Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. 3D Artificial Microstructure Modelling Method
2.2. Material Charaterization as Input Data
3. Results and Discussion
3.1. Synthesis of the 3D Representative Volume Elements
3.1.1. Phase Fraction
3.1.2. Grain Size Distribution
3.1.3. Texture
3.1.4. Micromechanical Properties of an Individual Phase
3.2. Deformation and Damage Assessments
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Casellas, D.; Lara, A.; Frómeta, D.; Gutiérrez, D.; Molas, S.; Pérez, L.; Rehrl, J.; Suppan, C. Fracture toughness to understand stretch-flangeability and edge cracking resistance in AHSS. Metall. Mater. Trans. A 2017, 48, 86–94. [Google Scholar] [CrossRef]
- Wu, X.; Bahmanpour, H.; Schmid, K. Characterization of mechanically sheared edges of dual phase steels. J. Mater. Process. Technol. 2012, 212, 1209–1224. [Google Scholar] [CrossRef]
- Thakur, A.K.; Kumar, R.R.; Bansal, G.; Verma, R.K.; Tarafder, S.; Sivaprasad, S.; Mandal, G.K. Processing-microstructure-property correlation for producing stretch-flangeable grade dual-phase steel. J. Mater. Eng. Perform. 2021, 30, 4300–4317. [Google Scholar] [CrossRef]
- Habibi, N.; Pütz, F.; Könemann, M.; Brinnel, V.; Münstermann, S.; Feistle, M.; Volk, W. Numerical quantification of damage accumulation resulting from blanking in multi-phase steel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 418, 012058. [Google Scholar] [CrossRef]
- Habibi, N.; Beier, T.; Richter, H.; Könemann, M.; Münstermann, S. The effects of shear affected zone on edge crack sensitivity in dual-phase steels. IOP Conf. Ser. Mater. Sci. Eng. 2019, 651, 012073. [Google Scholar] [CrossRef]
- Butcher, C.; Anderson, D.; Worswick, M. Predicting failure during sheared edge stretching using a damage-based model for the shear-affected zone. SAE Int. J. Mater. Manuf. 2013, 6, 304–312. [Google Scholar] [CrossRef]
- Levy, B.; Gibbs, M.; Van Tyne, C. Failure during sheared edge stretching of dual-phase steels. Metall. Mater. Trans. A 2013, 44, 3635–3648. [Google Scholar] [CrossRef]
- Choi, S.-H.; Kim, E.-Y.; Woo, W.; Han, S.; Kwak, J. The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int. J. Plast. 2013, 45, 85–102. [Google Scholar] [CrossRef]
- Tasan, C.C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Annu. Rev. Mater. Res. 2015, 45, 391–431. [Google Scholar] [CrossRef]
- Pütz, F.; Shen, F.; Könemann, M.; Münstermann, S. The differences of damage initiation and accumulation of DP steels: A numerical and experimental analysis. Int. J. Fract. 2020, 226, 1–15. [Google Scholar] [CrossRef]
- Ghadbeigi, H.; Pinna, C.; Celotto, S. Failure mechanisms in DP600 steel: Initiation, evolution and fracture. Mater. Sci. Eng. A 2013, 588, 420–431. [Google Scholar] [CrossRef]
- Kusche, C.F.; Pütz, F.; Münstermann, S.; Al-Samman, T.; Korte-Kerzel, S. On the effect of strain and triaxiality on void evolution in a heterogeneous microstructure–A statistical and single void study of damage in DP800 steel. Mater. Sci. Eng. A 2021, 799, 140332. [Google Scholar] [CrossRef]
- Ramazani, A.; Schwedt, A.; Aretz, A.; Prahl, U.; Bleck, W. Characterization and modelling of failure initiation in DP steel. Comput. Mater. Sci. 2013, 75, 35–44. [Google Scholar] [CrossRef]
- Uthaisangsuk, V.; Prahl, U.; Bleck, W. Modelling of damage and failure in multiphase high strength DP and TRIP steels. Eng. Fract. Mech. 2011, 78, 469–486. [Google Scholar] [CrossRef]
- Vajragupta, N.; Maassen, S.; Clausmeyer, T.; Brands, D.; Schröder, J.; Hartmaier, A. Micromechanical modeling of dp600 steel: From microstructure to the sheet metal forming process. Procedia Manuf. 2020, 47, 1540–1547. [Google Scholar] [CrossRef]
- Pathak, N.; Butcher, C.; Worswick, M.J.; Bellhouse, E.; Gao, J. Damage evolution in complex-phase and dual-phase steels during edge stretching. Materials 2017, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Fan, Z.; Ralph, B.; Evans, P.; Underhill, R. Effects of tempering temperature on tensile and hole expansion properties of a C–Mn steel. J. Mater. Process. Technol. 2003, 132, 215–218. [Google Scholar] [CrossRef]
- Hu, X.; Sun, X.; Raghavan, K.; Comstock, R.; Ren, Y. Linking constituent phase properties to ductility and edge stretchability of two DP 980 steels. Mater. Sci. Eng. A 2020, 780, 139176. [Google Scholar] [CrossRef]
- Aurenhammer, F.; Klein, R. Voronoi Diagrams. Handb. Comput. Geom. 2000, 5, 201–290. [Google Scholar]
- Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J.E.; Schneider, K.; Soyarslan, C.; Wilmers, J. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 2018, 96, 322–384. [Google Scholar] [CrossRef]
- Imai, H.; Iri, M.; Murota, K. Voronoi diagram in the Laguerre geometry and its applications. SIAM J. Comput. 1985, 14, 93–105. [Google Scholar] [CrossRef]
- Vajragupta, N.; Wechsuwanmanee, P.; Lian, J.; Sharaf, M.; Münstermann, S.; Ma, A.; Hartmaier, A.; Bleck, W. The modeling scheme to evaluate the influence of microstructure features on microcrack formation of DP-steel: The artificial microstructure model and its application to predict the strain hardening behavior. Comput. Mater. Sci. 2014, 94, 198–213. [Google Scholar] [CrossRef]
- Pütz, F.; Henrich, M.; Fehlemann, N.; Roth, A.; Münstermann, S. Generating input data for microstructure modelling: A deep learning approach using generative adversarial networks. Materials 2020, 13, 4236. [Google Scholar] [CrossRef]
- Henrich, M.; Pütz, F.; Münstermann, S. A novel approach to discrete representative volume element automation and generation-DRAGen. Materials 2020, 13, 1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarjus, G.; Schaaf, P.; Talbot, J. Random sequential addition: A distribution function approach. J. Stat. Phys. 1991, 63, 167–202. [Google Scholar] [CrossRef]
- Torquato, S. Optimal design of heterogeneous materials. Annu. Rev. Mater. Res. 2010, 40, 101–129. [Google Scholar] [CrossRef] [Green Version]
- Smit, R.J.; Brekelmans, W.M.; Meijer, H.E. Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 1998, 155, 181–192. [Google Scholar] [CrossRef]
- Wu, W.; Owino, J.; Al-Ostaz, A.; Cai, L. Applying periodic boundary conditions in finite element analysis. In Proceedings of the SIMULIA Community Conference in Providence, Rhode Island, RI, USA, 20–22 May 2014; pp. 707–719. [Google Scholar]
- Motaman, S.A.H.; Roters, F.; Haase, C. Anisotropic polycrystal plasticity due to microstructural heterogeneity: A multi-scale experimental and numerical study on additively manufactured metallic materials. Acta Mater. 2020, 185, 340–369. [Google Scholar] [CrossRef]
- Motaman, S.A.H.; Haase, C. The microstructural effects on the mechanical response of polycrystals: A comparative experimental-numerical study on conventionally and additively manufactured metallic materials. Int. J. Plast. 2021, 140, 102941. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.D.; Bieler, T.R.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010, 58, 1152–1211. [Google Scholar] [CrossRef]
- Rice, J.R. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 1971, 19, 433–455. [Google Scholar] [CrossRef]
- Tasan, C.C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater. 2014, 81, 386–400. [Google Scholar] [CrossRef]
- Sung, J.H.; Kim, J.H.; Wagoner, R. A plastic constitutive equation incorporating strain, strain-rate, and temperature. Int. J. Plast. 2010, 26, 1746–1771. [Google Scholar] [CrossRef]
- Steinbrunner, D.L.; Matlock, D.; Krauss, G. Void formation during tensile testing of dual phase steels. Metall. Trans. A 1988, 19, 579–589. [Google Scholar] [CrossRef]
- Digimizer, image analysis software; MedCalc Software Ltd., Ostend, Belgium. Available online: https://www.digimizer.com (accessed on 23 March 2021).
- Tasan, C.C.; Hoefnagels, J.P.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int. J. Plast. 2014, 63, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lian, J.; Aravas, N.; Münstermann, S. A strategy for synthetic microstructure generation and crystal plasticity parameter calibration of fine-grain-structured dual-phase steel. Int. J. Plast. 2020, 126, 102614. [Google Scholar] [CrossRef]
- Paul, S.K. A critical review on hole expansion ratio. Materialia 2020, 9, 100566. [Google Scholar] [CrossRef]
- Alharbi, K.; Ghadbeigi, H.; Efthymiadis, P.; Zanganeh, M.; Celotto, S.; Dashwood, R.; Pinna, C. Damage in dual phase steel DP1000 investigated using digital image correlation and microstructure simulation. Model. Simul. Mater. Sci. Eng. 2015, 23, 085005. [Google Scholar] [CrossRef]
- Marteau, J.; Haddadi, H.; Bouvier, S. Investigation of strain heterogeneities between grains in ferritic and ferritic-martensitic steels. Exp. Mech. 2013, 53, 427–439. [Google Scholar] [CrossRef]
Materials | C | Mn | Si | Al | Ti | S | Fe | |
---|---|---|---|---|---|---|---|---|
CR590Y980T-DP | 0.043 | 1.807 | 0.301 | 0.037 | 0.048 | 0.007 | 0.012 | Bal. |
CR700Y980T-DP | 0.080 | 2.813 | 0.293 | 0.291 | 0.075 | 0.002 | 0.011 | Bal. |
Materials | Grain ID | Average Orientation | ||
---|---|---|---|---|
φ1 | Φ | φ2 | ||
CR590Y980T-DP | 1522 ({111}) | 204.2 | 114.7 | 39.1 |
1355 ({100}) | 148.9 | 69.3 | 20.0 | |
1351 ({110}) | 176.1 | 135.5 | 355.1 | |
CR700Y980T-DP | 3198 ({111}) | 19.864 | 50.998 | 311.74 |
1441 ({100}) | 155.55 | 35.663 | 222.51 | |
2744 ({110}) | 336.4 | 89.4 | 54.2 |
Materials | c11 1 | c12 1 | c44 1 | τ0, MPa | τs, MPa | M 1 | h0, MPa | a | |
---|---|---|---|---|---|---|---|---|---|
CR590Y980T-DP | 230.1d5 | 134.6d5 | 116.6d5 | 0.001 | 100 | 400 | 0.05 | 1000 | 4 |
CR700Y980T-DP | 230.1d5 | 134.6d5 | 116.6d5 | 0.001 | 200 | 400 | 0.05 | 1000 | 4 |
Materials | Hollomon–Voce Hardening Law |
---|---|
CR590Y980T-DP | |
CR700Y980T-DP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habibi, N.; Vajragupta, N.; Münstermann, S. Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method. Crystals 2021, 11, 805. https://doi.org/10.3390/cryst11070805
Habibi N, Vajragupta N, Münstermann S. Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method. Crystals. 2021; 11(7):805. https://doi.org/10.3390/cryst11070805
Chicago/Turabian StyleHabibi, Niloufar, Napat Vajragupta, and Sebastian Münstermann. 2021. "Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method" Crystals 11, no. 7: 805. https://doi.org/10.3390/cryst11070805
APA StyleHabibi, N., Vajragupta, N., & Münstermann, S. (2021). Deformation and Damage Assessments of Two DP1000 Steels Using a Micromechanical Modelling Method. Crystals, 11(7), 805. https://doi.org/10.3390/cryst11070805