectroscopy”), which showed robust signatures of three different deep levels and a clear band of shallow states. At the current state of knowledge, one may speculate on the origin of these defect states: intrinsic point defects, oxygen vacancies, low-concentration impurity ions, and polaronic contributions are conceivable. For a further clarification, more comparative and comprehensive spectroscopic efforts are needed.
- Second, the time evolution of the photoconductance upon switching the illumination on and off was monitored, i.e., “light-on” and “light-off” photoconductance transients at selected wavelengths were recorded in order to obtain insights to the relevant relaxation times. Though the failure of a number of analytical fit models—a phenomenon that was reported in the past for SBN in a slightly different context [37]—points towards complex and entangled multilevel charge transfer processes (which are not unusual for complex oxides in general) the tail of the long-term relaxation transient in the dark after super-bandgap illumination could be well described by a single time constant in the range of several days. The slow relaxation means that crystals which have not been stored in total darkness for a considerable time span are in a photoexcited state and do not show their true dark resistance.
- Third, the intensity dependence appeared to be sublinear in accordance with earlier results on very weakly Ce-doped SBN.
- Fourth, the wavelength was tested as a parameter being potentially able to tune the current–voltage characteristics including the coercive voltage in the z-cut crystal. Though the illumination wavelength—but also the pre-illumination history—has a clear influence on the current level and the coercive voltage, there are a number of other parameters, namely the direction and speed of the voltage ramp as well as the number of voltage cycles, which influence the exact shape of the current–voltage characteristics.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivleva, L.I.; Kozlova, N.S.; Zabelina, E.V. Study of the temperature dependence of the electrical conductivity in strontium-barium niobate crystals with different dopants. Crystallogr. Rep. 2007, 52, 328–331. [Google Scholar] [CrossRef]
- Bhatt, R.; Soharab, M.; Bhaumik, I.; Verma, P.; Sajith, B.; Saxena, A.; Karnal, A. Effect of reduction on the optical properties of Sr0.61Ba0.39Nb2O6 single crystals grown by optical floating zone technique. J. Alloys Compd. 2019, 810, 151818. [Google Scholar] [CrossRef]
- Podlozhenov, S.; Graetsch, H.A.; Ulex, M.; Schneider, J.; Wöhlecke, M.; Betzler, K. Structure of strontium barium niobate SrxBa1−xNb2O6 (SBN) in the composition range 0.32≤x≤0.82. Acta Cryst. 2006, B62, 960–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleemann, W. The relaxor enigma—Charge disorder and random fields in ferroelectrics. J. Mater. Sci. 2006, 41, 129–136. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Kleemann, W.; Łukasiewicz, T.; Dec, J. Nanopolar structure in SrxBa1−xNb2O6 single crystals tuned by Sr/Ba ratio and investigated by piezoelectric force microscopy. Phys. Rev. B 2008, 77, 054105. [Google Scholar] [CrossRef]
- Shur, V.Y.; Shikhova, V.A.; Ievlev, A.V.; Zelenovskiy, P.S.; Neradovskiy, M.M.; Pelegov, D.V.; Ivleva, L.I. Nanodomain structures formation during polarization reversal in uniform electric field in strontium barium niobate single crystals. J. Appl. Phys. 2012, 112, 064117. [Google Scholar] [CrossRef] [Green Version]
- Shur, V.; Shikhova, V.; Alikin, D.; Lebedev, V.; Ivleva, L.; Dec, J.; Lupascu, D.; Shvartsman, V. Temperature Effect on the Stability of the Polarized State Created by Local Electric Fields in Strontium Barium Niobate Single Crystals. Sci. Rep. 2017, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Shikhova, V.A.; Fedorovyh, V.V.; Turygin, A.P.; Gimadeeva, L.V.; Chezganov, D.S.; Vlasov, E.O.; Alikin, D.O.; Ivleva, L.I.; Kholkin, A.L.; Shur, V.Y. Local switching in SBN:Ni single crystals with various initial domain states. Ferroelectrics 2018, 525, 100–107. [Google Scholar] [CrossRef]
- Chezganov, D.S.; Shikhova, V.A.; Fedorovyh, V.V.; Vlasov, E.O.; Chuvakova, M.A.; Nebogatikov, M.S.; Zelenovskiy, P.S.; Kholkin, A.L.; Ivleva, L.I.; Shur, V.Y. Domain Switching by Electron Beam Irradiation in SBN61:Ce Single Crystals Covered by Dielectric Layer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2020, 67, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Buse, K.; van Stevendaal, U.; Pankrath, R.; Kratzig, E. Light-induced charge transport properties of Sr0.61Ba0.39Nb2O6:Ce crystals. J. Opt. Soc. Am. B 1996, 13, 1461–1467. [Google Scholar] [CrossRef]
- Buse, K.; Gerwens, A.; Wevering, S.; Kratzig, E. Charge-transport parameters of photorefractive strontium-barium niobate crystals doped with cerium. J. Opt. Soc. Am. B 1998, 15, 1674–1677. [Google Scholar] [CrossRef]
- Wevering, S.; Buse, K.; Simon, R.; Pankrath, R.; Kratzig, E. Time-resolved measurements of photoconductivity in cerium-doped photorefractive strontium-barium niobate using nanosecond light pulses. Opt. Commun. 1998, 148, 85–89. [Google Scholar] [CrossRef]
- Dörfler, U.; Granzow, A.; Woike, T.; Wöhlecke, M.; Imlau, M.; Pankrath, R. Intensity and wavelength dependence of the photoconductivity in Cr-doped Sr0.61Ba0.39Nb2O6. Eur. Phys. J. B 2004, 38, 19–24. [Google Scholar] [CrossRef]
- Demirbilek, R.; Kılıç, M. The parameters that play role in numerical parameter variation in two-center holographic recording in photorefractive lithium niobate (LiNbO3) and strontium barium niobate (SrxBa1−xNb2O6). Phys. Status Solidi A 2013, 210, 1641–1646. [Google Scholar] [CrossRef]
- Gladkiĭ, V.V.; Kirikov, V.A.; Volk, T.R.; Ivanova, E.S.; Ivleva, L.I. Polarization kinetics of a photosensitive relaxor ferroelectric. Phys. Solid State 2005, 47, 298–304. [Google Scholar] [CrossRef]
- Gladkiĭ, V.V.; Kirikov, V.A.; Ivanova, E.S.; Volk, T.R. On the permittivity of barium strontium niobate, a photosensitive relaxor ferroelectric. Phys. Solid State 2006, 48, 1929–1932. [Google Scholar] [CrossRef]
- Gladkiĭ, V.V.; Kirikov, V.A.; Ivanova, E.S.; Volk, T.R. Reversible permittivity of a photosensitive relaxor ferroelectric. Phy. Solid State 2006, 48, 2146–2149. [Google Scholar] [CrossRef]
- Gladkiĭ, V.V.; Kirikov, V.A.; Ivanova, E.S.; Volk, T.R. Quasi-static loops of the dielectric hysteresis for a photosensitive relaxor ferroelectric crystal in the temperature range of the diffuse phase transition. Phys. Solid State 2007, 49, 930–935. [Google Scholar] [CrossRef]
- Gladkiĭ, V.V.; Ivanova, E.S.; Volk, T.R. Depolarization in a photosensitive relaxor ferroelectric. Phys. Solid State 2007, 49, 2148–2153. [Google Scholar] [CrossRef]
- Fan, D.; Zhu, J.; Wang, X.; Wang, S.; Liu, Y.; Chen, R.; Feng, Z.; Fan, F.; Li, C. Dual Extraction of Photogenerated Electrons and Holes from a Ferroelectric Sr0.5Ba0.5Nb2O6 Semiconductor. ACS Appl. Mater. Interfaces 2016, 8, 13857–13864. [Google Scholar] [CrossRef]
- Fan, D.; Chong, R.; Fan, F.; Wang, X.; Li, C.; Feng, Z. A tetragonal tungsten bronze-type photocatalyst: Ferro-paraelectric phase transition and photocatalysis. Chin. J. Catal. 2016, 37, 1257–1262. [Google Scholar] [CrossRef]
- Barnes, E.; Alberts, E.M.; Mimun, L.C.; Brame, J.A.; Warner, C.M.; Harmon, A.R.; Poda, A.R. Photoinduced Metallic Particle Growth on Single-Crystal Relaxor Ferroelectric Strontium Barium Niobate. J. Phys. Chem. C 2018, 122, 5590–5598. [Google Scholar] [CrossRef]
- Ivleva, L.; Kuz’minov, Y.; Osiko, V.; Polozkov, N. The growth of multicomponent oxide single crystals by Stepanov’s technique. J. Cryst. Growth 1987, 82, 168–176. [Google Scholar] [CrossRef]
- Ivleva, L.; Bogodaev, N.; Polozkov, N.; Osiko, V. Growth of SBN single crystals by Stepanov technique for photorefractive applications. Opt. Mater. 1995, 4, 168–173. [Google Scholar] [CrossRef]
- Ivleva, L.I. Physicochemical and Technological Peculiarities of Multicomponent Oxide Crystal Growth from Melt by Modified Stepanov Technique. Bull. Russ. Acad. Sci. Phys. 2009, 73, 1338–1340. [Google Scholar] [CrossRef]
- Kuz’micheva, G.M.; Ivleva, L.I.; Kaurova, I.A.; Rybakov, V.B. Structural peculiarities and point defects of undoped and Cr- and Ni-doped SrxBa1−xNb2O6 crystals. Acta Mater. 2014, 70, 208–217. [Google Scholar] [CrossRef]
- Kaurova, I.A.; Kuz’micheva, G.M.; Ivleva, L.I.; Chernyshev, V.V.; Rybakov, V.B.; Domoroshchina, E.N. X-ray powder diffraction methods for the determination of composition and structural parameters of Cr- and Ni-doped Sr0.61Ba0.39Nb2O6 crystals. J. Alloys Compd. 2015, 638, 159–165. [Google Scholar] [CrossRef]
- Kuz’micheva, G.M.; Ivleva, L.I.; Kaurova, I.A.; Rybakov, V.B.; Cousson, A. Structure and real composition of undoped and Cr- and Ni-doped Sr0.61Ba0.39Nb2O6 single crystals. Struct. Chem. 2016, 27, 1623–1634. [Google Scholar] [CrossRef]
- Shvartsman, V.V.; Gobeljic, D.; Dec, J.; Lupascu, D.C. A Piezoresponse Force Microscopy Study of CaxBa1−xNb2O6 Single Crystals. Materials 2017, 10, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlenko, A.; Ivleva, L.; Stryukov, D.; Kovtun, A.; Anokhin, A.; Lykov, P. Synthesis, Structure, and Dielectric Characteristics of Sr0.61Ba0.39Nb2O6 Single Crystals and Thin Films. Phys. Solid State 2019, 61, 244–248. [Google Scholar] [CrossRef]
- Beyreuther, E.; Thiessen, A.; Becherer, J.; Grafström, S.; Dörr, K.; Eng, L. Probing electronic defect states in manganite/SrTiO3 heterostructures by surface photovoltage spectroscopy. Mater. Sci. Eng. B 2011, 176, 446–452. [Google Scholar] [CrossRef]
- Bhatt, V.; Kumar, M.; Kim, J.; Chung, H.J.; Yun, J.H. Persistent photoconductivity in Al-doped ZnO photoconductors under air, nitrogen and oxygen ambience: Role of oxygen vacancies induced DX centers. Ceram. Int. 2019, 45, 8561–8570. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Szczyrbowski, J.; Dietrich, A.; Hoffmann, H. Optical Properties of RF-Sputtered Indium Oxide Films. Phys. Status Solidi A 1982, 69, 217–226. [Google Scholar] [CrossRef]
- Viezbicke, B.D.; Patel, S.; Davis, B.E.; Birnie, D.P., III. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 2015, 252, 1700–1710. [Google Scholar] [CrossRef]
- Andriyevsky, B.; Patryn, A.; Dorywalski, K.; Cobet, C.; Piasecki, M.; Kityk, I.; Esser, N.; Łukasiewicz, T.; Dec, J. Electronic and Optical Properties of Strontium Barium Niobate Single Crystals. Ferroelectrics 2012, 426, 194–205. [Google Scholar] [CrossRef]
- Gao, M.; Kapphan, S.; Porcher, S.; Pankrath, R. Experimental study of NIR absorption due to Nb4+ polarons in pure and Cr- or Ce-doped SBN crystals. J. Phys. Condens. Matter 1999, 11, 4913–4924. [Google Scholar] [CrossRef]
- Primrose, M.S.; Toulouse, J.; Bock, J.; Randall, C. Raman spectroscopy study of reduced strontium barium niobate (SBN61) and hints of supergrowth or intergrowth structures. J. Raman Spectrosc. 2018, 49, 1849–1859. [Google Scholar] [CrossRef]
- Beyreuther, E.; Becherer, J.; Thiessen, A.; Grafström, S.; Eng, L. Electronic surface properties of SrTiO3 derived from a surface photovoltage study. Surf. Sci. 2013, 612, 1–9. [Google Scholar] [CrossRef]
- Lee, S.; Wilke, R.H.T.; Trolier-McKinstry, S.; Zhang, S.; Randall, C.A. SrxBa1−xNb2O6-δ Ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 2010, 96, 031910. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Chen, Y.; Zhang, X.; Wang, X.; Wang, F.; Su, W.; Li, J.; Wang, C. Oxygen vacancy induced strong anisotropy of the thermoelectric properties of strontium barium niobate. Comput. Mater. Sci. 2018, 155, 393–399. [Google Scholar] [CrossRef]
- Holtmann, L.; Unland, M.; Krätzig, E.; Godefroy, G. Conductivity and Light-Induced Absorption in BaTiO3. Appl. Phys. A 1990, 51, 13–15. [Google Scholar] [CrossRef]
- Mahgerefteh, D.; Feinberg, J. Explanation of the Apparent Sublinear Photoconductivity of Photorefractive Barium Titanate. Phys. Rev. Lett. 1990, 64, 2195–2198. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.G.R.; Eason, R.W. Influence of light on the coercive field of repoled strontium barium niobate: The role of secondary repoling. Appl. Phys. Lett. 1996, 69, 1509–1511. [Google Scholar] [CrossRef]
- Gladkiĭ, V.; Kirikov, V.; Nekhlyudov, S.; Volk, T.; Ivleva, L. Polarization and depolarization of relaxor ferroelectric strontium barium niobate. Phys. Solid State 2000, 42, 1334–1340. [Google Scholar] [CrossRef]
Wavelength Range | Energy Range | Filter: | Grating: |
---|---|---|---|
(nm) | (eV) | (nm) | (nm) |
750–550 | 1.55–2.25 | 550 | 750 |
600–450 | 2.07–2.76 | 395 | 400 |
500–350 | 2.48–3.54 | 305 | 400 |
Assignment | Z-Cut | X-Cut | ||
---|---|---|---|---|
Linear | Logarithmic | Linear | Logarithmic | |
direct(?) bandgap | 361 | 365 | 369 | – |
fundamental bandgap | 393 | 385 | 398 | (377) |
bandgap from transmittance | 381 ± 3 | 389 ± 3 | ||
shallow states | (435) | 420/429 | 424/422 | 418 |
(“blue”) deep level | (476) | (475) | 482 | 488 |
(“green”) deep level | 553 | 545 | 558 | 555 |
(“red”) deep level | 599 | 594 | 601 | 602 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyreuther, E.; Ratzenberger, J.; Roeper, M.; Kirbus, B.; Rüsing, M.; Ivleva, L.I.; Eng, L.M. Photoconduction of Polar and Nonpolar Cuts of Undoped Sr0.61Ba0.39Nb2O6 Single Crystals. Crystals 2021, 11, 780. https://doi.org/10.3390/cryst11070780
Beyreuther E, Ratzenberger J, Roeper M, Kirbus B, Rüsing M, Ivleva LI, Eng LM. Photoconduction of Polar and Nonpolar Cuts of Undoped Sr0.61Ba0.39Nb2O6 Single Crystals. Crystals. 2021; 11(7):780. https://doi.org/10.3390/cryst11070780
Chicago/Turabian StyleBeyreuther, Elke, Julius Ratzenberger, Matthias Roeper, Benjamin Kirbus, Michael Rüsing, Liudmila I. Ivleva, and Lukas M. Eng. 2021. "Photoconduction of Polar and Nonpolar Cuts of Undoped Sr0.61Ba0.39Nb2O6 Single Crystals" Crystals 11, no. 7: 780. https://doi.org/10.3390/cryst11070780
APA StyleBeyreuther, E., Ratzenberger, J., Roeper, M., Kirbus, B., Rüsing, M., Ivleva, L. I., & Eng, L. M. (2021). Photoconduction of Polar and Nonpolar Cuts of Undoped Sr0.61Ba0.39Nb2O6 Single Crystals. Crystals, 11(7), 780. https://doi.org/10.3390/cryst11070780