On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum-Saunders Distribution Assuming Contaminated Information
Abstract
:1. Introduction
2. Reliability and Model Parameters Estimation
2.1. Computational Considerations for the Optimization Process
2.2. Maximum Likelihood Estimation
2.3. Least-Squares-Based Estimations
2.4. Percentile Estimation
2.5. Maximum Product of Spacing Estimation
2.6. Goodness-of-Fit Estimations
3. Numerical Applications
3.1. Simulated Data Analysis
- Generate a random sample from the standard uniform distribution (i.e., .)
- For , obtain the desired simulated random sample from the LBS distribution with model parameters and by using Equation (7), i.e.,
3.2. Real Data Analysis
- Obtain the estimates of the parameters and , denoted by and .
- Compute , such that is the observed ith sample order statistics, where . Here, is given by Equation (2).
- Calculate the value of KS statistic as follows:
- For each method, obtain the estimates of the model parameters and ; say, and .
- Use the estimates in the previous step and the algorithm in the preceding section to generate a random sample from the LBS distribution with shape parameter and scale parameter .
- Compute the KS statistics for each bootstrap sample as discussed before, i.e., repeat Steps 2 and 3, B times to obtain .
- Calculate the p-value as follows:
- When there is no data contamination, both MLEs and MPSEs performed well in terms of goodness-of-fit.
- In the case of upper data contamination, ADEs outperformed both MLEs and MPSEs which took second and third place, respectively.
- On the other hand, both MLEs and MPSEs maintained their performance followed by ADEs in the case of lower data contamination.
- In contrast, WLSEs have perform better than MPSEs and MLEs when two-tailed data contamination exists.
- Overall, MLEs and MPSEs provided the best results in terms of goodness-of-fit, and they both have endured data contamination unlike their counterparts. This is most likely due to the fact that the sample size is large (1000+ units). Furthermore, PCEs and MMEs did not perform well among compared to their counterparts in all considered settings.
- Finally, according to the reliability proportions estimated by MLEs and MPSEs, one can conclude that the sampled specimens of [30] were suitable for residential buildings.
4. Simulation Outcomes
- Model 1: A model with no contamination.
- Model 2: A model with 10% of severe upper contamination, i.e., the upper 10% of order statistics are multiplied by 5.
- Model 3: A model with 10% of severe lower contamination, i.e., the lower 10% of order statistics are multiplied by 1/5.
- Model 4: A model with 20% of severe two-tailed contamination, i.e., the upper 10% of order statistics are multiplied by 5, while the lower 10% of order statistics are multiplied by 1/5.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birnbaum, Z.; Saunders, S. A new family of life distributions. J. Appl. Probab. 1969, 6, 319–327. [Google Scholar] [CrossRef]
- Birnbaum, Z.W.; Saunders, S.C. Estimation for a Family of Life Distributions with Applications to Fatigue. J. Appl. Probab. 1969, 6, 328–347. [Google Scholar] [CrossRef]
- Langlands, A.O.; Pocock, S.J.; Kerr, G.R.; Gore, S.M. Long–term survival of patients with breast cancer: A study of the curability of the disease. BMJ 1979, 2, 1247–1251. [Google Scholar] [CrossRef] [Green Version]
- Desmond, A. Stochastic models of failure in random environments. Can. J. Stat. 1985, 13, 171–183. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Kundu, D. Birnbaum-Saunders distribution: A review of models, analysis, and applications. Appl. Stoch. Model. Bus. Ind. 2019, 35, 4–49. [Google Scholar] [CrossRef] [Green Version]
- Bourguignon, M.; Ho, L.L.; Fernandes, F.H. Control charts for monitoring the median parameter of Birnbaum-Saunders distribution. Qual. Reliab. Eng. Int. 2020, 36, 1333–1363. [Google Scholar] [CrossRef]
- Hassani, H.; Kalantari, M.; Entezarian, M.R. A new five-parameter Birnbaum–Saunders distribution for modeling bicoid gene expression data. Math. Biosci. 2020, 319, 108275. [Google Scholar] [CrossRef] [PubMed]
- Kannan, G.; Jeyadurga, P.; Balamurali, S. Economic design of repetitive group sampling plan based on truncated life test under Birnbaum–Saunders distribution. Commun. Stat. Simul. Comput. 2020, 1–17. [Google Scholar] [CrossRef]
- Diáz-Garciá, J.A.; Leiva-Sánchez, V. A new family of life distributions based on the elliptically contoured distributions. J. Stat. Plan. Inference 2005, 128, 445–457. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Leiva, V.; López, J. Acceptance Sampling Plans from Truncated Life Tests Based on the Generalized Birnbaum–Saunders Distribution. Commun. Stat. Simul. Comput. 2007, 36, 643–656. [Google Scholar] [CrossRef]
- Leiva, V.; Barros, M.; Paula, G.A.; Sanhueza, A. Generalized Birnbaum-Saunders distributions applied to air pollutant concentration. Environmetrics 2008, 19, 235–249. [Google Scholar] [CrossRef]
- Sanhueza, A.; Leiva, V.; Balakrishnan, N. The Generalized Birnbaum–Saunders Distribution and Its Theory, Methodology, and Application. Commun. Stat. Theory Methods 2008, 37, 645–670. [Google Scholar] [CrossRef]
- Zhu, X.; Balakrishnan, N. Birnbaum-Saunders distribution based on Laplace kernel and some properties and inferential issues. Stat. Probab. Lett. 2015, 101, 1–10. [Google Scholar] [CrossRef]
- Gupta, R.D.; Kundu, D. Generalized exponential distribution: Different method of estimations. J. Stat. Comput. Simul. 2001, 69, 315–337. [Google Scholar] [CrossRef]
- Alkasasbeh, M.R.; Raqab, M.Z. Estimation of the generalized logistic distribution parameters: Comparative study. Stat. Methodol. 2009, 6, 262–279. [Google Scholar] [CrossRef]
- Mazucheli, J.; Louzada, F.; Ghitany, M. Comparison of estimation methods for the parameters of the weighted Lindley distribution. Appl. Math. Comput. 2013, 220, 463–471. [Google Scholar] [CrossRef]
- do Espirito Santo, A.; Mazucheli, J. Comparison of estimation methods for the Marshall–Olkin extended Lindley distribution. J. Stat. Comput. Simul. 2014, 85, 3437–3450. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, N.; Alam, F.M.A. Maximum likelihood estimation of the parameters of Student’s t Birnbaum-Saunders distribution: A comparative study. Commun. Stat. Simul. Comput. 2019, 1–30. [Google Scholar] [CrossRef]
- Lawson, C.; Keats, J.; Montgomery, D. Comparison of robust and least-squares regression in computer-generated probability plots. IEEE Trans. Reliab. 1997, 46, 108–115. [Google Scholar] [CrossRef]
- Boudt, K.; Caliskan, D.; Croux, C. Robust explicit estimators of Weibull parameters. Metrika 2009, 73, 187–209. [Google Scholar] [CrossRef] [Green Version]
- Agostinelli, C.; Marazzi, A.; Yohai, V.J. Robust Estimators of the Generalized Log-Gamma Distribution. Technometrics 2014, 56, 92–101. [Google Scholar] [CrossRef]
- Wang, M.; Park, C.; Sun, X. Simple robust parameter estimation for the Birnbaum-Saunders distribution. J. Stat. Distrib. Appl. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Swain, J.J.; Venkatraman, S.; Wilson, J.R. Least-squares estimation of distribution functions in johnson’s translation system. J. Stat. Comput. Simul. 1988, 29, 271–297. [Google Scholar] [CrossRef]
- Kao, J.H.K. Computer Methods for Estimating Weibull Parameters in Reliability Studies. IRE Trans. Reliab. Qual. Control. 1958, PGRQC-13, 15–22. [Google Scholar] [CrossRef]
- Kao, J.H.K. A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes. Technometrics 1959, 1, 389–407. [Google Scholar] [CrossRef]
- Cheng, R.C.H.; Amin, N.A.K. Maximum Product-of-Spacings Estimation with Applications to the Lognormal Distribution; Technical Report 1; Department of Mathematics, University of Wales IST: Cardiff, UK, 1979. [Google Scholar]
- Cheng, R.C.H.; Amin, N.A.K. Estimating Parameters in Continuous Univariate Distributions with a Shifted Origin. J. R. Stat. Soc. Ser. B 1983, 45, 394–403. [Google Scholar] [CrossRef]
- Ranneby, B. The Maximum Spacing Method. An Estimation Method Related to the Maximum Likelihood Method. Scand. J. Stat. 1984, 11, 93–112. [Google Scholar]
- Yeh, I.C. Modeling of strength of high performance concrete using artificial neural networks. Cem. Concr. Res. 1998, 28, 1797–1808. [Google Scholar] [CrossRef]
- Murage, P.; Mungátu, J.; Odero, E. Optimal Threshold Determination for the Maximum Product of Spacing Methodology with Ties for Extreme Events. Open J. Model. Simul. 2019, 7, 149–168. [Google Scholar] [CrossRef] [Green Version]
- NRMCA. Concrete in Practice: What, Why and How? CIP 35—Testing Compressive Strength of Concrete; National Ready Mixed Concrete Association: Silver Spring, MD, USA, 2020. [Google Scholar]
0.5790902 | 2.3047977 | 0.8182292 | 3.8502755 | 6.3717917 |
0.1314455 | 1.0595503 | 4.1175531 | 1.1146064 | 0.9132579 |
7.8732325 | 0.9067038 | 1.5453950 | 1.1697677 | 0.2345327 |
No Data Contamination | Upper 20% Data Contamination | |||
---|---|---|---|---|
Method | ||||
MME | 0.882537 | 1.236373 | 1.471021 | 2.242812 |
MLE | 0.921295 | 1.114606 | 1.533757 | 1.169768 |
LSE | 1.148499 | 1.265467 | 1.306802 | 1.302364 |
WLSE | 1.156698 | 1.280952 | 1.566834 | 1.431192 |
PCE | 0.944854 | 1.522263 | 1.962323 | 2.392981 |
MPSE | 1.144715 | 1.109365 | 1.888477 | 1.348811 |
CVME | 0.999214 | 1.252308 | 1.047122 | 1.262961 |
ADE | 1.03128 | 1.270303 | 1.748756 | 1.553576 |
RADE | 1.064402 | 1.260156 | 2.120223 | 1.493293 |
No Data Contamination | |||||
Source | Min. | Max. | |||
0.954444 | 0.568825 | 0.448565 | 0.152986 | 0.043167 | |
MME | 0.977602 | 0.668269 | 0.555444 | 0.171589 | 0.044892 |
MLE | 0.969228 | 0.62178 | 0.5 | 0.158257 | 0.042022 |
LSE | 0.955583 | 0.642644 | 0.552352 | 0.224777 | 0.080792 |
WLSE | 0.955623 | 0.64561 | 0.556697 | 0.228682 | 0.083095 |
PCE | 0.981386 | 0.728172 | 0.640978 | 0.233718 | 0.071739 |
MPSE | 0.946619 | 0.598942 | 0.497945 | 0.197174 | 0.067713 |
CVME | 0.968506 | 0.656495 | 0.555049 | 0.197184 | 0.060605 |
ADE | 0.966481 | 0.657323 | 0.55958 | 0.206088 | 0.066026 |
RADE | 0.963067 | 0.6506 | 0.554487 | 0.210102 | 0.069557 |
Upper 10% Data Contamination | |||||
Source | Min. | Max. | |||
0.954444 | 0.568825 | 0.448565 | 0.152986 | 0.043167 | |
MME | 0.964443 | 0.745342 | 0.692176 | 0.402873 | 0.034084 |
MLE | 0.911042 | 0.590419 | 0.515503 | 0.259574 | 0.012739 |
LSE | 0.942659 | 0.636059 | 0.556207 | 0.253684 | 0.008556 |
WLSE | 0.926149 | 0.639353 | 0.573918 | 0.303064 | 0.019867 |
PCE | 0.935947 | 0.709472 | 0.664469 | 0.439685 | 0.071761 |
MPSE | 0.891835 | 0.606203 | 0.548099 | 0.319037 | 0.031561 |
CVME | 0.96475 | 0.65341 | 0.556279 | 0.207602 | 0.002869 |
ADE | 0.917316 | 0.644617 | 0.586833 | 0.335648 | 0.031491 |
RADE | 0.882689 | 0.61531 | 0.564643 | 0.352855 | 0.048659 |
Source | KS | p-Value | |||||
---|---|---|---|---|---|---|---|
MME | 0.409 | 30.679 | 0.139 | 0.517 | 0.884 | 0.600 | 0.063 |
MLE | 0.437 | 33.943 | 0.064 | 0.602 | 0.900 | 0.678 | 0.092 |
LSE | 0.468 | 33.788 | 0.072 | 0.527 | 0.888 | 0.666 | 0.102 |
WLSE | 0.394 | 33.261 | 0.074 | 0.588 | 0.912 | 0.677 | 0.072 |
PCE | 0.262 | 34.057 | 0.139 | 0.353 | 0.967 | 0.764 | 0.030 |
MPSE | 0.444 | 33.719 | 0.065 | 0.658 | 0.896 | 0.671 | 0.093 |
CVME | 0.467 | 33.789 | 0.072 | 0.508 | 0.888 | 0.666 | 0.101 |
ADE | 0.462 | 33.369 | 0.069 | 0.682 | 0.887 | 0.658 | 0.097 |
RADE | 0.390 | 34.211 | 0.075 | 0.517 | 0.920 | 0.701 | 0.077 |
Source | KS | p-Value | |||||
---|---|---|---|---|---|---|---|
MME | 0.855 | 48.919 | 0.287 | 0.490 | 0.873 | 0.654 | 0.116 |
MLE | 0.846 | 36.446 | 0.165 | 0.549 | 0.877 | 0.666 | 0.123 |
LSE | 0.541 | 34.110 | 0.194 | 0.478 | 0.877 | 0.659 | 0.114 |
WLSE | 0.548 | 34.091 | 0.193 | 0.490 | 0.877 | 0.654 | 0.111 |
PCE | 0.555 | 70.314 | 0.528 | 0.364 | 0.925 | 0.745 | 0.109 |
MPSE | 0.842 | 36.242 | 0.166 | 0.449 | 0.871 | 0.654 | 0.119 |
CVME | 0.540 | 34.110 | 0.194 | 0.497 | 0.878 | 0.659 | 0.114 |
ADE | 0.959 | 36.881 | 0.160 | 0.502 | 0.869 | 0.651 | 0.121 |
RADE | 1.246 | 35.897 | 0.180 | 0.476 | 0.868 | 0.650 | 0.120 |
Source | KS | p-Value | |||||
---|---|---|---|---|---|---|---|
MME | 0.932 | 17.976 | 0.383 | 0.516 | 0.783 | 0.466 | 0.084 |
MLE | 0.906 | 32.245 | 0.175 | 0.482 | 0.866 | 0.647 | 0.122 |
LSE | 0.450 | 33.947 | 0.198 | 0.461 | 0.888 | 0.666 | 0.102 |
WLSE | 0.366 | 33.806 | 0.199 | 0.487 | 0.915 | 0.682 | 0.071 |
PCE | 0.293 | 31.851 | 0.200 | 0.354 | 0.962 | 0.745 | 0.031 |
MPSE | 0.923 | 31.872 | 0.176 | 0.546 | 0.859 | 0.638 | 0.124 |
CVME | 0.450 | 33.948 | 0.198 | 0.481 | 0.888 | 0.666 | 0.102 |
ADE | 1.050 | 29.162 | 0.181 | 0.604 | 0.864 | 0.636 | 0.113 |
RADE | 0.379 | 34.413 | 0.199 | 0.491 | 0.920 | 0.702 | 0.076 |
Source | KS | p-Value | |||||
---|---|---|---|---|---|---|---|
MME | 1.375 | 28.531 | 0.199 | 0.503 | 0.790 | 0.542 | 0.127 |
MLE | 1.325 | 33.400 | 0.165 | 0.598 | 0.841 | 0.632 | 0.147 |
LSE | 0.549 | 34.119 | 0.195 | 0.461 | 0.876 | 0.658 | 0.115 |
WLSE | 1.024 | 33.683 | 0.156 | 0.525 | 0.873 | 0.651 | 0.114 |
PCE | 0.565 | 68.760 | 0.514 | 0.363 | 0.921 | 0.736 | 0.108 |
MPSE | 1.331 | 33.062 | 0.163 | 0.747 | 0.837 | 0.627 | 0.148 |
CVME | 0.547 | 34.119 | 0.195 | 0.477 | 0.876 | 0.658 | 0.115 |
ADE | 1.563 | 32.972 | 0.180 | 0.793 | 0.845 | 0.630 | 0.138 |
RADE | 1.436 | 33.489 | 0.175 | 0.609 | 0.867 | 0.649 | 0.120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, F.M.A.; Nassar, M. On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum-Saunders Distribution Assuming Contaminated Information. Crystals 2021, 11, 830. https://doi.org/10.3390/cryst11070830
Alam FMA, Nassar M. On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum-Saunders Distribution Assuming Contaminated Information. Crystals. 2021; 11(7):830. https://doi.org/10.3390/cryst11070830
Chicago/Turabian StyleAlam, Farouq Mohammad A., and Mazen Nassar. 2021. "On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum-Saunders Distribution Assuming Contaminated Information" Crystals 11, no. 7: 830. https://doi.org/10.3390/cryst11070830
APA StyleAlam, F. M. A., & Nassar, M. (2021). On Modeling Concrete Compressive Strength Data Using Laplace Birnbaum-Saunders Distribution Assuming Contaminated Information. Crystals, 11(7), 830. https://doi.org/10.3390/cryst11070830