High-Order Resonant Peaks and Polarization Dependence of Microphotoluminescence in Whispering-Gallery Mode ZnO Microrod Cavity
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ton-That, C.; Weston, L.; Phillips, M. Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO. Phys. Rev. B 2012, 86, 115205. [Google Scholar] [CrossRef]
- Ton-That, C.; Zhu, L.; Lockrey, M.; Phillips, M.; Cowie, B.C.C.; Tadich, A.; Thomsen, L.; Khachadorian, S.; Schlichting, S.; Jankowski, N.; et al. Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing. Phys. Rev. B 2015, 92, 024103. [Google Scholar] [CrossRef] [Green Version]
- Shokri, A.; Yazdani, A.; Rahimi, K. Tunable electronic and optical properties of g-ZnO/α-PtO2 van der Waals hetero-structure: A density functional theory study. Mater. Chem. Phys. 2020, 255, 123617. [Google Scholar] [CrossRef]
- Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R. Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 2015, 4, 4596. [Google Scholar] [CrossRef] [Green Version]
- Van Vugt, L.K.; Rühle, S.; Ravindran, P.; Gerritsen, H.C.; Kuipers, L.; Vanmaekelbergh, D. Exciton Polaritons Confined in a ZnO Nanowire Cavity. Phys. Rev. Lett. 2006, 97, 147401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturm, C.; Hilmer, H.; Rheinländer, B.; Schmidt-Grund, R.; Grundmann, M. Cavity-photon dispersion in one-dimensional confined microresonators with an optically anisotropic cavity material. Phys. Rev. B 2011, 83, 205301. [Google Scholar] [CrossRef]
- Dai, J.; Xu, C.X.; Zheng, K.; Lv, C.G.; Cui, Y.P. Whispering gallery-mode lasing in ZnO microrods at room temperature. Appl. Phys. Lett. 2009, 95, 241110. [Google Scholar] [CrossRef]
- Xu, C.; Dai, J.; Zhu, G.; Zhu, G.; Lin, Y.; Li, J.; Shi, Z. Whispering-gallery mode lasing in ZnO microcavities. Laser Photon. Rev. 2014, 8, 469–494. [Google Scholar] [CrossRef]
- Chen, R.; Ling, B.; Sun, X.W.; Sun, H.D. Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks. Adv. Mater. 2011, 23, 2199–2204. [Google Scholar] [CrossRef]
- Xu, C.; Qin, F.; Zhu, Q.; Lu, J.; Wang, Y.; Li, J.; Lin, Y.; Cui, Q.; Shi, Z.; Manohari, A.G. Plasmon-enhanced ZnO whisper-ing-gallery mode lasing. Nano Res. 2018, 11, 3050–3064. [Google Scholar] [CrossRef]
- Teke, A.; Özgür, Ü.; Doğan, S.; Gu, X.; Morkoç, H.; Nemeth, B.; Nause, J.; Everitt, H.O. Excitonic fine structure and recom-bination dynamics in single-crystalline ZnO. Phys. Rev. B 2004, 70, 195207. [Google Scholar] [CrossRef] [Green Version]
- Djurisic, A.B.; Leung, Y.H. Optical properties of ZnO nanostructures. Small 2006, 2, 944–961. [Google Scholar] [CrossRef]
- Damberga, D.; Fedorenko, V.; Grundšteins, K.; Altundal, Ş.; Šutka, A.; Ramanavičius, A.; Coy, E.; Mrówczyński, R.; Iatsunskyi, I.; Viter, R. Influence of PDA Coating on the Structural, Optical and Surface Properties of ZnO Nanostructures. Nanomaterials 2020, 10, 2438. [Google Scholar] [CrossRef] [PubMed]
- Kominis, I.K.; Kornack, T.W.; Allred, J.C.; Romalis, M.V. A subfemtotesla multichannel atomic magnetometer. Nat. Cell Biol. 2003, 422, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Rodnyi, P.A.; Khodyuk, I.V. Optical and luminescence properties of zinc oxide (Review). Opt. Spectrosc. 2011, 111, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Ramanachalam, M.S.; Rohatgi, A.; Carter, W.B.; Schaffer, J.P.; Gupta, T.K. Photoluminescence study of ZnO varistor stability. J. Electron. Mater. 1995, 24, 413–419. [Google Scholar] [CrossRef]
- Divins, N.J.; Kordus, D.; Timoshenko, J.; Sinev, I.; Zegkinoglou, I.; Bergmann, A.; Chee, S.W.; Widrinna, S.; Karslıoğlu, O.; Mistry, H.; et al. Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Volkov, V.V.; Oliver, D.J.; Perry, C.C. Polariton condensation and surface enhanced Raman in spherical ZnO micro-crystals. Nat. Commun. 2020, 11, 4908. [Google Scholar] [CrossRef]
- Dai, J.; Xu, C.X.; Ding, R.; Zheng, K.; Shi, Z.L.; Lv, C.G.; Cui, Y.P. Combined whispering gallery mode laser from hexag-onal ZnO microcavities. Appl. Phys. Lett. 2009, 95, 191117. [Google Scholar] [CrossRef]
- Flatae, A.M.; Burresi, M.; Zeng, H.; Nocentini, S.; Wiegele, S.; Parmeggiani, C.; Kalt, H.; Wiersma, D. Optically controlled elastic microcavities. Light Sci. Appl. 2015, 4, e282. [Google Scholar] [CrossRef] [Green Version]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstra-tion of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef]
- Gargas, D.J.; Moore, M.C.; Ni, A.; Chang, S.-W.; Zhang, Z.; Chuang, S.-L.; Yang, P. Whispering Gallery Mode Lasing from Zinc Oxide Hexagonal Nanodisks. ACS Nano 2010, 4, 3270–3276. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Nur, O.; Zhao, Q.; Yang, L.; Lorenz, M.; Cao, B.; Pérez, J.Z.; Czekalla, C.; Zimmermann, G.; Grundmann, M. Zinc oxide nanorod based photonic devices: Recent progress in growth, light emitting diodes and lasers. Nanotechnology 2009, 20, 332001. [Google Scholar] [CrossRef] [PubMed]
- Nowak, E.; Szybowicz, M.; Stachowiak, A.; Piechowiak, D.; Miklaszewski, A.; Witkowski, M.; Makowski, M.; Drozdowski, W.; Paprocki, K.; Fabisiak, K.; et al. The Influence of Recrystallization on Zinc Oxide Microstructures Synthesized with Sol–Gel Method on Scintillating Properties. Crystals 2021, 11, 533. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.; Ren, Q.; Yu, K.; Bai, L.; Zhou, W.; Xiong, H.; Zhu, Z.Q.; Shen, X. Direct Observation of Whispering Gallery Mode Polaritons and their Dispersion in a ZnO Tapered Microcavity. Phys. Rev. Lett. 2008, 100, 156403. [Google Scholar] [CrossRef]
- Tian, Z.R.; Voigt, J.A.; Liu, J.; McKenzie, B.; McDermott, M.J.; Rodriguez, M.A.; Konishi, H.; Xu, H. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821–826. [Google Scholar] [CrossRef]
- Güell, F.; Martínez-Alanis, P.R. Tailoring the Green, Yellow and Red defect emission bands in ZnO nanowires via the growth parameters. J. Lumin. 2019, 210, 128–134. [Google Scholar] [CrossRef]
- Shi, S.; Wang, P.; Cui, J.; Sun, Z. Microstructure and Doping/Temperature-Dependent Photoluminescence of ZnO Nano-spears Array Prepared by Hydrothermal Method. Nanoscale Res. Lett. 2018, 13, 223. [Google Scholar] [CrossRef]
- Schlather, A.E.; Large, N.; Urban, A.; Nordlander, P.; Halas, N. Near-Field Mediated Plexcitonic Coupling and Giant Rabi Splitting in Individual Metallic Dimers. Nano Lett. 2013, 13, 3281–3286. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Dai, J.; Wu, F.; Wang, S.; Long, H.; Liang, R.; Xu, J.; Chen, C.; Tang, Z. Strain dependent anisotropy in photo-luminescence of heteroepitaxial nonpolar a-plane ZnO layers. Opt. Mater. Express 2017, 7, 3944–3951. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagida, T.; Fujimoto, Y.; Yamanoi, K.; Kano, M.; Wakamiya, A.; Kurosawa, S.; Sarukura, N. Optical and scintillation proper-ties of bulk ZnO crystal. Phys. Status Solidi C 2012, 9, 2284–2287. [Google Scholar] [CrossRef]
- Yang, Y.-D.; Tang, M.; Wang, F.-L.; Xiao, Z.-X.; Xiao, J.-L.; Huang, Y.-Z. Whispering-gallery mode hexagonal mi-cro-/nanocavity lasers. Photonics Res. 2019, 7, 594–607. [Google Scholar] [CrossRef]
- Yang, Y.-D.; Huang, Y.-Z. Symmetry analysis and numerical simulation of mode characteristics for equilateral-polygonal optical microresonators. Phys. Rev. A 2007, 76, 023822. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Xu, C.X.; Sun, X.W.; Zhang, X.H. Exciton-polariton microphotoluminescence and lasing from ZnO whispering-gallery mode microcavities. Appl. Phys. Lett. 2011, 98, 161110. [Google Scholar] [CrossRef]
Polarization Angle | Position (nm) | Intensity (a.u.) | FWHM |
---|---|---|---|
0° | 378.2 | 13,153.6 | 7.4 |
0° | 388.5 | 16,630.5 | 13.6 |
23° | 378.1 | 9803.1 | 7.2 |
23° | 388.4 | 13,977.2 | 13.8 |
45° | 377.8 | 6311.7 | 5.8 |
45° | 388.3 | 11,744.2 | 14.8 |
68° | 377.1 | 1857.2 | 5.6 |
68° | 388.2 | 8545.4 | 15.2 |
90° | 375.5 | 1740.4 | 5.2 |
90° | 388.1 | 7744.5 | 15.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wei, H.; Song, J.; Guo, Y.; Yuan, X. High-Order Resonant Peaks and Polarization Dependence of Microphotoluminescence in Whispering-Gallery Mode ZnO Microrod Cavity. Crystals 2021, 11, 824. https://doi.org/10.3390/cryst11070824
Guo J, Wei H, Song J, Guo Y, Yuan X. High-Order Resonant Peaks and Polarization Dependence of Microphotoluminescence in Whispering-Gallery Mode ZnO Microrod Cavity. Crystals. 2021; 11(7):824. https://doi.org/10.3390/cryst11070824
Chicago/Turabian StyleGuo, Jiatian, Huihui Wei, Jingyi Song, Yunhui Guo, and Xiaobo Yuan. 2021. "High-Order Resonant Peaks and Polarization Dependence of Microphotoluminescence in Whispering-Gallery Mode ZnO Microrod Cavity" Crystals 11, no. 7: 824. https://doi.org/10.3390/cryst11070824
APA StyleGuo, J., Wei, H., Song, J., Guo, Y., & Yuan, X. (2021). High-Order Resonant Peaks and Polarization Dependence of Microphotoluminescence in Whispering-Gallery Mode ZnO Microrod Cavity. Crystals, 11(7), 824. https://doi.org/10.3390/cryst11070824