Next Article in Journal
Petrographic-Mineralogical Characterization of Archaeological Materials from “Casa di Diana” Mithraeum Sited in the Open Museum of Ostia Antica
Next Article in Special Issue
Dihedral-Angle Dependence of Intermolecular Transfer Integrals in BEDT-BDT-Based Radical-Cation Salts with θ-Type Molecular Arrangements
Previous Article in Journal
Preparation of Aligned Steel-Fiber-Reinforced Concrete Using a Magnetic Field Created by the Assembly of Magnetic Pieces
Previous Article in Special Issue
Electric Double Layer Doping of Charge-Ordered Insulators α-(BEDT-TTF)2I3 and α-(BETS)2I3
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Modern History of Organic Conductors: An Overview

1
Graduate School of Science and Engineering, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
2
Research Unit for Development of Organic Superconductors, Ehime University, Matsuyama 790-8577, Japan
3
Geodynamics Research Center (GRC), Ehime University, Matsuyama 790-8577, Japan
Crystals 2021, 11(7), 838; https://doi.org/10.3390/cryst11070838
Submission received: 22 June 2021 / Revised: 7 July 2021 / Accepted: 8 July 2021 / Published: 20 July 2021
(This article belongs to the Special Issue Organic Conductors)

Abstract

:
This short review article provides the reader with a summary of the history of organic conductors. To retain a neutral and objective point of view regarding the history, background, novelty, and details of each research subject within this field, a thousand references have been cited with full titles and arranged in chronological order. Among the research conducted over ~70 years, topics from the last two decades are discussed in more detail than the rest. Unlike other papers in this issue, this review will help readers to understand the origin of each topic within the field of organic conductors and how they have evolved. Due to the advancements achieved over these 70 years, the field is nearing new horizons. As history is often a reflection of the future, this review is expected to show the future directions of this research field.

1. Introduction

At the beginning of this Special Issue of “Organic Conductors”, we will briefly review the history of the organic-conductor research field (~70 years), during which tens of thousands of related papers have been published for readers to better understand the background and significance of the work collected in this issue. Note that the selected topics and references in this review are not exhaustive and that our purpose does not lie in comprehensively discussing each topic. Instead, we will limit ourselves to an overview of the course of the history, namely, how the studies concerning a specific topic were conducted and how they have been advanced. Although there still remains a number of important contributions and topics that are referred to in this review, many original papers, reviews, and books are cited, including those of closely related fields. Unlike the conventional manner of citing scientific literature, the references in this review were collected in a broad context and are listed in chronological order, rather than classifying them into particular topics. This was carried out to provide objective descriptions of the evolution and background of the various research topics in this field and the contributions of individual groups. Despite numerous references being cited, the reader can easily find the desired reference owing to their titles being included and their listing in chronological order. It is also expected that such a manner of citation would provide a comprehensive (underlying) connection between different studies, papers, and topics, i.e., how they have evolved by interacting with each other and different research fields. The reader can delve into the continuous, worldwide endeavors toward advancing the field of organic-conductor research by reading through the titles of the cited references, consequently developing an understanding of the field. After a brief summary of the older history of this field, we will provide an overview of the more recent progress that has been made in this field and the new trends that have developed in the last two decades. There are a number of other comprehensive reviews and books on the earlier stages of this field [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].
Constructing semiconducting materials comprised of organic compounds was first attempted by Akamatu, Inokuchi, and Matsunaga in 1954 [22], which has been recognized as the emergence of a new research field, i.e., “organic (semi)conductors.” Although the first “organic conductor” was unstable in air and possessed an unknown structure, it impacted the scientific community so greatly that it was succeeded by a series of significant findings, including the first organic metallic conductor TTF-TCNQ (TTF = tetrathiafulvalene, TCNQ = tetracyanoquinodimethane) in 1973 [23,24,25,26,27,28,29], doped polyacetylene in 1977 [30] (awarded the Nobel Prize in Chemistry in 2000), superconducting TMTSF (TMTSF = tetramethyltetraselenafulvalene) in the 1980s [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66], and BEDT-TTF (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) salts throughout the 1980s and 1990s [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163]. This was followed by the advent of doped-fullerene (fulleride) superconductors in 1991, which demonstrated transition temperatures (TCs) of ~18–30 K [164,165,166,167,168,169,170,171,172,173,174,175,176,177].

1.1. Renaissance of Organic Superconductors

This historical overview should begin with a brief summary of the “organic superconductor age”, during which the field rapidly progressed and expanded. The period, which occurred from the 1980s to the 1990s, is characterized by the worldwide efforts to discover the first organic superconductor, as well as the discovery of organic superconductors that succeeded the first and exhibited higher TCs, which was due to the dimensions of their intermolecular interactions being enhanced (Figure 1) [178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255]. These intermolecular interactions, which are indispensable for electrical conduction, are based on the overlap integrals of adjacent molecular orbitals. These overlap integrals are expected to be enhanced by introducing highly polarizable atoms, such as chalcogen atoms, onto the periphery of π-conjugated molecules. Such a synthetic strategy also leads to the stabilization of radical ionic molecular species in the solid state of charge transfer (CT) complexes, and a great number of new π-conjugated molecules, including metal-complex derivatives, were synthesized in this period of the 1980s to the 1990s [178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298]. There were four major families of organic superconductors established in this period, except for the fulleride superconductors. In the order of their appearance, they are based on the TMTSF [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66], BEDT-TTF [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163], DMET (DMET = dimethyl(ethylenedithio)diselenadithiafulvalene) [179,180,181,182,183,184], and M(dmit)2 (M = Ni, Pd, Pt, etc; dmit = dimercaptoisotrithione or 1,3-dithiol-2-thione-4,5-dithiolate) [256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298] molecules. To emphasize their metallic and superconducting properties, organic conductors were often called “organic metals and superconductors” as well as “synthetic metals.” In addition to their metallic and superconducting properties, the enhancement in the dimensions of their intermolecular interactions completely changed the crystal and electronic structures of organic conductors; specifically, they wiped out the prevailed image that organic conductors possess one-dimensional (1D) columnar (stacking) structures comprising planar π-conjugated radical ionic molecular species. The diversity of molecular arrangements in BEDT-TTF salts, which usually take on two-dimensional (2D) arrangements of BEDT-TTF cation radical species, far exceeds that of the molecular arrangements in 1D-type salts, such as TTF and TMTSF salts. The crystal structure variety of a compound is illustrated by the Greek letters placed at the beginning of its chemical formula, such as α-BEDT-TTF2X (X = anions). The structural and electronic features of BEDT-TTF salts provided rich and unique findings for areas of chemistry and physics, which established the research field of organic conductors. However, during this period (~1980–2000), we also learned that similar molecules did not always produce CT salts with similar structural and physical properties. As metal d-orbitals can mix with ligand π-orbitals, species such as M(dmit)2 distinguish themselves with some of their chemical properties. First, they are easily oxidized to provide stable radical anions and sometimes neutral radical species. Second, they have much narrower band gaps (~1 eV) between their HOMOs and LUMOs (HOMO = the highest occupied molecular orbital, LUMO = the lowest unoccupied molecular orbital) than other components of molecular conductors. In other words, the physical properties of M(dmit)2 species may be governed by their LUMO and/or HOMO, depending on their oxidation state, crystal structure, and the existing thermodynamic conditions. Owing to these features, M(dmit)2 and related salts have led to many new and unique topics such as HOMO–LUMO inversion [273,274,284,285], single-component conductors, and Dirac electronic systems; the latter two are discussed below.

1.2. Beyond π-Systems: d-Electrons

1.2.1. The Rise of an Acceptor: DCNQI Salts

Toward the end of the “organic superconductor age”, the merging of two extreme types of unpaired electrons, i.e., localized and delocalized electronic systems, was observed. The molecular conductors developed thus far in history (up until ~1985) were dominated by electron-donating molecular systems (donor systems), which are predominantly represented by the cation radical salts of TTF derivatives. This is natural when considering the high polarizability and large van der Waals radii shared by chalcogen atoms, both of which being indispensable for the stability of the resultant radical species and the intermolecular interactions providing electrical conduction. Beginning with the first example of a purely organic metallic conductor, TTF-TCNQ [23,24,25,26,27,28,29], a strategy for developing more thermodynamically stable organic materials with enhanced conduction involved the prosperity of π-conjugated donor molecules possessing many chalcogen atoms at their peripheries. Meanwhile, electron-acceptor (acceptor) molecules, such as TCNQ, inherently contain highly electronegative (EN) atoms and electron-withdrawing functional groups. Such a molecular structure tends to attract and localize the mobile electrons on particular parts of the acceptor molecules, which appears to be disadvantageous for high conductivity. However, highly EN atoms and electron-withdrawing functional groups generally share another important chemical feature that is advantageous for intermolecular interactions, namely, strong coordination ability, which chalcogen atoms generally do not have.
In 1986, a series of highly conducting copper salts of organic acceptors attracted enormous attention because their electrical conduction was based on both the d-levels of the copper ions and the π-bands of the acceptors, i.e., π–d mixed-band conduction. The acceptors were quinone derivatives called DCNQIs (2,5-disubstituted N,N′-dicyanoquionediimines) (Figure 2) [299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366]. They are distinguishable from the existing components in organic conductors because they can transform into stable radical anions and form covalent bonds with appropriate transition-metal cations, such as copper ions, to give CT complexes; this results in π–d mixed bands. Extensive studies on DCNQI salts revealed a number of unprecedented phenomena in the organic conductors they were a part of, including three-dimensional (3D) Fermi surfaces [302,331,334,341,346], metallic conductors with magnetic ordering [307,326,332,340,350], pressure-induced metal instability and reentrant metal–insulator transitions [301,303,304,305,309,310,326,327,328,337,360], dense Kondo effects [310,321,325,326,334], and charge/spin fluctuations [324,344]. Regarding such hybrid band structures, DCNQI salts contain characteristics of 1D and higher-dimensional conductors, where they exhibit one or both types of characteristics depending on their chemical compositions and the implemented thermodynamic conditions. This puzzling feature of DCNQI salts provided researchers with a deeper understanding of organic conductors, but more uncertainty also emerged. The studies conducted on organic conductors thus far have provided some current, important notions in related research fields, such as charge separation. This term originally referred to the deviation in the electron density of the conduction pathways, from evenly distributed, i.e., delocalized, to periodically localized patterns of metal–insulator (M–I) transitions. The term “charge separation” is more frequently used in the field of semiconductor devices such as field-effect transistors and solar cells [367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428] than in the field of organic crystalline conductors. During ~1985–2000, ideal samples and elaborate techniques for studies on the complicated behavior of DCNQI salts were timely provided one after another; for example, studies regarding alloys [309,313,325,326,333,355,357] and selectively deuterated [328,329,330,331,332,333,340,343,345,354] DCNQI derivatives and fine-tuning of delicate pressures [303,304,305]. In addition to these researchers’ endeavors, other successful studies have provided advanced techniques for crystalline molecular conductors to exhibit novel and unique conducting properties; namely, they were soft and thus highly sensitive to perturbations, such as applied pressure or magnetic fields. These properties make these crystalline molecular conductors superior to conductors composed of harder materials, as the latter do not exhibit responses to such perturbations as clearly as the former do. The key to success was also based on a close and efficient collaboration between chemists and physicists, which has always been present at one time or another in this field. In this way, the “π–d interaction” became a popular research topic and a desirable research target in the field of organic conductors. This research trend was followed by π–d systems implemented in donor-based conductors [429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518], as shown in the next subsection.

1.2.2. Comeback of the Donor Dynasty: BETS Salts with Magnetic Anions

In parallel with the extensive examination of DCNQI salts, many researchers have attempted to synthesize a similar system based on donor molecules since ~1990. The prominent examples of unique conductors based on π–d interactions are a series of CT salts of a BEDT-TTF derivative called BETS (bis(ethylenedithio)-tetraselenafulvalene) [451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518]. Various derivatives of BEDT-TTF have been extensively explored from an early stage of the field [451,452,453,454,455,456,457,458,459,460,461,462]. BETS was first discovered in 1983 [454]; however, it was not until 1993 that BETS was suddenly paid significant attention when λ-(BETS)2GaCl4 was found to be a new superconductor with nearly the highest TC (~10 K) among those of the organic compounds known at the time [463]. Almost at the same time, λ-(BETS)2FeCl4 (Figure 3), an isostructural salt of λ-(BETS)2GaCl4, was reported [464] and garnered more attention than the preceding non-magnetic salt λ-(BETS)2GaCl4. This was because λ-(BETS)2FeCl4 and succeeding, related salts united the two main streams of organic superconductors and organic π–d systems. For example, some BETS salts, κ-BETS2FeX4 and λ-BETS2FeX4 (X = halogen atoms), have been able to achieve what DCNQI salts could not; examples include (high magnetic) field-induced superconductivity [465,481,482,483,485,486,489,490,494,497,500,501,504] and superconductors with magnetic ordering in their ground states [471,472,473,474,475,477,479,480,497,498,504]. The 2D conduction sheets in λ-BETS2FeX4 serve as ideal samples for studies on the Fulde–Ferrell–Larkin–Ovchinnikov (FLLO) state, a theoretically predicted superconducting state where the order parameter oscillates in real space [490,501,513,514,521,522,523,524]. The common key feature in these π–d systems is weak or moderate π–d interactions, without which the systems could not exhibit unusual behavior based on both localized (d-electrons as spins) and delocalized (π-electrons as carriers) electronic characteristics. However, these interactions are far more difficult to achieve than originally assumed. A great number of TTF-type donor salts with paramagnetic metal complex anions were synthesized and their electrical and magnetic properties were measured [429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518]. Similarly, a large number of TTF-type molecules and their cation radical salts bearing stable radical moieties, such as nitroxide derivatives, were synthesized and were examined. However, most of them turned out to be antiferromagnetic semiconductors or even diamagnetic insulators in the ground state, except for a limited number of successful examples [525,526,527,528]. It is substantially difficult to finely tune the interactions between localized and delocalized unpaired electrons for them to coexist. Since then, researchers have begun paying more attention to “crystal designing” than “molecular designing”, the former being a trend that also emerged in related research fields such as supramolecular chemistry [529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546] and those involving metal–organic frameworks (MOFs) [547,548].

1.2.3. The Return of 1D Systems: Axially Ligated Iron(III) Phthalocyanines

There is another unique π–d system, where both delocalized π-electrons and localized d-electrons are located on the same molecules, i.e., transition-metal phthalocyanines (MPcs). Owing to the superior stability and ready availability of MPc derivatives, there have been many pioneering works, including those in the 1980s that investigated (pseudo)halogen- or oxygen-ligated Pc polymers [549,550,551,552], single-component conductors [553], π–d interactions in Fe(III)Pc complexes [554], electrochemically synthesized (NiPc)2AsF6 complexes [555], and iodine-doped CuPc complexes [556] toward 1D molecular conductors. Then, in 1990, hybrid derivatives were discovered, i.e., electrochemically synthesized radical cation salts of axially ligated MPcs (M(Pc)X2; M = metal cation, Pc = phthalocyanines and their derivatives, X = (pseudo)halogen monoanions as axial ligands; Figure 4) [557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578]. The studies on M(Pc)X2 complexes also evaluated their crystal designs, as mentioned above, but most of them exhibited a similar columnar stacking structure with a 1D conduction band. The most intensively studied examples include TPP[M(Pc)(CN)2]2 (TPP = tetraphenyl phosphonium, M = Co(III), Fe(III)) complexes. Because of the steric hindrance of the axial ligands, the Pc ligands stack with each other via limited π–π overlap (~single benzene rings). This produced narrow bands and semiconducting behavior in a wide variety of the M(Pc)X2 salts, whether the metal centers were paramagnetic or not. Their slipped stacking pattern distinguishes M(Pc)X2 salts from other organic conductors composed of planar molecules, which results in a number of unique and puzzling electrical properties in the former. Despite limited π–π interactions existing exclusively along the 1D columns, these salts exhibit high conductivity and no obvious transitions at ~2–300 K, which apparently contradicts the idea of 1D-metal instability (Peierls instability) that was established in the early stages of this field [579]. The commonly observed semiconducting behaviors of M(Pc)X2 salts are not of a thermally activated type, and their reflectance spectra show a Drude-type dispersion [558,559]. This semiconducting behavior suggests the presence of small energy gaps originating from strong electron correlations and/or other reasons. The ground state of a Co(III)(Pc)X2 salt has been clarified as a charge-ordered (CO) state [568], which is the typical ground state of thermodynamically unstable 1D conductors. The CO state has been acknowledged since the early stages of this field and has been gaining increasing attention due to its connection with superconductivity [580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625]. The electrical behavior of complexes bearing paramagnetic metal ions, such as Fe(III), is more unusual than that of complexes bearing diamagnetic metals. Furthermore, π–d interactions manifest under giant negative magnetoresistance (GNMR), which is clearly observed generally at T ≤ 50 K and H ≥ 10 T and depend on the magnetic-field direction relative to the stacking axes [557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578]. Unlike BETS and DCNQI salts, M(Pc)X2 salts apparently belong to 1D systems, which are known to be inherently unfavorable for metallic conduction at low temperatures [579]. However, GNMR is generally observed at low temperatures; thus, metal-like high conduction is required at low temperatures. Therefore, the observation of GNMR in such a series of 1D systems is surprising. Accordingly, these π–d systems have demonstrated that organic conductors are a sufficient choice for studying solid-state physics on a much wider scale than was originally possible regarding cooperative phenomena.

1.3. To Be or Not to Be a Conductor—That Is the Problem: Fluctuation

Researchers that were active during the “organic superconductor age” had gradually realized that the enhancement of superconducting (SC) TCs could also provide an understanding of the insulating and/or magnetic phases of neighboring SC phases. In fact, it has often been pointed out by both theoretical and experimental studies that the fluctuation in charge and/or spin degrees of freedom could play an indispensable role in a potential, the universal mechanism behind SC transitions in organic and inorganic compounds [626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646]. As a result, the strategy for developing organic superconductors with higher TCs drastically changed from involving the stabilization of metallic states to employing the destabilization of metallic states [647,648,649,650,651,652,653,654,655]. In pursuing this strategy, synthetic efforts towards new conductors, even those where insulators had resulted instead, led to successive findings of unprecedented physical properties and various phase transitions [228,241]. All of these features originate from various types of degrees of freedom that are characteristic of molecular crystals, i.e., “molecular degrees of freedom.” The variety of these degrees of freedom is important, in addition to their comparable thermodynamic stabilities and their states being incompatible with each other. These properties have been observed in various forms, such as fluctuation [626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646], hidden states [42,647], and field-induced cascade transitions [40,492].
As studies on organic conductors have progressed, so have the experimental tools/techniques used to observe electronic behavior; namely, rapid progress has been made in both the variety and specification of these tools, which has provided us with high magnetic fields [656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682]; high time- [683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710] (Figure 5), space-, and/or energy-resolutions [365,711,712,713,714,715,716,717,718,719,720,721]; and high (hydrostatic or uniaxial) pressures [722,723,724,725,726,727,728,729,730,731]. As a result, the term “organic conductor” now includes a wide variety of compounds and components, such as organic polymers, inorganic ions, metal complexes, metal clusters, and organic molecules possessing electrical properties ranging from those of insulators to those of superconductors (depending on the circumstances). Thus, organic conductors are now better described as “molecular materials”, which can be defined as a unique group of compounds with well-defined chemical formulae and crystal structures that are used in studies on cooperative phenomena.
Besides the basic studies on crystalline organic conductors, organic CT salts, and related compounds, semiconducting thin films in field-effect transistors (FET), batteries, luminescence devices, and non-linear optics have also been extensively studied since the 1970s [367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428]. Studies on such “organic devices” have become well established in various research fields of both academia and industry. Since there are a great number of reviews and books detailing such studies [382,383,384,385,397,398,401,402,417,418,419,420,421,422,423,424,425,426,427,428], we will not go into detail here.
Overall, the history of “organic conductors” involved the discovery of new, surprising materials and investigations into their unique properties. Selected landmark studies from the last two decades will be described in the following sections.

2. Recent Progress and New Trends

The field of organic conductor research has made steady progress over the years, beginning with organic semiconductors based on aromatic hydrocarbons and evolving to include organic metals, organic superconductors, and organic magnetic (super)conductors. Alongside such progress, the field has also evolved to include a broader range of topics. Advancements in the field have been achieved by incorporating heteroatoms, mainly chalcogen atoms and metal ions, in the aromatic hydrocarbons responsible for electrical conduction. Consequently, the component molecules of conductors become so diverse that they should be referred to as molecular conductors/materials rather than organic conductors. At the same time, experimental and theoretical tools used to study these types of materials have also made remarkable progress in recent decades. These new materials and new methods have accelerated the advancement of one another, which led the field in new directions. For example, since approximately the “organic superconductor age”, particular types of organic insulators have been intensively studied for various reasons.

2.1. Mott Insulators: Mysterious Clues to Superconductors

Mott insulators [732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749], which are often closely related to high-TC superconductors of both organic (Figure 6) and inorganic nature, have been paid particular attention because they are considered key compounds for clarifying a possibly universal high-TC mechanism. Mott insulators are characterized by a paramagnetic half-filled band. Although such an electronic feature appears to be that of metals, the unpaired electrons cannot travel through these solids because of the strong electron correlation. As a result, they have energy gaps called Mott (Mott–Hubbard) gaps at the Fermi level, which makes them different from common insulators, i.e., band insulators. Band insulators are diamagnetic, so they do not have unpaired electrons. By applying the band theory, Mott and band insulators could correspond to high and low spin states of a given band structure and band filling, whose differences originate from the on-site Coulomb energy. However, Mott insulators are intrinsically beyond the band theory, as their electron correlation is due to many-body problems instead of Coulomb repulsion between a pair of electrons. Currently, many organic and inorganic compounds are known as Mott insulators. Owing to their unique insulating mechanisms and potential to serve as high-TC organic superconductors, many researchers have attempted to control the conducting properties of such compounds using chemical (“chemical pressure”) and/or physical (applied high pressure) methods [649,650,651,652,653,654,655,722,723,724,725,726,727,728,729,730,731]. This is generally referred to as bandwidth control. Band-filling control, which is typically performed by synthesizing mixed crystals (doping), is frequently attempted with inorganic compounds, while bandwidth control is rather typical of organic conductors owing to their soft structures. Meanwhile, except for limited kinds of salts [196,309,313,325,326,333,355,357], the doping of crystalline CT salts is rather difficult [750]; the mixing of isostructural compounds with different electron counts often resulted in unexpected, pure compounds with different crystal structures or, more frequently, failed to yield well-defined crystalline solids. To solve this problem, a new method using photochemical reactions has been established [21,519,520,751,752,753,754,755,756,757,758,759].
Similar to SC transitions, various kinds of M–I transitions have been extensively studied. Naturally occurring metals, i.e., the elemental metals, do not exhibit M–I transitions, except for tin. The insulating phases are generally induced by order–disorder transitions in a part of the crystal structures, charge and/or magnetic orderings, as well as changes in the temperature/pressure. Because there can be different (meta)stable states in organic conductors that exhibit nearly equal stabilities, and because they frequently have low-dimensional electronic structures, a fluctuation between different states [626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646] or even the disappearance of phase transitions [41,647,648] are often observed. Both are characteristic of organic conductors, in addition to the M–I transitions.

2.2. Between Electron and Lattice Systems: Proton Dynamics

As protons are most frequently included in organic compounds, they have been paid significant attention in attempts to control the electron dynamics and resultant physical properties of organic conductors [535,760,761,762,763,764,765,766,767,768,769,770,771,772]. A new series of dielectrics [773,774,775,776,777,778,779,780,781,782,783] and multiferroics [784] based on organic CT salts have been synthesized/discovered. Multiferroics are materials that combine multiple order parameters, such as ferroelectrics and ferromagnets, where the spontaneous ordering in the magnetic and dipole moments simultaneously occurs within the same temperature range. Generally, magnetic orderings are observed at low temperatures, while the orderings of electric dipoles are observed at high temperatures. Thus, their coexistence in a single organic or inorganic material at the same temperature seldom occurs. Although their performance and temperature ranges have yet to be improved for practical applications, they have been employed in representative and successful studies derived from organic conductors, where various phenomena often couple together. In relation to proton dynamics, organic proton conductors [782] and organic conductors bearing components that participate in hydrogen bonding have also been developed [770,771]. Regarding the latter, it is extremely difficult to make the conduction π-electrons and the protons of hydrogen bonds interact with each other, even if they are located on the same molecules. This is likely due to the differences in their energy scales. Such subtle material design requires the extremely fine-tuning of energy levels and crystal structures, similar to the π–d systems. In fact, an analysis of non-deuterated and deuterated samples revealed that deuteration qualitatively affects conduction behavior [771] (Figure 7), which was also observed for DCNQI salts. The mechanism of this is currently under study. Regarding dielectrics, an electronic mechanism is often noted for some molecular CT salts instead of proton/ion displacement [785,786,787,788,789,790,791,792,793,794,795]. The dielectrics with an electronic mechanism comprise the insulating, i.e., CO, phases of organic conductors. Such dielectrics are characteristic of organic conductors, exemplifying the rich variety of their electronic states.

2.3. Light Control: Unique Properties Otherwise Impossible

In addition, the extensive development and recent advancement of organic photoconductors and related materials are notable [796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826]. In contrast to the ground states of these materials, which most scientists in the field of the organic conductors have been interested in, their photoexcited states correspond to extremely high energy states that thermal excitation could not reach. Thus, photoirradiation may provide us with a new method for discovering new physical properties and structures. Therefore, instead of simply synthesizing photoconductors based on organic compounds, the development of these materials involved inducing novel physical properties and unique electronic phases by photoexcitation. This methodology was significant because many of these new properties had never been observed by simply controlling the temperature and/or pressure conditions. The development of these kinds of materials requires knowledge of organic conductors and the techniques used for their development, even though most of these materials are insulators/intrinsic semiconductors under dark conditions or without photoirradiation of appropriate wavelengths. Similar to photovoltaics and solar cells, the charge separation under photoirradiation and the lifetimes (relaxation times) of photocarriers produced thus far are crucial for ensuring the efficiency of photoconductors. Whether organic or inorganic, ordinary insulators typically exhibit an increase in conductivity of ≤20–30% at room temperature under ultraviolet-visible (UV-Vis) photoirradiation. Most of the increase in conductivity can be explained by heating effects involved with the irradiation, i.e., thermally activated carriers, and the net photoconductivity is generally ~2–3% of the original dark conductivity [21,520,759]. The relaxation of photoexcited carriers is generally quick, as long as the optical absorption occurs as resonance with UV-Vis (~1015 Hz), which is a typical energy range for HOMO–LUMO transitions in organic molecules used as conductors. Thus, a strategy for stabilizing photoexcited carriers is required, in addition to the design of conductors. In this sense, organic photoconductors can be regarded as an advanced design of organic conductors. Combining the typical component molecules of organic conductors, such as TTF derivatives, with well-known photosensitive molecules, such as bipyridyl derivatives, has resulted in various kinds of donor–acceptor type CT salts being reported for new organic photoconductors and related materials [796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826]. However, difficulties were encountered regarding the control of the donor–acceptor interactions toward producing a sufficient number of carriers, i.e., photoexcited electrons and holes, with sufficiently long relaxation times. Strong CT interactions lead to quick recombination between photoexcited electrons and holes, while weak CT interactions lead to an insufficient number of photoexcited electrons and holes. Additionally, if the photosensitive moieties are bulky, the formation of the conduction pathway is hindered. This is due to the close proximity of the π–π interactions between the main parts of the molecules that are responsible for conduction. Based on previous encounters with this kind of problem during the molecular and crystal design of π–d systems, several solutions have been proposed. One of the strategies involved insulating common organic CT salts with donor–acceptor mixed stacking structures, denoted as DnAm (n, m = 1, 2, 3, …) [520]. For example, if n = 1 and m = 2, the unit cell is rich in acceptor A and an infinite …A–A–A… network may form, based on both stacking and side-by-side overlaps serving as conduction pathways (Figure 8). This situation is more favorable if the molecular size of A is larger than that of D. The requirement for actual conduction is to produce carriers in the conduction pathways, which is often called “doping” and can be performed by the photoexcitation of the CT bands between acceptors and donors. If the excited states are stabilized by the CT interactions, similar to exciplexes [424,425,428,799,817], the relaxation times of the resultant carriers can be sufficiently long. Based on this idea, (para)magnetic photoconductors have been developed based on stable diamagnetic insulators, where strong interactions between photoexcited localized spins and photocarriers manifest in a Kondo effect (TK ~ 100–120 K) [21,520,759,808]. Using the unusual stability of the photoexcited states of some molecular CT salts, a novel type of material for photon energy storage is under investigation [823,825].

2.4. Single-Component Molecular Conductors: The Simplest and Most Difficult Molecular Conductors

Throughout the development of organic conductors, a molecular version of elemental metals, i.e., single-component molecular conductors (SCMC), has been a desirable target (Figure 9a) [729,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882]. Unlike CT salts, SCMCs should have simpler crystal structures because they consist of a single type of molecular species. However, it turned out to be extremely difficult to produce such materials. Since the late 1980s, pioneering work towards these materials has been carried out by some independent groups. They obtained diamagnetic single crystals of neutral species [827,828,829] or paramagnetic and highly conducting/metallic polycrystalline samples of neutral species with unknown structures [830]. In 2001, i.e., nearly half a century since the beginning of this research field, the first SCMC with a well-defined crystal structure was developed based on a Ni–dithiolene complex molecule, Ni(tmdt)2 (tmdt = trimethylenetetrathiafulvalenedithiolate) (Figure 9b) [831,832,838]. The SCMC exclusively contains neutral molecules of the same kind and produces carriers via the overlap between its HOMO and LUMO bands, similar to how semimetals produce carriers [837,873]. Because all the planar molecules are densely packed to ensure their equal contribution to conduction, the resultant conduction properties are 3D; however, there remains some anisotropy that is reflective of that of the component molecules. In principle, the crystal and electronic structures of SCMCs are uniform, and thus there should be usually no charge ordering or dimerization to make the material insulating. Consequently, most SCMCs are thermodynamically stable metals. However, SCMCs exhibiting an antiferromagnetic transition ([Au(tmdt)2]) [843] and a coupled electric and magnetic transition ([Cu(dmdt)2]) (dmdt = dimethyltetrathiafulvalenedithiolate) [857] are also known. Among the SCMCs, [Ni(hfdt)2] (hfdt = bis(trifluoromethyl)tetrathiafulvalenedithiolate) exhibits a superconducting transition (onset TC ≤ 5.5 K under 7.5–8.7 GPa) [729]. Recently, an increasing number of new SCMCs, most of which containing Au(III)–dithiolene complexes, have been reported [729,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882]. Furthermore, new SCMC materials have been recently found to possess unique electronic band structures called Dirac cones [869,870,871,872,875,876,878,880,881,882], which will be discussed in the next section.

2.5. Dirac Electrons: Beyond Fermions

Interestingly, different fields with no obvious correlation with organic conductors have been known to catalyze the research field of organic conductors, thus broadening the scope of the field. Examples include Dirac electron systems [869,870,871,872,875,876,878,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925] (Figure 10), which were originally a subject of particle physics but now are indicative of massless fermions in organic conductors. They occur when the materials contain a cone structure in the electronic bands, i.e., two cone-shaped bands touch at the apex of each cone, which are called Dirac points. When the Fermi levels are exactly located at the Dirac points, the materials are called zero-gap semiconductors. Because the physical properties are governed by the electrons/holes at the Fermi levels, unique behavior originating from the Dirac electrons is expected to be discovered in the zero-gap semiconductors. In fact, they were revealed in one of the oldest organic conductors, α-BEDT-TTF2I3, almost simultaneously by experimental and theoretical studies [883,884,886,887,888,889,891,892,895,896,897,898,899,900,902,903,904,905,906,907,908,909,910,916,917,918]. The Dirac electrons are characterized by their negligibly small masses with Fermi velocities comparable to that of light. Coupled with the research interest in topological materials [885,890,893,894,901,911,912,913,914,915,919], organic Dirac electron systems have become an emergent topic not only in the field of organic conductors but also in the broad field of solid-state physics. Although Dirac electron systems have also been observed in inorganic compounds, such as the famous example of graphene (awarded the Nobel Prize in Physics in 2010) [885], the advantage of crystalline organic CT salts over other kinds of materials lies in their well-defined Fermi levels based on the well-defined crystal structures, chemical compositions (stoichiometries), and the electron count of their components. Accordingly, organic Dirac systems provide a platform for intriguing particles to be produced using small glassware instead of huge accelerators. Both organic and inorganic Dirac electron systems exhibit almost temperature-independent electrical resistivity, which has been extensively studied. The reflectance spectra of such systems have also been relatively well studied [893,894,901,911,921]. In the meantime, other physical properties common to Dirac electrons, such as magnetic behavior, appear to be controversial and require further study [872,878,888,900,921]. One of the difficulties in studying organic Dirac electron systems originates from the fact that the occurrence of Dirac cones (zero-gap semiconductors) requires high pressures in most of the organic compounds, which restricts the available experiments. In this sense, recent findings regarding organic Dirac electron systems existing at ambient pressure are important [878,920,921,922,923,924,925]. Additionally, the extremely small energy scales of organic and inorganic Dirac electron systems cause further difficulty in their study, as this makes the characteristic electronic states of zero-gap semiconductors qualitatively unclear. An understanding of the ground states of zero-gap semiconductors requires precise calculations that consider every possible interaction within the solid states as well as physical property data at the lowest temperature possible, both of which are currently being explored.

2.6. Chiral Conductors: Electrons in an Asymmetric Wonderland

Chirality is one of the most widely known structural features in chemistry and physics [926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958]. The control of the chirality of molecular structures and the resultant effects on their physical properties have been extensively studied for a long time. However, it has been difficult to reveal some unique conducting properties directly associated with chirality, even for single crystals belonging to non-centrosymmetric space groups [951]. Recently, an increasing number of papers on such attempts can be found [926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,949,950,953,954,955,956,957,958,959]. Chirality control is an advanced stage of “crystal designing/engineering.” During the initial stages of “crystal designing” (investigated since ~1990), researchers considered and controlled the arrangement of neighboring molecules based on interatomic interactions, such as hydrogen bonding, and coordination/supramolecular chemistry [952]. Such crystal designing is based largely on molecular designing. Upon investigating the chirality control of crystal structures (investigated since ~2000), one should consider the orientation and arrangement of all the molecules in the crystals, even though there is no direct interaction between distant molecules. Thus, the synthesis of single crystals with non-centrosymmetric space groups is difficult (Figure 11), making the discovery of their unique conducting properties associated with the chirality even more so. Still, in the last two decades, there have been frequent reports on various new chiral donor molecules and their CT salts that exhibit interesting resistivity behavior with chiral crystal structures [953,954,955,956,957,958,959]. This demonstrates that chiral molecular (super)conductors are ever-advancing toward a new direction of organic-conductors development.

3. Concluding Remarks: Towards the New Age

In this review, we could refer to only a limited portion of the field of organic conductors. There are still a number of important topics that were not discussed herein. However, even from this brief review of the history of organic conductors, we can see that the field covers a wide spectrum of topics and possesses an ever-increasing potential to develop into a new field. The focus of such a field is unknown, but by maintaining close interactions with other research fields, the field of organic conductors will continue to grow and evolve, very likely until we can no longer define what “research on organic conductors” entails. Pursuing (super)conducting and magnetic properties similar to those in inorganic compounds, the early stage of organic conductors research can be characterized by the pursuit of what organic compounds can also do. In the meantime, the last two decades of the field are characterized by a new trend, i.e., the pursuit of what only organic compounds can do. Similar to some patterns of chirality, there are phenomena unique to molecules, which might produce unknown effects on conducting properties exclusively possible in molecular crystals. The new age should be a stage where the unique significance of molecular conductors is demonstrated. Without a doubt, all of the authors in this Special Issue will overjoy if this issue can help the understanding of the interesting and profound world of organic conductors, which is always ready to welcome new young generation to join us and add their new idea from different points of view.

Funding

A part of the work in this review was funded by Grant-in-Aid for Challenging Exploratory Research (18K19061) of JSPS, the Tokyo Chemical Industry Foundation, the Tokyo Ohka Foundation for the Promotion of Science and Technology, the Kato Foundation for Promotion of Science (KJ-2627), Iketani Science and Technology Foundation (ISTF; 0331005-A), and an Ehime University Grant for Project for the Promotion of Industry/University Cooperation, and the APC was funded by ISTF.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Pouget, J.-P.; Moret, R.; Comes, R.; Bechgaard, K.; Fabre, J.M.; Giral, L. X-ray diffuse scattering study of some (TMTSF)2X and (TMTTF)2X salts. Mol. Cryst. Liq. Cryst. 1981, 79, 129–143. [Google Scholar] [CrossRef]
  2. Bryce, M.R.; Murphy, L.C. Organic Metals. Nature 1984, 309, 119–126. [Google Scholar] [CrossRef]
  3. Williams, J.M.; Beno, M.A.; Wang, H.H.; Leung, P.C.W.; Emge, T.J.; Geiser, U.; Carlson, K.D. Organic superconductors: Structural aspects and design of new material. Acc. Chem. Res. 1985, 18, 261–267. [Google Scholar] [CrossRef]
  4. Saito, G. Tetrachalcogenafulvalenes with outer chalcogeno substituents. Precursors of organic metals, superconductors, LB fims, etc. Pure Appl. Chem. 1987, 59, 999–1004. [Google Scholar] [CrossRef]
  5. Schweitzer, D.; Gogu, E.; Henning, I.; Klutz, T.; Keller, H.J. Electrochemically prepared radical salts of BEDT-TTF: Molecular metals and superconductors. Ber. Bunsenges. Phys. Chem. 1987, 91, 890–896. [Google Scholar] [CrossRef] [Green Version]
  6. Williams, J.M.; Wang, H.H.; Emje, T.J.; Geiser, U.; Beno, M.A.; Leung, P.C.W.; Carlson, K.D.; Thorn, R.J.; Schultz, A.J. Rational design of synthetic metal superconductors. Prog. Inorg. Chem. 1987, 35, 51–218. [Google Scholar] [CrossRef]
  7. Inokuchi, H. New organic supercondcutors. Angew. Chem. Int. Ed. Engl. 1988, 27, 1747–1751. [Google Scholar] [CrossRef]
  8. Yoshida, Z.-I.; Sugimoto, T. New donors for molecular organic (super)conductors and ferromagnets. Angew. Chem. Int. Ed. Engl. 1988, 27, 1573–1577. [Google Scholar] [CrossRef]
  9. Ishiguro, T.; Yamaji, K. Organic Superconductors; Springer: New York, NY, USA, 1990. [Google Scholar]
  10. Williams, J.M.; Schultz, A.J.; Geiser, U.; Carlson, K.D.; Kini, A.M.; Wang, H.H.; Kwok, W.-K.; Whangbo, M.-H.; Schirber, J.E. Organic superconductors-new benchmarks. Science 1991, 252, 1501–1508. [Google Scholar] [CrossRef]
  11. Jérôme, D. The physics of organic superconductors. Science 1991, 252, 1509–1514. [Google Scholar] [CrossRef]
  12. Bryce, M.R. Recent progress on conducting organic charge-transfer salts. Chem. Soc. Rev. 1991, 20, 355–390. [Google Scholar] [CrossRef]
  13. Williams, J.M.; Ferraro, J.R.; Thorn, R.J.; Carlson, K.D.; Geiser, U.; Wang, H.H.; Kini, A.M.; Whangbo, M.-H. Organic Superconductors (Including Fullerenes); Prentice Hall: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
  14. Adam, M.; Müllen, K. Oligomeric Tetrathiafulvalenes: Extended donors for increasing the dimensionality of electrical conduction. Adv. Mater. 1994, 6, 439–459. [Google Scholar] [CrossRef]
  15. Bryce, M.R. Current trends in tetrathiafulvalene chemistry: Towards increased dimensionality. J. Mater. Chem. 1995, 5, 1481–1496. [Google Scholar] [CrossRef]
  16. Wzietek, P.; Mayaffre, H.; Jérôme, D.; Brazovskii, S. NMR in the 2D organic superconductors. J. Phys. I France 1996, 6, 2011–2041. [Google Scholar] [CrossRef]
  17. Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors, 2nd ed.; Springer: Berlin, Germany, 1998. [Google Scholar]
  18. Batail, P.; Boubekeur, K.; Fourmigué, M.; Gabriel, J.-C.P. Electrocrystallization, an Invaluable tool for the construction of ordered, electroactive molecular solids. Chem. Mater. 1998, 10, 3005–3015. [Google Scholar] [CrossRef]
  19. Bryce, M.R. Tetrathiafulvalenes as π-electron donors for intramolecular charge-transfer materials. Adv. Mater. 1999, 11, 11–23. [Google Scholar] [CrossRef]
  20. Molecular Conductors. Chem. Rev. 2004, 104, 4887–5782. [CrossRef] [Green Version]
  21. Naito, T. Control of magnetism and conduction in organic materials by light. In Functional Materials: Advances and Applications in Energy Storage and Conversion; Naito, T., Ed.; Pan Stanford Publishing: Singapore, 2019; Chapter 1; pp. 1–82. [Google Scholar]
  22. Akamatu, H.; Inokuchi, H.; Matsunaga, Y. Electrical conductivity of the perylene-bromine complex. Nature 1954, 173, 168–169. [Google Scholar] [CrossRef]
  23. Cohen, M.J.; Coleman, L.B.; Garito, A.F.; Heeger, A.J. Electronic properties of tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Phys. Rev. B 1976, 13, 5111–5116. [Google Scholar] [CrossRef]
  24. Thomas, G.A.; Schafer, D.E.; Wudl, F.; Horn, P.M.; Rimai, D.; Cook, J.W.; Glocker, D.A.; Skove, M.J.; Chu, C.W.; Groff, R.P.; et al. Electrical conductivity of terathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Phys. Rev. B 1976, 13, 5105–5110. [Google Scholar] [CrossRef]
  25. Pouget, J.-P.; Khanna, S.K.; Denoyer, F.; Comès, R.; Garito, A.F.; Heeger, A.J. X ray observation of 2kF and 4kF scatterings in tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 1976, 37, 437–440. [Google Scholar] [CrossRef]
  26. Gutfreund, H.; Weger, M. Temperature dependence of the metallic conductivity of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 1977, 16, 1753–1755. [Google Scholar] [CrossRef]
  27. Khanna, S.K.; Pouget, J.-P.; Comes, R.; Garito, A.F.; Heeger, A.J. X-ray studies of 2kF and 4kF anomalies in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 1977, 16, 1468–1479. [Google Scholar] [CrossRef]
  28. Claessen, R.; Sing, M.; Schwingenschlögl, U.; Blaha, P.; Dressel, M.; Jacobsen, C.S. Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. Lett. 2002, 88, 096402. [Google Scholar] [CrossRef] [Green Version]
  29. Sing, M.; Schwingenschlögl, U.; Claessen, R.; Blaha, P.; Carmelo, P.; Martelo, M.; Sacramento, D.; Dressel, M.; Jacobsen, S. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. B 2003, 68, 125111. [Google Scholar] [CrossRef] [Green Version]
  30. Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580. [Google Scholar] [CrossRef]
  31. Jérome, D.; Mazaud, A.; Ribault, M.; Bechggard, K. Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J. Phys. Lett. 1980, 41, 95–98. [Google Scholar] [CrossRef] [Green Version]
  32. Ribault, M.; Pouget, J.-P.; Jérome, D.; Bechggard, K. Superconductivity and absence of a Kohn anomaly in the quasi-one-dimensional organic conductor: (TMTSF)2AsF6. J. Phys. Lett. 1980, 41, 607–610. [Google Scholar] [CrossRef]
  33. Parkin, S.S.P.; Ribault, M.; Jerome, D.; Bechgaard, K. Three new superconducting members of the family of tetramethyltetraselenafulvalene (TMTSF) salts: TMTSF2CIO4, TMTSF2SbF6, TMTSF2TaF6. J. Phys. C 1981, 14, L445–L450. [Google Scholar] [CrossRef]
  34. Parkin, S.S.P.; Ribault, M.; Jérome, D.; Bechggard, K. Superconductivity in a family of organic salts based on the teramethyltetraselenafulvalene (TMTSF) molecule: (TMTSF)2X (X = ClO4, PF6, AsF6, SbF6, TaF6). J. Phys. C 1981, 14, 5305–5326. [Google Scholar] [CrossRef]
  35. Bechgaard, K.; Carneiro, K.; Olsen, M.; Rasmussen, F.B.; Jacobsen, C.S. Zero-pressure organic superconductor: Di-(Tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2ClO4]. Phys. Rev. Lett. 1981, 46, 852–855. [Google Scholar] [CrossRef] [Green Version]
  36. Parkin, S.S.P.; Jérome, D.; Bechgaard, K. Pressure dependence of the metal-insulator and superconducting phase transitions in (TMTSF)2ReO4. Mol. Cryst. Liq. Cryst. 1981, 79, 213–224. [Google Scholar]
  37. Pouget, J.-P.; Shirane, G.; Bechgaard, K.; Fabre, J.M. X-ray evidence of a structural phase transition in di-tetramethyltetraselenafulvalenium perchlorate [(TMTSF)2ClO4], pristine and slightly doped. Phys. Rev. B 1983, 27, 5203–5206. [Google Scholar] [CrossRef]
  38. Schulz, H.J.; Bourbonnais, C. Quantum fluctuations in quasi-one-dimensional superconductors. Phys. Rev. B 1983, 27, 5856–5859. [Google Scholar] [CrossRef]
  39. Lacoe, R.C.; Wolf, S.A.; Chaikin, P.M.; Wudl, F.; Aharon-Shalom, E. Metal-insulator transitions and superconductivity in ditetramethyltetraselenafulvalenium fluorosulfonate [(TMTSF)2FSO3]. Phys. Rev. B 1983, 27, 1947–1950. [Google Scholar] [CrossRef]
  40. Pesty, F.; Garoche, P.; Bechgaard, K. Cascade of field-induced phase transitions in the organic metal tetramethyltetraselenafulvalenium perchlorate [(TMTSF)2ClO4]. Phys. Rev. Lett. 1985, 55, 2495–2498. [Google Scholar] [CrossRef]
  41. Bourbonnais, C.; Caron, L.G. New mechanisms for phase transitions in quasi-one-dimensional conductors. Europhys. Lett. 1988, 5, 209–215. [Google Scholar] [CrossRef]
  42. Whangbo, M.-H.; Canadell, E.; Foury, P.; Pouget, J.-P. Hidden Fermi surface nesting and charge density wave instability in low-dimensional metals. Science 1991, 252, 96–98. [Google Scholar] [CrossRef]
  43. Kang, W.; Hannahs, S.T.; Chaikin, P.M. Toward a unified phase diagram in (TMTSF)2X. Phys. Rev. Lett. 1993, 70, 3091–3094. [Google Scholar] [CrossRef] [PubMed]
  44. Klemme, B.J.; Brown, S.E.; Wzietek, P.; Kriza, G.; Batail, P.; Jérome, D.; Fabre, J.M. Commensurate and incommensurate spin-density waves and a modified phase diagram of the bechgaard salts. Phys. Rev. Lett. 1995, 75, 2408–2411. [Google Scholar] [CrossRef] [PubMed]
  45. Behnia, K.; Balicas, L.; Kang, W.; Jérome, D.; Carretta, P.; Fagot-Revurat, Y.; Berthier, C.; Horvatić, M.; Ségransan, P.; Hubert, L.; et al. Confinement in Bechgaard salts: Anomalous magnetoresistance and nuclear relaxation. Phys. Rev. Lett. 1995, 74, 5272–5275. [Google Scholar] [CrossRef] [PubMed]
  46. Pouget, J.P.; Ravy, S. Structural aspects of the Bechgaard salts and related compounds. J. Phys. I 1996, 6, 1501–1525. [Google Scholar] [CrossRef]
  47. Degiorgi, L.; Dressel, M.; Schwartz, A.; Alavi, B.; Grüner, G. Direct observation of the spin-density-wave gap in (TMTSF)2PF6. Phys. Rev. Lett. 1996, 76, 3838–3841. [Google Scholar] [CrossRef]
  48. Dressel, M.; Schwartz, A.; Grüner, G. Deviations from drude response in low-dimensional metals: Electrodynamics of the metallic state of (TMTSF)2PF6. Phys. Rev. Lett. 1996, 77, 398–401. [Google Scholar] [CrossRef]
  49. Pouget, J.P.; Ravy, S. X-Ray evidence of charge density wave modulations in the magnetic phases of (TMTSF)2PF6 and (TMTTF)2Br. Synth. Met. 1997, 85, 1523–1528. [Google Scholar] [CrossRef]
  50. Zwick, F.; Brown, S.; Margaritondo, G.; Merlic, C.; Onellion, M.; Voit, J.; Grioni, M. Absence of quasiparticles in the photoemission spectra of quasi-one-dimensional bechgaard salts. Phys. Rev. Lett. 1997, 79, 3982–3985. [Google Scholar] [CrossRef]
  51. Moser, J.; Gabay, M.; Auban-Senzier, P.; Jérome, D.; Bechgaard, K.; Fabre, J.M. Transverse transport in (TM)2X organic conductors: Possible evidence for a Luttinger liquid. Eur. Phys. J. B 1998, 1, 39–46. [Google Scholar] [CrossRef]
  52. Schwartz, A.; Dressel, M.; Grüner, G.; Vescoli, V.; Degiorgi, L. On-chain electrodynamics of metallic (TMTSF)2X salts: Observation of Tomonaga-Luttinger liquid response. Phys. Rev. B 1998, 58, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
  53. Bourbonnais, C.; Jérome, D. Electronic confinement in organic metals. Science 1998, 281, 1155–1156. [Google Scholar] [CrossRef]
  54. Dumm, M.; Loidl, A.; Fravel, B.; Starkey, K.; Montgomery, L.; Dressel, M. Electron spin resonance studies on the organic linear-chain compounds (TMTCF)2X (C = S, Se; X = PF6, AsF6, ClO4, Br). Phys. Rev. B 2000, 61, 511–521. [Google Scholar] [CrossRef]
  55. Wilhelm, H.; Jaccard, D.; Duprat, R.; Bourbonnais, C.; Jérome, D.; Moser, J.; Carcel, C.; Fabre, J.M. The case for universality of the phase diagram of the Fabre and Bechgaard salts. Eur. Phys. J. B 2001, 21, 175–183. [Google Scholar] [CrossRef]
  56. Lorenz, T.; Hofmann, M.; Grüninger, M.; Freimuth, A.; Uhrig, G.S.; Dumm, M.; Dressel, M. Evidence for spin-charge separation in quasi-one-dimensional organic conductors. Nature 2002, 418, 614–617. [Google Scholar] [CrossRef]
  57. Jérome, D.; Schulz, H.J. Organic conductors and superconductors. Adv. Phys. 2002, 51, 293–479. [Google Scholar] [CrossRef]
  58. Vuletić, T.; Auban-Senzier, P.; Pasquier, C.; Tomić, S.; Jérome, D.; Héritier, M.; Bechgaard, K. Coexistence of superconductivity and spin density wave orderings in the organic superconductor (TMTSF)2PF6. Eur. Phys. J. B 2002, 25, 319–331. [Google Scholar] [CrossRef] [Green Version]
  59. Jérome, D. Organic conductors: From charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5591. [Google Scholar] [CrossRef] [PubMed]
  60. Joo, N.; Auban-Senzier, P.; Pasquier, C.R.; Jérome, D.; Bechgaard, K. Impurity-controlled superconductivity/spin density wave interplay in the organic superconductor: (TMTSF)2ClO4. Europhys. Lett. 2005, 72, 645–651. [Google Scholar] [CrossRef]
  61. Sakata, M.; Yoshida, Y.; Maesato, M.; Saito, G.; Matsumoto, K.; Hagiwara, R. Preparation of superconducting (TMTSF)2NbF6 by electrooxidation of TMTSF using ionic liquid as electrolyte. Mol. Cryst. Liq. Cryst. 2006, 452, 103–112. [Google Scholar] [CrossRef]
  62. Shinagawa, J.; Kurosaki, Y.; Zhang, F.; Parker, C.; Brown, S.E.; Jérome, D.; Christensen, J.B.; Bechgaard, K. Superconducting state of the organic conductor (TMTSF)2ClO4. Phys. Rev. Lett. 2007, 98, 147002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  63. Yonezawa, S.; Kusaba, S.; Maeno, Y.; Auban-Senzier, P.; Pasquier, C.; Bechgaard, K.; Jérome, D. Anomalous in-plane anisotropy of the onset of superconductivity in (TMTSF)2ClO4. Phys. Rev. Lett. 2008, 100, 117002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  64. Powell, B.J. A phenomenological model of the superconducting state of the Bechgaard salts. J. Phys. Cond. Mat. 2008, 20, 345234. [Google Scholar] [CrossRef]
  65. Doiron-Leyraud, N.; Auban-Senzier, P.; de Cotret, R.S.; Bourbonnais, C.; Jérome, D.; Bechgaard, K.; Taillefer, L. Correlation between linear resistivity and Tc in the Bechgaard salts and the pnictide superconductor Ba (Fe1−x Cox)2As2. Phys. Rev. B 2009, 80, 214531. [Google Scholar] [CrossRef] [Green Version]
  66. Pouget, J.-P. The Peierls instability and charge density wave in one-dimensional electronic conductors. Comp. Rend. Phys. 2016, 17, 332–356. [Google Scholar] [CrossRef] [Green Version]
  67. Mizuno, M.; Garito, A.F.; Cava, M.P. ‘Organic metals’: Alkylthio substitution effects in tetrathiafulvalene- tetracyanoquinodimethane charge-transfer complexes. J. Chem. Soc. Chem. Commun. 1978, 18–19. [Google Scholar] [CrossRef]
  68. Parkin, S.S.P.; Engler, E.M.; Schumaker, R.R.; Lagier, R.; Lee, V.Y.; Scott, J.C.; Greene, R.L. Superconductivity in a new family of organic conductors. Phys. Rev. Lett. 1983, 50, 270–273. [Google Scholar] [CrossRef]
  69. Engler, E.M.; Lee, Y.V.; Schumaker, R.R.; Parkin, S.S.P.; Greene, R.L.; Scott, J.C. Synthesis of biethylenedithiolylene-tetrathiafulvalene donors (BEDT-TTF) and electrochemical preparation of their charge transfer complexes. Mol. Cryst. Liq. Cryst. 1984, 107, 19–31. [Google Scholar] [CrossRef]
  70. Yagubskii, É.B.; Shchegolev, I.F.; Laukhin, V.N.; Kononovich, P.A.; Karatsovnik, M.V.; Zvarykina, A.V.; Buravov, L.I. Normal-pressure superconductivity in an organic metal (BEDT-TTF)2I3 [bis (ethylene dithio) tetrathiofulvalene triiodide. JETP Lett. 1984, 39, 12–16. [Google Scholar]
  71. Yagubskii, É.B.; Shchegolev, I.F.; Laukhin, V.N.; Shibaeva, R.P.; Kostyuchenko, E.É.; Khomenko, A.G.; Sushko, Y.V.; Zvarykina, A.V. Superconducting transition in the dielectric α phase of iodine-doped (BEDT-TTF)2I3 compound. JETP Lett. 1984, 40, 1201–1204. [Google Scholar]
  72. Williams, J.M.; Wang, H.H.; Beno, M.A.; Emge, T.J.; Sowa, L.M.; Copps, P.T.; Behroozi, F.; Hall, L.N.; Douglas Carlson, K.; Crabtree, G.W. Ambient-pressure superconductivity at 2.7 K and higher temperatures in derivatives of (BEDT-TTF)2IBr2: Synthesis, structure, and detection of superconductivity. Inorg. Chem. 1984, 23, 3839–3841. [Google Scholar] [CrossRef]
  73. Laukhin, V.N.; Kostyuchenko, E.É.; Sushko, Y.V.; Shchegolev, I.F.; Yagubskii, É.B. Effect of pressure on the superconductivity of β-(BEDT-TTF)2I3 compound. JETP Lett. 1985, 41, 81–84. [Google Scholar]
  74. Murata, K.; Tokumoto, M.; Anzai, H.; Bando, H.; Saito, G.; Kajimura, K.; Ishiguro, T. Superconductivity with the onset at 8 K in the organic conductor β-(BEDT-TTF)2I3 under pressure. J. Phys. Soc. Jpn. 1985, 54, 1236–1239. [Google Scholar] [CrossRef]
  75. Murata, K.; Tokumoto, M.; Anzai, H.; Bando, H.; Kajimxjra, K.; Ishiguro, T. Pressure phase diagram of the organic superconductor β-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 1985, 54, 2084–2087. [Google Scholar] [CrossRef]
  76. Wang, H.H.; Beno, M.A.; Geiser, U.; Firestone, M.A.; Webb, K.S.; Nuiiez, L.; Crabtree, G.W.; Carlson, K.D.; Williams, J.M.; Azevedo, L.J.; et al. Ambient-pressure superconductivity at the highest temperature (5 K) observed in an organic system: β-(BEDT-TTF)2AuI2. Inorg. Chem. 1985, 24, 2465–2466. [Google Scholar] [CrossRef]
  77. Lyubovskaya, R.N.; Lyubovskii, R.B.; Shibaeva, R.P.; Aldoshina, M.Z.; Gol’denberg, L.M.; Rozenberg, L.P.; Khidekel, M.L.; Shul’pyakov, Y.F. Superconduictivity in a BEDT-TTF organic conductor with a chloromercurate anion. JETP Lett. 1985, 42, 468–472. [Google Scholar]
  78. Shibaeva, R.P.; Kaminskii, V.P.; Yagubskii, E.B. Crystal structures of organic metals and superconductors of (BEDT-TTP)-I system. Mol. Cryst. Liq. Cryst. 1985, 119, 361–373. [Google Scholar] [CrossRef]
  79. Baram, G.O.; Buravov, L.I.; Degtyarev, L.S.; Kozlov, M.E.; Laukhin, V.N.; Laukhina, E.E.; Onishchenko, V.G.; Pokhodnya, K.I.; Sheinkman, M.K.; Shibaeva, R.P.; et al. Transformation of the α-phase (BEDT-TTF)2I3 to the superconducting β phase with Tc = 6–7 K. JETP Lett. 1986, 44, 376–378. [Google Scholar]
  80. Kobayashi, H.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. A new molecular superconductor, (BEDT-TTF)2(I3)1−x(AuI2)x(x < 0.02). Chem. Lett. 1986, 15, 789–792. [Google Scholar] [CrossRef]
  81. Varma, K.S.; Bury, A.; Harris, N.J.; Underhill, A.E. Improved synthesis of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): π-Donor for Synthetic Metals. Synthesis 1987, 1987, 837–838. [Google Scholar] [CrossRef]
  82. Schweitzer, D.; Bele, P.; Brunner, H.; Gogu, E.; Haeberlen, U.; Hennig, I.; Klutz, I.; Świetlik, R.; Keller, H.J. A stable superconducting state at 8 K and ambient pressure in αt-(BEDT-TTF)2I3. Z. Phys. B Condens. Matter. 1987, 67, 489–495. [Google Scholar] [CrossRef]
  83. Kobayashi, A.; Kato, R.; Kobayashi, H.; Moriyama, S.; Nishio, Y.; Kajita, K.; Sasaki, W. Crystal and electronic structures of a new molecular superconductor, κ-(BEDT-TTF)2I3. Chem. Lett. 1987, 16, 459–462. [Google Scholar] [CrossRef] [Green Version]
  84. Kato, R.; Kobayashi, H.; Kobayashi, A.; Moriyama, S.; Nishio, Y.; Kajita, K.; Sasaki, W. A new ambient-pressure superconductor, κ-(BEDT-TTF)2I3. Chem. Lett. 1987, 16, 507–510. [Google Scholar] [CrossRef] [Green Version]
  85. Mori, T.; Inokuchi, H. Superconductivity in (BEDT-TTF)3Cl22H2O. Solid State Commun. 1987, 64, 335–337. [Google Scholar] [CrossRef]
  86. Lyubovskaya, R.N.; Zhilyaeva, E.A.; Zvarykina, A.V.; Laukhin, V.N.; Lyubovskii, R.B.; Pesotskii, S.I. Is the organic metal (ET)4Hg3Br8 a quasi-2D superconductor? JETP Lett. 1987, 45, 530–533. [Google Scholar]
  87. Lyubovskaya, R.N.; Zhilyaeva, E.I.; Pesotskii, S.I.; Lyubovskii, R.B.; Atovmyan, L.O.; D’yachenko, O.A.; Takhirov, T.G. Superconductivity of (ET)4Hg2.89Br8 at atmospheric pressure and Tc = 4.3 K and the critical-field anisotropy. JETP Lett. 1987, 46, 188–191. [Google Scholar]
  88. Urayama, H.; Yamochi, H.; Saito, G.; Nozawa, K.; Sugano, T.; Kinoshita, M.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J. A new ambient pressure organic superconductor based on BEDT-TTF with TC higher than 10 K (TC = 10.4 K). Chem. Lett. 1988, 17, 55–58. [Google Scholar] [CrossRef]
  89. Schirber, J.E.; Overmyer, D.L.; Venturini, E.L.; Wang, H.H.; Carlson, K.D.; Kwok, W.K.; Kleinjan, S.; Williams, J.M. Anomalous pressure dependence of the superconducting transition temperature of (ET)4Hg2.89Br8. Phys. C 1989, 161, 412–414. [Google Scholar] [CrossRef]
  90. June, D.; Evein, M.; Novoa, J.J.; Whangbc, M.-H.; Beno, M.A.; Kini, A.M.; Schultz, A.J.; Williams, J.M.; Nigrey, P.J. Similarities and differences in the structural and electronic properties of κ-Phase Organic Conducting and Superconducting Salts. Inorg. Chem. 1989, 28, 4516–4522. [Google Scholar] [CrossRef]
  91. Larsen, J.; Lenoir, C. Synthesis of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF). Synthesis 1989, 1989, 134. [Google Scholar] [CrossRef]
  92. Reed, P.E.; Braam, J.M.; Sowa, L.M.; Barkhau, R.A.; Blackman, G.S.; Cox, D.D.; Ball, G.A.; Wang, H.H.; Williams, J.M. Synthesis of 5,5′,6,6′-tetrahydro-2,2′-Bi-1,3-dithiolo[4,5-b][1,4]dithiinylidene (BEDT-TTF). In Inorganic Syntheses; Wiley: New York, NY, USA, 1989; pp. 386–390. [Google Scholar]
  93. Wang, H.H.; Carlson, K.D.; Geiser, U.; Kwok, W.K.; Vashon, M.D.; Thompson, J.E.; Larsen, N.F.; McCabe, G.D.; Hulscher, R.S.; Williams, J.M. A new ambient-pressure organic superconductor: (BEDT-TTF)2(NH4)Hg(SCN)4. Physica C 1990, 166, 57–61. [Google Scholar] [CrossRef]
  94. Mori, H.; Tanaka, S.; Oshima, M.; Saito, G.; Mori, T.; Maruyama, Y.; Inokuchi, H. Crystal and electronic structures of (BEDT-TTF)2[MHg(SCN)4] (M = K and NH4). Bull. Chem. Soc. Jpn. 1990, 63, 2183–2190. [Google Scholar] [CrossRef] [Green Version]
  95. Kini, A.M.; Geiser, U.; Wang, H.H.; Carlson, K.D.; Williams, J.M.; Kwok, W.K.; Vandervoort, K.G.; Thompson, J.E.; Stupka, D.L.; Jung, D.; et al. A new ambient-pressure organic superconductor, κ-(ET)2Cu[N(CN)2]Br, with the highest transition temperature yet observed (inductive onset Tc = 11.6 K, resistive onset = 12.5 K). Inorg. Chem. 1990, 29, 2555–2557. [Google Scholar] [CrossRef]
  96. Williams, J.M.; Kini, A.M.; Wang, H.H.; Carlson, K.D.; Geiser, U.; Montgomery, L.K.; Pyrka, G.J.; Watkins, D.M.; Kommers, J.M.; Boryschuk, S.J.; et al. From semiconductor-semiconductor transition (42 K) to the highest-Tc organic superconductor, κ-(ET)2Cu[N(CN)2]Cl (Tc = 12.5 K). Inorg. Chem. 1990, 29, 3272–3274. [Google Scholar] [CrossRef]
  97. Mori, H.; Hirabayashi, I.; Tanaka, S.; Mori, T.; Inokuchi, H. A new ambient-pressure organic superonductor, κ-(BEDT-TTF)2Ag(CN)2H2O (TC = 5.0 K). Solid State Commun. 1990, 76, 35–37. [Google Scholar] [CrossRef]
  98. Geiser, U.; Wang, H.H.; Carlson, K.D.; Williams, J.M.; Charlier, H.A., Jr.; Heindl, J.E.; Yaconi, G.A.; Love, B.J.; Lathrop, M.W.; Schirber, J.E.; et al. Superconductivity at 2.8 K and 1.5 kbar in α-(BEDT-TTF)2Cu2(CN)3: The first organic superconductor containing a polymeric copper cyanide anion. Inorg. Chem. 1991, 30, 2586–2588. [Google Scholar] [CrossRef]
  99. Komatsu, T.; Nakamura, T.; Matsukawa, N.; Yamochi, H.; Saito, G.; Ito, H.; Ishiguro, T.; Kusunoki, M.; Sakaguchi, K.-I. New ambient-pressure organic superconductors based on BEDT-TTF, Cu, N(CN)2 and CN with Tc = 10.7 K and 3.8 K. Solid State Commun. 1991, 80, 843–847. [Google Scholar] [CrossRef]
  100. Mori, H.; Hirabayashi, I.; Tanaka, S.; Mori, T.; Maruyama, Y.; Inokuchi, H. Superconductivity in (BEDT-TTF)4Pt(CN)4H2O. Solid State Commun. 1991, 80, 411–415. [Google Scholar] [CrossRef]
  101. Singleton, J.; Pratt, F.L.; Doporto, M.; Janssen, T.J.B.M.; Kurmoo, M.; Perenboom, J.A.A.J.; Hayes, W.; Day, P. Far-infrared cyclotron resonance study of electron dynamics in (BEDT-TTF)2KHg(SCN)4. Phys. Rev. Lett. 1992, 68, 2500–2503. [Google Scholar] [CrossRef] [Green Version]
  102. Pratt, F.L.; Singleton, J.; Doporto, M.; Fisher, A.J.; Janssen, T.J.B.M.; Perenboom, J.A.A.J.; Kurmoo, M.; Hayes, W.; Day, P. Magnetotransport and Fermi-surface topology of [bis(ethylenedithio)tetrathiafulvalene]2KHg(SCN)4. Phys. Rev. B 1992, 45, 13904–13912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  103. Brooks, J.S.; Agosta, C.C.; Klepper, S.J.; Tokumoto, M.; Kinoshita, N.; Anzai, H.; Uji, S.; Aoki, H.; Perel, A.S.; Athas, G.J.; et al. Novel interplay of Fermi-surface behavior and magnetism in a low-dimensional organic conductor. Phys. Rev. Lett. 1992, 69, 156–159. [Google Scholar] [CrossRef] [PubMed]
  104. Mori, T.; Kato, K.; Maruyama, Y.; Inokuchi, H.; Mori, H.; Hirabayashi, I.; Tanaka, S. Structural and physical properties of a new organic superconductor, (BEDT-TTF)4Pd(CN)4H2O. Solid State Commun. 1992, 82, 177–181. [Google Scholar] [CrossRef]
  105. Yamochi, H.; Nakamura, T.; Komastu, T.; Matsukawa, N.; Inoue, T.; Saito, G.; Mori, T. Crystal and electronic structures of the organic superconductors, κ-(BEDT-TTF)2Cu(CN)[N(CN)2] and κ′-(BEDT-TTF)2Cu2(CN)3. Solid State Commun. 1992, 82, 101–105. [Google Scholar] [CrossRef]
  106. Yamochi, H.; Komatsu, T.; Matsukawa, N.; Saito, G.; Mori, T.; Kusunoki, M.; Sakaguchi, K.-I. Structural aspects of the ambient-pressure BEDT-TTF superconductors. J. Am. Chem. Soc. 1993, 115, 11319–11327. [Google Scholar] [CrossRef]
  107. Kushch, N.D.; Buravov, L.I.; Khomenko, A.G.; Yagubskii, E.B.; Rosenberg, L.P.; Shibaeva, R.P. Novel organic superconductor κ-(ET)2Cu[N(CN)2]Cl0.5Br0.5 with TC ~ 11.3 K. Synth. Met. 1993, 53, 155–160. [Google Scholar] [CrossRef]
  108. Achkir, D.; Poirier, M.; Bourbonnais, C.; Quirion, G.; Lenoir, C.; Batail, P.; Jérome, D. Microwave surface impedance of κ-(BEDT-TTF)2Cu(NCS)2, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene: Evidence for unconventional superconductivity. Phys. Rev. B 1993, 47, 11595–11598. [Google Scholar] [CrossRef]
  109. Ito, H.; Kaneko, H.; Ishiguro, T.; Ishimoto, H.; Kono, K.; Horiuchi, S.; Komatsu, T.; Saito, G. On superconductivity of the organic conductor α-(BEDT-TTF)2KHg(SCN)4. Solid State Commun. 1993, 85, 1005–1009. [Google Scholar] [CrossRef]
  110. Klepper, S.J.; Brooks, J.S.; Chen, X.; Bradaric, I.; Tokumoto, M.; Kinoshita, N.; Tanaka, Y.; Agosta, C.C. Pressure-induced nesting in the low-dimensional organic superconductor α-(BEDT-TTF)2NH4Hg(SCN)4. Phys. Rev. B 1993, 48, 9913–9916. [Google Scholar] [CrossRef]
  111. Kahlich, S.; Schweitzer, D.; Rovira, C.; Paradis, J.A.; Whangbo, M.-H.; Heinen, I.; Keller, H.J.; Nuber, B.; Bele, P.; Brunner, H.; et al. Characterisation of the Fermi surface and phase transitions of (BEDO-TTF)2ReO4·(H2O) by physical property measurements and electronic band structure calculations. Z. Phys. B 1994, 94, 39–47. [Google Scholar] [CrossRef] [Green Version]
  112. Schlueter, J.A.; Geiser, U.; Williams, J.M.; Wang, H.H.; Kwok, W.-K.; Fendrich, J.A.; Carlson, K.D.; Achenbach, C.A.; Dudek, J.D.; Naumann, D.; et al. The first organic cation-radical salt superconductor (Tc = 4 K) with an organometallic anion: Superconductivity, synthesis and structure of κL-(BEDT-TTF)2Cu(CF3)4·TCE. J. Chem. Soc. Chem. Commun. 1994, 1599–1600. [Google Scholar] [CrossRef]
  113. Schlueter, J.A.; Carlson, K.D.; Williams, J.M.; Geiser, U.; Wang, H.H.; Welp, U.; Kwok, W.-K.; Fendrich, J.A.; Dudek, J.D.; Achenbach, C.A.; et al. A new 9 K superconducting organic salt composed of the bis (ethylenedithio) tetrathiafulvalene (ET) electron-donor molecule and the tetrakis (trifluoromethyl) cuprate (III) anion, [Cu(CF3)4]. Phys. C 1994, 230, 378–384. [Google Scholar] [CrossRef]
  114. Schlueter, J.A.; Carlson, K.D.; Geiser, U.; Wang, H.H.; Williams, J.M.; Kwok, W.-K.; Fendrich, J.A.; Welp, U.; Keane, P.M.; Dudek, J.D.; et al. Superconductivity up to 11.1 K in three solvated salts composed of [Ag(CF3)4] and the organic electron-donor molecule bis (ethylenedithio) tetrathiafulvalene (ET). Phys. C 1994, 233, 379–386. [Google Scholar] [CrossRef]
  115. Caulfield, J.; Lubczynski, W.; Pratt, F.L.; Singleton, J.; Ko, D.Y.K.; Hayes, W.; Kurmoo, M.; Day, P. Magnetotransport studies of the organic superconductor kappa -(BEDT-TTF)2Cu(NCS)2 under pressure: The relationship between carrier effective mass and critical temperature. J. Phys. Cond. Mat. 1994, 6, 2911–2924. [Google Scholar] [CrossRef]
  116. Dressel, M.; Klein, O.; Grüner, G.; Carlson, K.D.; Wang, H.H.; Williams, J.M. Electrodynamics of the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1994, 50, 13603–13615. [Google Scholar] [CrossRef]
  117. Pratt, F.L.; Sasaki, T.; Toyota, N.; Nagamine, K. Zero field muon spin relaxation study of the low temperature state in α-(BEDT-TTF)2KHg(SCN)4. Phys. Rev. Lett. 1995, 74, 3892–3895. [Google Scholar] [CrossRef]
  118. Brooks, J.S.; Chen, X.; Klepper, S.J.; Valfells, S.; Athas, G.J.; Tanaka, Y.; Kinoshita, T.; Kinoshita, N.; Tokumoto, M.; Anzai, H.; et al. Pressure effects on the electronic structure and low-temperature states in the α-(BEDT-TTF)2MHg(SCN)4 organic-conductor family (M = K, Rb, Tl, NH4). Phys. Rev. B 1995, 52, 14457. [Google Scholar] [CrossRef] [PubMed]
  119. Schlueter, J.A.; Williams, J.M.; Geiser, U.; Dudek, J.D.; Sirchio, S.A.; Kelly, M.E.; Gregar, J.S.; Kwok, W.H.; Fendrich, J.A.; Schirber, J.E.; et al. Synthesis and characterization of two new organic superconductors, κL- and κH-[bis(ethylenedisulfanyl)tetrathiafulvalene]2Au(CF3)4·(1,1,2- trichloroethane) via microelectrocrystallization. J. Chem. Soc. Chem. Commun. 1995, 1311–1312. [Google Scholar] [CrossRef]
  120. Kurmoo, M.; Graham, A.W.; Day, P.; Coles, S.J.; Hursthouse, M.B.; Caulfield, J.L.; Singleton, J.; Pratt, F.L.; Hayes, W.; Ducasse, L.; et al. Superconducting and semiconducting magnetic charge transfer salts: (BEDT-TTF)4AFe(C2O4)3·C6H5CN (A = H2O, K, NH4). J. Am. Chem. Soc. 1995, 117, 12209–12217. [Google Scholar] [CrossRef]
  121. Campos, C.E.; Brooks, J.S.; van Bentum, P.J.M.; Perenboom, J.A.A.J.; Klepper, S.J.; Sandhu, P.S.; Valfells, S.; Tanaka, Y.; Kinoshita, T.; Kinoshita, N.; et al. Uniaxial-stress-induced superconductivity in organic conductors. Phys. Rev. B 1995, 52, R7014–R7017. [Google Scholar] [CrossRef] [Green Version]
  122. Schlueter, J.A.; Williams, J.M.; Geiser, U.; Dtulek, J.D.; Kelly, M.E.; Sirchio, S.A.; Carlson, K.D.; Naumann, D.D.; Roy, T.; Campana, C.F. Seven new organic superconductors in the system (ET)2M(CF3)4(solvent) (M = Cu, Ag): Effect of solvent replacement. Adv. Mater. 1995, 7, 634–639. [Google Scholar] [CrossRef]
  123. Schlueter, J.A.; Geiser, U.; Wang, H.H.; Kelly, M.E.; Dudek, J.D.; Williams, J.M.; Naumann, D.; Roy, T. Synthesis and physical properties of a novel, highly tunable family of organic superconductors: (ET)2M(CF3)4(1,1,2-trihaloethane) (M = Cu, Ag, Au). Mol. Cryst. Liq. Cryst. 1996, 284, 195–202. [Google Scholar] [CrossRef]
  124. Schlueter, J.A.; Williams, J.M.; Geiser, U.; Wang, H.H.; Kini, A.M.; Kelly, M.E.; Dudek, J.D.; Naumann, D.; Roy, T. New organic superconductors in the system (ET)2M(CF3)4(solvent) (M = Cu, Ag, Au): Dramatic effects of organometallic anion and solvent replacement. Mol. Cryst. Liq. Cryst. 1996, 285, 43–50. [Google Scholar] [CrossRef]
  125. Geiser, U.; Schlueter, J.A.; Hau Wang, H.; Kini, A.M.; Williams, J.M.; Sche, P.P.; Zakowicz, H.I.; VanZile, M.L.; Dudek, J.D.; Nixon, P.G.; et al. Superconductivity at 5.2 K in an electron donor radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with the novel polyfluorinated organic anion SF5CH2CF2SO3. J. Am. Chem. Soc. 1996, 118, 9996–9997. [Google Scholar] [CrossRef]
  126. Meline, R.L.; Elsenbaumer, R.L. A high yield conversion of tetrathiafulvalene into bis(ethylenedithio)tetrathiafulvalene and derivatives. J. Chem. Soc. Perkin Trans. 1997, 1, 3575–3576. [Google Scholar] [CrossRef]
  127. Guionneau, P.; Kepert, C.J.; Bravic, G.; Chasseau, D.; Truter, M.R.; Kurmoo, M.; Day, P. Determining the charge distribution in BEDT-TTF salts. Synth. Met. 1997, 86, 1973–1974. [Google Scholar] [CrossRef]
  128. Martin, L.; Turner, S.S.; Day, P.; Mabbs, F.E.; McInnes, E.J.L. New molecular superconductor containing paramagnetic chromium(III) ions. Chem. Commun. 1997, 1367–1368. [Google Scholar] [CrossRef]
  129. Lee, S.L.; Pratt, F.L.; Blundell, S.J.; Aegerter, C.M.; Pattenden, P.A.; Chow, K.H.; Forgan, E.M.; Sasaki, T.; Hayes, W.; Keller, H. Investigation of vortex behavior in the organic superconductor κ-(BEDT-TTF)2Cu(SCN)2 using muon spin rotation. Phys. Rev. Lett. 1997, 79, 1563–1566. [Google Scholar] [CrossRef]
  130. Mori, T. Structural genealogy of BEDT-TTF-based organic conductors I. Parallel molecules: β and β″ phases. Bull. Chem. Soc. Jpn. 1998, 71, 2509–2526. [Google Scholar] [CrossRef]
  131. Mori, T.; Mori, H.; Tanaka, S. Structural genealogy of BEDT-TTF-based organic conductors II. Inclined molecules: θ, α, and κ phases. Bull. Chem. Soc. Jpn. 1999, 72, 179–197. [Google Scholar] [CrossRef]
  132. Mori, T. Structural genealogy of BEDT-TTF-based organic conductors III. Twisted molecules: δ and α′ phases. Bull. Chem. Soc. Jpn. 1999, 72, 2011–2027. [Google Scholar] [CrossRef]
  133. Carrington, A.; Bonalde, I.J.; Prozorov, R.; Giannetta, R.W.; Kini, A.M.; Schlueter, J.; Wang, H.H.; Geiser, U.; Williams, J.M. Low-temperature penetration depth of κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 1999, 83, 4172–4175. [Google Scholar] [CrossRef] [Green Version]
  134. Lefebvre, S.; Wzietek, P.; Brown, S.; Bourbonnais, C.; Jérome, D.; Mézière, C.; Fourmigué, M.; Batail, P. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors. Phys. Rev. Lett. 2000, 85, 5420–5423. [Google Scholar] [CrossRef] [Green Version]
  135. Kushch, N.D.; Tanatar, M.A.; Yagubskii, E.B.; Ishiguro, T. Supercondcutivity of κ-(ET)2Cu[N(CN)2]I under pressure. JETP Lett. 2001, 73, 429–431. [Google Scholar] [CrossRef]
  136. Rashid, S.; Turner, S.S.; Day, P.; Howard, J.A.K.; Guionneau, P.; McInnes, E.J.L.; Mabbs, F.E.; Clark, R.J.H.; Firth, S.; Biggs, T. New superconducting charge-transfer salts (BEDT-TTF)4[A·M(C2O4)3]·C6H5NO2 (A = H3O or NH4, M = Cr or Fe, BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). J. Mater. Chem. 2001, 11, 2096–2102. [Google Scholar] [CrossRef]
  137. Singleton, J.; Mielke, C. Quasi-two-dimensional organic superconductors: A review. Contemp. Phys. 2002, 43, 63–96. [Google Scholar] [CrossRef] [Green Version]
  138. Müller, J.; Lang, M.; Steglich, F.; Schlueter, J.A.; Kini, A.M.; Sasaki, T. Evidence for structural and electronic instabilities at intermediate temperatures in κ-(BEDT-TTF)2X for X = Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: Implications for the phase diagram of these quasi-two-dimensional organic superconductors. Phys. Rev. B 2002, 65, 144521. [Google Scholar] [CrossRef] [Green Version]
  139. Singleton, J.; Goddard, P.A.; Ardavan, A.; Harrison, N.; Blundell, S.J.; Schlueter, J.A.; Kini, A.M. Test for interlayer coherence in a quasi-two-dimensional superconductor. Phys. Rev. Lett. 2002, 88, 037001. [Google Scholar] [CrossRef] [Green Version]
  140. Akutsu, H.; Akutsu-Sato, A.; Turner, S.S.; Le Pevelen, D.; Day, P.; Laukhin, V.; Klehe, A.-K.; Singleton, J.; Tocher, D.A.; Probert, M.R.; et al. Effect of included guest molecules on the normal state conductivity and superconductivity of β″-(ET)4 [(H3O)Ga(C2O4)3]·G (G = pyridine, nitrobenzene). J. Am. Chem. Soc. 2002, 124, 12430–12431. [Google Scholar] [CrossRef] [Green Version]
  141. Tajima, N.; Ebina-Tajima, A.; Tamura, M.; Nishio, Y.; Kajita, K. Effects of uniaxial strain on transport properties of organic conductor α-(BEDT-TTF)2I3 and discovery of superconductivity. J. Phys. Soc. Jpn. 2002, 71, 1832–1835. [Google Scholar] [CrossRef]
  142. Dressel, M.; Drichko, N.; Schlueter, J.; Merino, J. Proximity of the layered organic conductors α-(BEDT-TTF)2MHg(SCN)4 (M = K, NH4), to a charge-ordering transition. Phys. Rev. Lett. 2003, 90, 167002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  143. Taniguchi, H.; Miyashita, M.; Uchiyama, K.; Satoh, K.; Môri, N.; Okamoto, H.; Miyagawa, K.; Kanoda, K.; Hedo, M.; Uwatoko, Y. Superconductivity at 14.2 K in layered organics under extreme pressure. J. Phys. Soc. Jpn. 2003, 72, 468–471. [Google Scholar] [CrossRef]
  144. Shibaeva, R.P.; Yagubskii, E.B. Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues. Chem. Rev. 2004, 104, 5347–5378. [Google Scholar] [CrossRef]
  145. Yamada, J.; Sugimoto, T. (Eds.) TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene; Springer: Berlin, Germany, 2004. [Google Scholar]
  146. Uchiyama, K.; Miyashita, M.; Taniguchi, H.; Satoh, K.; Môri, N.; Miyagawa, K.; Kanoda, K.; Hedo, M.; Uwatoko, Y. Characterization of transport and magnetic properties of a Mott insulator, β′-(BEDT-TTF)2lBrCl. J. Phys. IV 2004, 114, 387–389. [Google Scholar] [CrossRef] [Green Version]
  147. Lang, M.; Müller, J. Organic superconductors. In The Physics of Superconductors; Bennemann, K.H., Ketterson, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef] [Green Version]
  148. Geiser, U.; Schlueter, J.A. Conducting organic radical cation salts with organic and organometallic anions. Chem. Rev. 2004, 104, 5203–5241. [Google Scholar] [CrossRef]
  149. Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Gómez-García, C.J. A novel paramagnetic molecular superconductor formed by bis(ethylenedithio)tetrathiafulvalene, tris(oxalato)ferrate(III) anions and bromobenzene as guest molecule: ET4[(H3O)Fe(C2O4)3]·C6H5Br. J. Mater. Chem. 2005, 15, 1429–1436. [Google Scholar] [CrossRef]
  150. Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Gómez-García, C.J. New magnetic conductors and superconductors based on BEDT-TTF and BEDS-TTF. Synth. Met. 2005, 154, 245–248. [Google Scholar] [CrossRef]
  151. Mori, H. Materials viewpoint of organic superconductors. J. Phys. Soc. Jpn. 2006, 75, 051003. [Google Scholar] [CrossRef]
  152. Saito, G.; Yoshida, Y. Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials. Bull. Chem. Soc. Jpn. 2007, 80, 1–137. [Google Scholar] [CrossRef]
  153. Mori, T.; Kawamoto, T. Organic conductors—From fundamentals to nonlinear conductivity. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2007, 103, 134–172. [Google Scholar] [CrossRef]
  154. Wosnitza, J. Quasi-two-dimensional organic supercondcutors. J. Low Temp. Phys. 2007, 146, 641–667. [Google Scholar] [CrossRef]
  155. Monthoux, P.; Pines, D.; Lonzarich, G.G. Superconductivity without phonons. Nature 2007, 450, 1177–1183. [Google Scholar] [CrossRef]
  156. Wolter, A.U.B.; Feyerherm, R.; Dudzik, E.; Süllow, S.; Strack, C.; Lang, M.; Schweitzer, D. Determining ethylene group disorder levels in κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 2007, 75, 104512. [Google Scholar] [CrossRef] [Green Version]
  157. Lang, M.; Müller, J. Organic superconductors. In Superconductivity; Bennemann, K.H., Ketterson, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1155–1223. [Google Scholar] [CrossRef] [Green Version]
  158. Naito, T.; Yamada, Y.; Inabe, T.; Toda, Y. Carrier dynamics in κ-type organic superconductors: Time-resolved observation. J. Phys. Soc. Jpn. 2008, 77, 064709. [Google Scholar] [CrossRef]
  159. Naito, T.; Inabe, T.; Toda, Y. Carrier dynamics in organic superconductors. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 1–36. [Google Scholar]
  160. Kawamoto, T.; Mori, T.; Yamaguchi, T.; Uji, S.; Graf, D.; Brooks, J.S.; Shirahata, T.; Kibune, M.; Yoshino, H.; Imakubo, T. Fermi surface and in-plane anisotropy of the layered organic superconductor κL-(DMEDO-TSeF)2[Au(CN)4](THF) with domain structures. Phys. Rev. B 2011, 83, 012505. [Google Scholar] [CrossRef] [Green Version]
  161. Ardavan, A.; Brown, S.; Kagoshima, S.; Kanoda, K.; Kuroki, K.; Mori, H.; Ogata, M.; Uji, S.; Wosnitza, J. Recent topics of organic superconductors. J. Phys. Soc. Jpn. 2012, 81, 011004. [Google Scholar] [CrossRef]
  162. Saito, G.; Yoshida, Y. Frontiers of organic conductors and superconductors. Top. Curr. Chem. 2012, 312, 67–126. [Google Scholar] [CrossRef] [PubMed]
  163. Mori, T. Electronic Properties of Organic Conductors; Springer: Tokyo, Japan, 2016. [Google Scholar] [CrossRef]
  164. Hebard, A.F.; Rosseinsky, M.J.; Haddon, R.C.; Murphy, D.W.; Glarum, S.H.; Palstra, T.T.M.; Ramirez, A.P.; Kortan, A.R. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601. [Google Scholar] [CrossRef]
  165. Zhou, O.; Fischer, J.E.; Coustel, N.; Kycia, S.; Zhu, Q.; McGhie, A.R.; Romanow, W.J.; McCauley, J.P., Jr.; Smith, A.B., III; Cox, D.E. Structure and bonding in alkali-metal-doped C60. Nature 1991, 351, 462–464. [Google Scholar] [CrossRef]
  166. Tanigaki, K.; Ebbesen, T.W.; Saito, S.; Mizuki, J.; Tsai, J.S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223. [Google Scholar] [CrossRef]
  167. Kelty, S.P.; Chen, C.-C.; Lieber, C.M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223–225. [Google Scholar] [CrossRef]
  168. Uemura, Y.J.; Keren, A.; Le, L.P.; Luke, G.M.; Sternlieb, B.J.; Wu, W.D.; Brewer, J.H.; Whetten, R.L.; Huang, S.M.; Lin, S.; et al. Magnetic-field penetration depth in K3C60 measured by muon spin relaxation. Nature 1991, 352, 605–607. [Google Scholar] [CrossRef]
  169. Stephens, P.W.; Mihaly, L.; Lee, P.L.; Whetten, R.L.; Huang, S.-M.; Kaner, R.; Deiderich, F.; Holczer, K. Structure of single-phase superconducting K3C60. Nature 1991, 352, 632–634. [Google Scholar] [CrossRef]
  170. Fleming, R.M.; Ramirez, A.P.; Rosseinsky, M.J.; Murphy, D.W.; Haddon, R.C.; Zahurak, S.M.; Makhija, A.V. Relation of structure and superconducting transition temperatures in A3C60. Nature 1991, 352, 787–788. [Google Scholar] [CrossRef]
  171. Wang, H.H.; Kini, A.M.; Savall, B.M.; Carlson, K.D.; Williams, J.M.; Lykke, K.R.; Wurz, P.; Parker, D.H.; Pellin, M.J. First easily reproduced solution-phase synthesis and confirmation of superconductivity in the fullerene KxC60 (Tc = 18.0 ± 0.1 K). Inorg. Chem. 1991, 30, 2838–2839. [Google Scholar] [CrossRef]
  172. Schirber, J.E.; Overmyer, D.L.; Wang, H.H.; Williams, J.M.; Carlson, K.D.; Kini, A.M.; Welp, U.; Kwok, W.-K. Pressure dependence of the superconducting transition temperature of potassium fullerene, KxC60. Phys. C 1991, 178, 137–139. [Google Scholar] [CrossRef]
  173. Wang, H.H.; Kini, A.M.; Carlson, K.D.; Williams, J.M.; Pellin, M.J.; Schirber, J.E.; Savall, B.M.; Lathrop, M.W.; Lykke, K.R.; Parker, D.H.; et al. Superconductivity at 28.6 K in a rubidium-C60 fullerene compound, RbxC60, synthesized by a solution-phase technique. Inorg. Chem. 1991, 30, 2962–2963. [Google Scholar] [CrossRef]
  174. Holczer, K.; Klein, O.; Huang, S.-M.; Kaner, R.B.; Fu, K.-J.; Whetten, R.L.; Diederich, F. Alkali-fulleride superconductors: Synthesis, composition, and diamagnetic shielding. Science 1991, 252, 1154–1157. [Google Scholar] [CrossRef]
  175. Sparn, G.; Thompson, J.D.; Huang, S.-M.; Kaner, R.B.; Diederich, F.; Whetten, R.L.; Grüner, G.; Holczer, K. Pressure dependence of superconductivity in single-phase K3C60. Science 1991, 252, 1829–1831. [Google Scholar] [CrossRef]
  176. Rosseinsky, M.J.; Ramirez, A.P.; Glarum, S.H.; Murphy, D.W.; Haddon, R.C.; Hebard, A.F.; Palstra, T.T.M.; Kortan, A.R.; Zahurak, S.M.; Makhija, A.V. Superconductivity at 28 K in RbxC60. Phys. Rev. Lett. 1991, 66, 2830–2832. [Google Scholar] [CrossRef] [Green Version]
  177. McCauley, J.P., Jr.; Zhu, Q.; Coustel, N.; Zhou, O.; Vaughan, G.; Idziak, S.H.J.; Fischer, J.E.; Tozer, S.W.; Groski, D.M.; Bykovetz, N.; et al. Synthesis, structure, and superconducting properties of single-phase Rb3C60. A new, convenient method for the preparation of M3C60 superconductors. J. Am. Chem. Soc. 1991, 113, 8537–8538. [Google Scholar] [CrossRef]
  178. Sugimoto, T.; Awaji, H.; Misaki, Y.; Yoshida, Z.-I.; Kai, Y.; Nakagawa, H.; Kasai, N. Tetrakis(1,3-dithiol-2-ylidene)cyclobutane: A novel and promising electron donor for organic metals. J. Am. Chem. Soc. 1985, 107, 5792–5793. [Google Scholar] [CrossRef]
  179. Kikuchi, K.; Kikuchi, M.; Namiki, T.; Saito, K.; Ikemoto, I.; Murata, K.; Ishiguro, T.; Kobayashi, K. New organic superconductor, (DMET)2Au(CN)2. Chem. Lett. 1987, 16, 931–932. [Google Scholar] [CrossRef]
  180. Kikuchi, K.; Honda, Y.; Namiki, T.; Saito, K.; Ikemoto, I.; Murata, K.; Anzai, H.; Ishiguro, T.; Kobayashi, K. Superconductivity in (DMET)2AuCl2 and (DMET)2AuI2. J. Phys. Soc. Jpn. 1987, 56, 4241–4244. [Google Scholar] [CrossRef]
  181. Kikuchi, K.; Honda, Y.; Namiki, T.; Saito, K.; Ikemoto, I.; Ishiguro, T.; Murata, K.; Kobayashi, K. Superconductivity and the possibility of semiconductor-metal transition in (DMET)2AuBr2. J. Phys. Soc. Jpn. 1987, 56, 2627–2628. [Google Scholar] [CrossRef]
  182. Kikuchi, K.; Honda, Y.; Namiki, T.; Saito, K.; Ikemoto, I.; Murata, K.; Ishiguro, T.; Kobayashi, K. On ambient-pressure superconductivity in organic conductors: Electrical properties of (DMET)2I3, (DMET)2I2Br and (DMET)2IBr2. J. Phys. Soc. Jpn. 1987, 56, 3436–3439. [Google Scholar] [CrossRef]
  183. Kikuchi, K.; Murata, K.; Klkuchi, M.; Honda, Y.; Takahashi, T.; Oyama, T.; Ikemoto, I.; Ishiguro, T.; Kobayashi, K. Superconductivity and Surrounding Phase of Organic Conductor, (DMET)2Au(CN)2. Jap. J. Appl. Phys. 1987, 26, 1369–1370. [Google Scholar] [CrossRef]
  184. Kikuchi, K.; Honda, Y.; Ishikawa, Y.; Saito, K.; Ikemoto, I.; Murata, K.; Anzai, H.; Ishiguro, T. Polymorphism and electrical conductivity of the organic superconductor (DMET)2AuBr2. Solid State Commun. 1988, 66, 405–408. [Google Scholar] [CrossRef]
  185. Papavassiliou, G.C.; Mousdis, G.A.; Zambounis, J.S.; Terzis, A.; Hountas, A.; Hilti, B.; Mayer, C.W.; Pfeiffer, J. Low temperature measurements of the electrical conductivities of some charge transfer salts with the asymmetric donors MDT-TTF, EDT-TTF and EDT-DSDTF. (MDT-TTF)2AuI2, a new superconductor (Tc = 3.5 K at ambient pressure). Synth. Met. 1988, 27, 379–383. [Google Scholar] [CrossRef]
  186. Sugimoto, T.; Awaji, H.; Sugimoto, I.; Misaki, Y.; Kawase, T.; Yoneda, S.; Yoshida, Z.-I.; Anzai, H. Ethylene analogs of tetrathiafulvalene and tetraselenafulvalene: New donors for organic metals. Chem. Mater. 1989, 535–537. [Google Scholar] [CrossRef]
  187. Suzuki, T.; Yamochi, H.; Srdanov, G.; Hinkelmann, K.; Wudl, F. Bis(ethylenedioxy)tetrathiafulvalene: The first oxygen substituted tetrathiafulvalene. J. Am. Chem. Soc. 1989, 111, 3108–3109. [Google Scholar] [CrossRef]
  188. Wudl, F.; Yamochi, H.; Suzuki, T.; lsotalo, H.; Fite, C.; Kasmai, H.; Liou, K.; Srdanov, G.; Coppens, P.; Maly, K.; et al. (BEDO)2.4I3: The First Robust Organic Metal of BEDO-TTF. J. Am. Chem. Soc. 1990, 112, 2461–2462. [Google Scholar] [CrossRef]
  189. Beno, M.A.; Wang, H.H.; Kini, A.M.; Carlson, K.D.; Geiser, U.; Kwok, W.K.; Thompson, J.E.; Williams, J.M.; Ren, J.; Whangbo, M.-H. The first ambient pressure organic superconductor containing oxygen in the donor molecule, βm-(BEDO-TTF)3Cu2(NCS)3, TC = 1.06 K. Inorg. Chem. 1990, 29, 1599–1601. [Google Scholar] [CrossRef]
  190. Kahlich, S.; Schweitzer, D.; Heinen, I.; En Lan, S.; Nuber, B.; Keller, H.J.; Winzer, K.; Helberg, H.W. (BEDO-TTF)2ReO4·(H2O): A new organic superconductor. Soliod State Comun. 1991, 80, 191–195. [Google Scholar] [CrossRef] [Green Version]
  191. Naito, T.; Miyamoto, A.; Kobayashi, H.; Kato, R.; Kobayashi, A. Structure and electrical properties of θ- and κ-type BEDT-TSeF salts with bromomercurate anions. Chem. Lett. 1991, 20, 1945–1948. [Google Scholar] [CrossRef]
  192. Kobayashi, H.; Bun, K.; Miyamoto, A.; Naito, T.; Kato, R.; Kobayashi, A.; Williams, J.A. Superconducting transition of a grease-coated crystal of κ-(BEDT-TFT)2Cu[N(CN)2]Cl. Chem. Lett. 1991, 20, 1997–2000. [Google Scholar] [CrossRef]
  193. Zambounis, J.S.; Mayer, C.W.; Hauenstein, K.; Hilti, B.; Hofherr, W.; Pfeiffer, J.; Bürkle, M.; Rihs, G. Crystal structure and electrical properties of κ-((S,S)-DMBEDT–TTF)2ClO4. Adv. Mater. 1992, 4, 33–35. [Google Scholar] [CrossRef]
  194. Misaki, Y.; Nishikawa, H.; Kawakami, K.; Uehara, T.; Yamabe, T. Bis(2-methylidene-1,3-dithiolo[4,5-d])tetrathiafulvalene (BDT-TTF): A tetrathiafulvalene condensed with 1,3-dithiol-2-ylidene moieties. Tetrahedron Lett. 1992, 33, 4321–4324. [Google Scholar] [CrossRef]
  195. Misaki, Y.; Nishikawa, H.; Fujiwara, H.; Kawakami, K.; Yamabe, T.; Yamochi, H.; Saito, G. (2-Methylidene-1,3-dithiolo[4,5-d])tetrathiafulvalene (DT-TTF): New unsymmetrical TTFs condensed with 1,3-dithiol-2-ylidene moieties. J. Chem. Soc. Chem. Commun. 1992, 1408–1409. [Google Scholar] [CrossRef]
  196. Naito, T.; Miyamoto, A.; Kobayashi, H.; Kato, R.; Kobayashi, A. Superconducting transition temperature of the organic alloy system: κ-[(BEDT-TTF)1−x(BEDT-STF)x]2Cu[N(CN)2]Br. Chem. Lett. 1992, 21, 119–122. [Google Scholar] [CrossRef]
  197. Kato, R.; Aonuma, S.; Okano, Y.; Sawa, H.; Tamura, M.; Kinoshita, M.; Oshima, K.; Kobayashi, A.; Bun, K.; Kobayashi, H. Metallic and superconducting salts based on an unsymmetrical π-donor dimethyl(ethylenedithio)tetraselenafulvalene (DMET-TSeF). Synth. Met. 1993, 61, 199–206. [Google Scholar] [CrossRef]
  198. Sallé, M.; Jubault, M.; Gorgues, A.; Boubekeur, K.; Fourmigué, M.; Batail, P.; Canadell, E. Bis- and Tetrakis(1,4-dithiafulven-6-yl)-Substituted Tetrathiafulvalenes and Dihydrotetrathiafulvalenes: A novel class of planar donor molecules with multiple redox functionalities and the demonstration of a novel type of two-dimensional association in the solid state. Chem. Mater. 1993, 5, 1196–1198. [Google Scholar] [CrossRef]
  199. Fourmigué, M.; Johannsen, I.; Boubekeur, K.; Nelson, C.; Batail, P. Tetrathiafulvalene- and dithiafulvene-substituted Mesitylenes, new π-Donor molecules with 3-fold symmetry and the formation of an unprecedented new class of electroactive polymers. J. Am. Chem. Soc. 1993, 115, 3752–3759. [Google Scholar] [CrossRef]
  200. Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J.M. Supercondcutivity and magnetic field induced spin density waves in the (TMTTF)2X family. J. Phys. I 1994, 4, 1539–1550. [Google Scholar] [CrossRef]
  201. Naito, T.; Tateno, A.; Udagawa, T.; Kobayashi, H.; Kato, R.; Kobayashi, A.; Nogami, T. Synthesis, structures and electrical properties of the charge-transfer salts of 4,5-ethylenedithio-4′,5′-(2-oxatrimethylenedithio) diselenadithiafulvalene (EOST) with linear anions [I3, IBr2, ICI3, I2Br, AuBr2, Au(CN)2]. J. Chem. Soc. Faraday Trans. 1994, 90, 763–771. [Google Scholar] [CrossRef]
  202. Tateno, A.; Udagawa, T.; Naito, T.; Kobayashi, H.; Kobayashi, A.; Nogami, T. Crystal structures and electrical properties of the radical salts of the unsymmetrical donor EOTT [4,5-ethylenedithio-4′,5′-(2- oxatrimethylenedithio)tetrathiafulvalene]. J. Mater. Chem. 1994, 4, 1559–1569. [Google Scholar] [CrossRef]
  203. Kobayashi, H.; Tomita, H.; Naito, T.; Tanaka, H.; Kobayashi, A.; Saito, T. A new organic superconductor, λ-BETS2GaBrCl3 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Chem. Soc. Chem. Commun. 1995, 1225–1226. [Google Scholar] [CrossRef]
  204. Kobayashi, H.; Kawano, K.; Naito, T.; Kobayashi, A. Electronic band structure and superconducting transition of κ-(BEDT-TTF)2I3. J. Mater. Chem. 1995, 5, 1681–1687. [Google Scholar] [CrossRef]
  205. Inokuchi, M.; Tajima, H.; Kobayashi, A.; Ohta, T.; Kuroda, H.; Kato, R.; Naito, T.; Kobayashi, H. Electrical and optical properties of α-(BETS)2I3 and α-(BEDT-STF)2I3. Bull. Chem. Soc. Jpn. 1995, 68, 547–553. [Google Scholar] [CrossRef]
  206. Misaki, Y.; Ohta, T.; Higuchi, N.; Fujiwara, H.; Yamabe, T.; Mori, T.; Mori, H.; Tanaka, S. A vinylogue of bis-fused tetrathiafulvalene: Novel π-electron framework for two-dimensional organic metals. J. Mater. Chem. 1995, 5, 1571–1579. [Google Scholar] [CrossRef]
  207. Misaki, Y.; Higuchi, N.; Fujiwara, H.; Yamabe, T.; Mori, T.; Mori, H.; Tanaka, S. (DTEDT)[Au(CN)2]0.4: An organic superconductor based on the novel π-electron framework of vinylogous bis-fused tetrathiafulvalene. Angew. Chem. Int. Ed. Engl. 1995, 34, 1222–1225. [Google Scholar] [CrossRef]
  208. Oshima, K.; Okuno, H.; Kato, K.; Maruyama, R.; Kato, R.; Kobayashi, A.; Kobayashi, H. Superconductivity and field induced states in DMET-TSeF family. Synth. Met. 1995, 70, 861–862. [Google Scholar] [CrossRef]
  209. Naito, T.; Kobayashi, H.; Kobayashi, A.; Underhill, A.E. New synthetic metals based on a thiadiazole network. Chem. Commun. 1996, 521–522. [Google Scholar] [CrossRef]
  210. Horiuchi, S.; Yamochi, H.; Saito, G.; Sakaguchi, K.-I.; Kusunoki, M. Nature and origin of stable metallic state in organic charge-transfer complexes of bis(ethylenedioxy)tetrathiafulvalene. J. Am. Chem. Soc. 1996, 118, 8604–8622. [Google Scholar] [CrossRef]
  211. Naito, T.; Kobayashi, H.; Kobayashi, A. The Electrical Behavior of Charge-Transfer Salts Based on an Unsymmetrical Donor Bis(ethylenedithio)diselenadithiafulvalene (STF): Disorder Effect on the Transport Properties. Bull. Chem. Soc. Jpn. 1997, 70, 107–114. [Google Scholar] [CrossRef]
  212. Mori, T.; Kawamoto, T.; Yamaura, J.; Enoki, T.; Misaki, Y.; Yamabe, T.; Mori, H.; Tanaka, S. Metal-insulator transition in the organic metal (TTM-TTP)I3 with a one-dimensional half-filled band. Phys. Rev. Lett. 1997, 79, 1702–1705. [Google Scholar] [CrossRef]
  213. Kato, R.; Yamamoio, K.; Okano, Y.; Tajima, H.; Sawa, H. A new ambient-pressure organic superconductor (TMET-STF)2BF4 [TMET-STF = trimethylene(ethylenedithio)diselenadithiafulvalene]. Chem. Commun. 1997, 947–948. [Google Scholar] [CrossRef]
  214. Sakata, J.-I.; Sato, H.; Miyazaki, A.; Enoki, T.; Okano, Y.; Kato, R. Superconductivity in new organic conductor κ-(BEDSe-TTF)2CuN(CN)2Br. Solid State Commun. 1998, 108, 377–381. [Google Scholar] [CrossRef]
  215. Kawamoto, T.; Aragaki, M.; Mori, T.; Misaki, Y.; Yamabe, T. Crystal structure and physical properties of (TTM-TTP)AuI2. J. Mater. Chem. 1998, 8, 285–288. [Google Scholar] [CrossRef]
  216. Heuzé, K.; Fourmigué, M. The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R,R′ = H, Me). J. Mater. Chem. 1999, 9, 2373–2379. [Google Scholar] [CrossRef]
  217. Kondo, R.; Hasegawa, T.; Mochida, T.; Kagoshima, S.; Iwasa, Y. Donor-acceptor type superconductor, (BETS)2(Cl2TCNQ). Chem. Lett. 1999, 28, 333–334. [Google Scholar] [CrossRef]
  218. Okano, Y.; Iso, M.; Kashimura, Y.; Yamaura, J.; Kato, R. New synthesis of Se-containing TTF derivatives. Synth. Met. 1999, 102, 1703–1704. [Google Scholar] [CrossRef]
  219. Adachi, T.; Ojima, E.; Kato, K.; Kobayashi, H.; Miyazaki, T.; Tokumoto, M.; Kobayashi, A. Superconducting transition of (TMTTF)2PF6 above 50 kbar [TMTTF = Tetramethyltetrathiafulvalene]. J. Am. Chem. Soc. 2000, 122, 3238–3239. [Google Scholar] [CrossRef]
  220. Drozdova, O.; Yamochi, H.; Yakushi, K.; Uruichi, M.; Horiuchi, S.; Saito, G. Determination of the charge on BEDO-TTF in its complexes by Raman spectroscopy. J. Am. Chem. Soc. 2000, 122, 4436–4442. [Google Scholar] [CrossRef]
  221. Dehnet, A.; Batail, P.; Misaki, Y.; Auban-Senzier, P.; Canadell, E. Donor slab robustness and band filling variations in BDT-TTP-based molecular conductors: β-(BDT-TTP)6[Re6S6Cl8]·(CH2Cl-CH2Cl2)2 and β-(BDT-TTP)6[Mo6Cl14]·(CH2Cl-CHCl2)2. Adv. Mater. 2000, 12, 436–439. [Google Scholar] [CrossRef]
  222. Tanaka, H.; Ojima, E.; Fujiwara, H.; Nakazawa, Y.; Kobayashi, H.; Kobayashi, A. A new κ-type organic superconductor based on BETS molecules, κ-(BETS)2GaBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Mater. Chem. 2000, 10, 245–247. [Google Scholar] [CrossRef]
  223. Jaccard, D.; Wilhelm, H.; Jérome, D.; Moser, J.; Carcel, C.; Fabre, J.M. From spin-Peierls to superconductivity: (TMTTF)2PF6 under high pressure. J. Phys. Condens. Matter. 2001, 13, L89–L95. [Google Scholar] [CrossRef] [Green Version]
  224. Yamada, J.-I.; Watanabe, M.; Akutsu, H.; Nakasuji, S.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K. New organic superconductors β-(BDA-TTP)2X [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene; X = SbF6, AsF6, and PF6]. J. Am. Chem. Soc. 2001, 123, 4174–4180. [Google Scholar] [CrossRef]
  225. Mielke, C.; Singleton, J.; Nam, M.-S.; Harrison, N.; Agosta, C.C.; Fravel, B.; Montgomery, L.K. Superconducting properties and Fermi-surface topology of the quasi-two-dimensional organic superconductor λ-(BETS)2GaCl4 (BETS ≡ bis(ethylene-dithio)tetraselenafulvalene). J. Phys. Cond. Mat. 2001, 13, 8325–8345. [Google Scholar] [CrossRef]
  226. Gritsenko, V.; Tanaka, H.; Kobayashi, H.; Kobayashi, A. A new molecular superconductor, κ-(BETS)2TlCl4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Mater. Chem. 2001, 11, 2410–2411. [Google Scholar] [CrossRef]
  227. Takimiya, K.; Kataoka, Y.; Aso, Y.; Otsubo, T.; Fukuoka, H.; Yamanaka, S. Quasi one-dimensional organic superconductor MDT-TSF·AuI2 with Tc = 4.5 K at ambient pressure. Angew. Chem. Int. Ed. Engl. 2001, 40, 1122–1125. [Google Scholar] [CrossRef]
  228. Ota, A.; Yamochi, H.; Saito, G. A novel metal-insulator phase transition observed in (EDO-TTF)2PF6. J. Mater. Chem. 2002, 12, 2600–2602. [Google Scholar] [CrossRef]
  229. Kawamoto, T.; Mori, T.; Takimiya, K.; Kataoka, Y.; Aso, Y.; Otsubo, T. Organic superconductor with an incommensurate anion structure: (MDT-TSF)(AuI2)0.44. Phys. Rev. B 2002, 65, 140508. [Google Scholar] [CrossRef] [Green Version]
  230. Imakubo, T.; Tajima, N.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K. A supramolecular superconductor θ-(DIETS)2[Au(CN)4]. J. Mater. Chem. 2002, 12, 159–161. [Google Scholar] [CrossRef]
  231. Nishikawa, H.; Morimoto, T.; Kodama, T.; Ikemoto, I.; Kikuchi, K.; Yamada, J.-I.; Yoshino, H.; Murata, K. New organic superconductors consisting of an unprecedented π-electron donor. J. Am. Chem Soc. 2002, 124, 730–731. [Google Scholar] [CrossRef]
  232. Shimojo, Y.; Ishiguro, T.; Toita, T.; Yamada, J.-I. Superconductivity of layered organic compound β-(BDA-TTP)2SbF6, where BDA-TTP is 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. J. Phys. Soc. Jpn. 2002, 71, 717–720. [Google Scholar] [CrossRef]
  233. Kodani, M.; Takamori, A.; Takimiya, K.; Aso, Y.; Otsubo, T. Novel conductive radical cation salts based on methylenediselenotetraselenafulvalene (MDSe-TSF): A sign of superconductivity in κ-(MDSe-TSF)2Br below 4 K. J. Solid State Chem. 2002, 168, 582–589. [Google Scholar] [CrossRef]
  234. Takimiya, K.; Takamori, A.; Aso, Y.; Otsubo, T.; Kawamoto, T.; Mori, T. Organic superconductors based on a new electron donor, methylenedithio-diselenadithafulvalene (MDT-ST). Chem. Mater. 2003, 15, 1225–1227. [Google Scholar] [CrossRef]
  235. Takimiya, K.; Kodani, M.; Kataoka, Y.; Aso, Y.; Otsubo, T.; Kawamoto, T.; Mori, T. New organic superconductors with an incommensurate anion. Lattice consisting of polyhalide chains (MDT-TSF)Xy (MDT-TSF = methylenedithiotetraselenafulvalene; X = halogen; y = 1.27–1.29). Chem. Mater. 2003, 15, 3250–3255. [Google Scholar] [CrossRef]
  236. Auban-Senzier, P.; Pasquier, C.; Jérome, D.; Carcel, C.; Fabre, J.M. From Mott insulator to superconductivity in (TMTTF)2BF4: High pressure transport measurements. Synth. Met. 2003, 133–134, 11–14. [Google Scholar] [CrossRef]
  237. Nishikawa, H.; Machida, A.; Morimoto, T.; Kikuchi, K.; Kodama, T.; Ikemoto, I.; Yamada, J.-I.; Yoshino, H.; Murata, K. A new organic superconductor, (DODHT)2BF4·H2O. Chem. Commun. 2003, 3, 494–495. [Google Scholar] [CrossRef] [PubMed]
  238. Yamada, J.-I.; Toita, T.; Akutsu, H.; Nakasuji, S.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Choi, E.S.; Graf, D.; Brooks, J.S. A new organic superconductor, β-(BDA-TTP)2GaCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene]. Chem. Commun. 2003, 3, 2230–2231. [Google Scholar] [CrossRef]
  239. Choi, E.S.; Graf, D.; Brooks, J.S.; Yamada, J.; Akutsu, H.; Kikuchi, K.; Tokumoto, M. Pressure-dependent ground states and fermiology in β-(BDA-TTP)2MCl4 (M = Fe,Ga). Phys. Rev. B 2004, 70, 024517. [Google Scholar] [CrossRef]
  240. Zhilyaeva, E.I.; Torunova, S.A.; Lyubovskaya, R.N.; Mousdis, G.A.; Papavassiliou, G.C.; Perenboom, J.A.A.J.; Pesotskii, S.I.; Lyubovskii, R.B. New ambient pressure organic superconductor with Tc = 8.1 K based on unsymmetrical donor molecule, ethylenedithiotetrathiafulvalene: (EDT-TTF)4Hg3-δI8, δ ~ 0.1–0.2. Synth. Met. 2004, 140, 151–154. [Google Scholar] [CrossRef]
  241. Drozdova, O.; Yakushi, K.; Yamamoto, K.; Ota, A.; Yamochi, H.; Saito, G.; Tashiro, H.; Tanner, D.B. Optical characterization of 2kF bond-charge-density wave in quasi-one-dimeesional 3/4-filled (EDO-TTF)2X (X = PF6 and AsF6). Phys. Rev. B 2004, 70, 075107. [Google Scholar] [CrossRef]
  242. Mori, T. Organic conductors with unusual band fillings. Chem. Rev. 2004, 104, 4947–4969. [Google Scholar] [CrossRef]
  243. Kimura, S.; Maejima, T.; Suzuki, H.; Chiba, R.; Mori, H.; Kawamoto, T.; Mori, T.; Moriyama, H.; Nishio, Y.; Kajita, K. A new organic superconductor β-(meso-DMBEDT-TTF)2PF6. Chem. Commun. 2004, 2454–2455. [Google Scholar] [CrossRef]
  244. Takimiya, K.; Kodani, M.; Niihara, N.; Aso, Y.; Otsubo, T.; Bando, Y.; Kawamoto, T.; Mori, T. Pressure-induced superconductivity in (MDT-TS)(AuI2)0.441 [MDT-TS = 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene]: A new organic superconductor possessing an incommensurate anion lattice. Chem. Mater. 2004, 16, 5120–5123. [Google Scholar] [CrossRef]
  245. Nishikawa, H.; Sato, Y.; Kikuchi, K.; Kodama, T.; Ikemoto, I.; Yamada, J.-I.; Oshio, H.; Kondo, R.; Kagoshima, S. Charge ordering and pressure-induced superconductivity in β”-(DODHT)2PF6. Phys. Rev. B 2005, 72, 052510. [Google Scholar] [CrossRef]
  246. Ito, H.; Suzuki, D.; Yokochi, Y.; Kuroda, S.; Umemiya, M.; Miyasaka, H.; Sugiura, K.I.; Yamashita, M.; Tajima, H. Quasi-one-dimensional electronic structure of (DMET)2CuCl2. Phys. Rev. B 2005, 71, 212503. [Google Scholar] [CrossRef]
  247. Shirahata, T.; Kibune, M.; Maesato, M.; Kawashima, T.; Saito, G.; Imakubo, T. New organic conductors based on dibromo- and diiodo-TSeFs with magnetic and non-magnetic MX4 counter anions (M = Fe, Ga; X = Cl, Br). J. Mater. Chem. 2006, 16, 3381–3390. [Google Scholar] [CrossRef]
  248. Yamada, J.-I.; Fujimoto, K.; Akutsu, H.; Nakatsuji, S.; Miyazaki, A.; Aimatsu, M.; Kudo, S.; Enoki, T.; Kikuchi, K. Pressure effect on the electrical conductivity and superconductivity of β-(BDA-TTP)2I3. Chem. Commun. 2006, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
  249. Shirahata, T.; Kibune, M.; Imakubo, T. New ambient pressure organic superconductors κH- and κL-(DMEDO-TSeF)2[Au(CN)4](THF). Chem. Commun. 2006, 1592–1594. [Google Scholar] [CrossRef]
  250. Itoi, M.; Kano, M.; Kurita, N.; Hedo, M.; Uwatoko, Y.; Nakamura, T. Pressure-induced superconductivity in the quasi-one-dimensional organic conductor (TMTTF)2AsF6. J. Phys. Soc. Jpn. 2007, 76, 053703. [Google Scholar] [CrossRef]
  251. Araki, C.; Itoi, M.; Hedo, M.; Uwatoko, Y.; Mori, H. Electrical resistivity of (TMTTF)2PF6 under high pressure. J. Phys. Soc. Jpn. 2007, 76 (Suppl. A), 198–199. [Google Scholar] [CrossRef] [Green Version]
  252. Itoi, M.; Araki, C.; Hedo, M.; Uwatoko, Y.; Nakamura, T. Anomalously wide superconducting phase of one-dimensional organic conductor (TMTTF)2SbF6. J. Phys. Soc. Jpn. 2008, 77, 023701. [Google Scholar] [CrossRef]
  253. Misaki, Y. Tetrathiapentalene-based organic conductors. Sci. Tech. Adv. Mat. 2009, 10, 024301. [Google Scholar] [CrossRef] [PubMed]
  254. Lorcy, D.; Bellec, N.; Fourmigué, M.; Avarvari, N. Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coord. Chem. Rev. 2009, 253, 1398–1438. [Google Scholar] [CrossRef]
  255. Shikama, T.; Shimokawa, T.; Lee, S.; Isono, T.; Ueda, A.; Takahashi, K.; Nakao, A.; Kumai, R.; Nakao, H.; Kobayashi, K.; et al. Magnetism and pressure-induced superconductivity of checkerboard-type charge-ordered molecular conductor β-(meso-DMBEDT-TTF)2X (X = PF6 and AsF6). Crystals 2012, 2, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
  256. Steimecke, G.; Sieler, H.-J.; Kirmse, R.; Hoyer, E. 1,3-Dithiol-2-thion-4,5-dithiolat aus Schwefelkohlenstoff und Alkalimetall. Phosphorus Sulfur 1979, 7, 49–55. [Google Scholar] [CrossRef]
  257. Kirmse, R.; Stach, J.; Dietzsch, W.; Steimecke, G.; Hoyer, E. Single-Crystal EPR Studies on Nickel(III), Palladium(III), and Platinum(III) Dithiolene Chelates Containing the Ligands Isotrithionedithiolate, o-Xylenedithiolate, and Maleonitriledithiolate. Inorg. Chem. 1980, 19, 2679–2685. [Google Scholar] [CrossRef]
  258. Alvarez, S.; Vicente, R.; Hoffmann, R. Dimerization and Stacking in Transition-Metal Bisdithiolenes and Tetrathiolates. J. Am. Chem. Soc. 1985, 107, 6253–6277. [Google Scholar] [CrossRef]
  259. Valade, L.; Legros, J.; Bousseau, M.; Cassoux, P.; Garbauskas, M.; Interrante, L.V. Molecular structure and solid-state properties of the two-dimensional conducting mixed-valence complex [NBu4]0.29[Ni(dmit)2] and the neutral [Ni(dmit)2] (H2dmit = 4,5-dimercapto-1,3-dithiole-2-thione); members of an electron-transfer series. J. Chem. Soc. Dalton Trans. 1985, 783–794. [Google Scholar] [CrossRef]
  260. Brossard, L.; Ribault, M.; Bousseau, M.; Valade, L.; Cassoux, P. A new type of molecular superconductor: TTF[Ni(dmit)2]2. C. R. Acad. Sci. Paris Ser. II 1986, 302, 205–210. [Google Scholar]
  261. Bousseau, M.; Valade, L.; Legros, J.-P.; Cassoux, P.; Garbauskas, M.; Interrante, L.V. Highly Conducting Charge-Transfer Compounds of Tetrathiafulvalene and Transition Metal–“dmit” Complexes. J. Am. Chem. Soc. 1986, 108, 1908–1916. [Google Scholar] [CrossRef]
  262. Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. The first 3D molecular superconductor under pressure?: TTF [Ni(dmit)2]2. Phys. B+C 1986, 143, 378–380. [Google Scholar] [CrossRef]
  263. Kobayashi, A.; Kim, H.; Sasaki, Y.; Kato, R.; Kobayashi, H.; Moriyama, S.; Nishio, Y.; Kajita, K.; Sasaki, W. The first molecular conductors based on π-acceptor molecules and closed-shell cations, [(CH3)4N][Ni(dmit)2]2, low-temperature X-ray studies and superconducting transition. Chem. Lett. 1987, 16, 1819–1822. [Google Scholar] [CrossRef]
  264. Kajita, K.; Nishio, Y.; Moriyama, S.; Kato, R.; Kobayashi, H.; Sasaki, W.; Kobayashi, A.; Kim, H.; Sasaki, Y. Transport properties of ((CH3)4N) (Ni(dmit)2)2: A new organic superconductor. Solid State Commun. 1988, 65, 361–363. [Google Scholar] [CrossRef]
  265. Brossard, L.; Hurdequint, H.; Ribault, M.; Valade, L.; Legros, J.P.; Cassoux, P. Pressure-temperature phase diagram of α′-TTF [Pd(Dmit)2]2. Synth. Met. 1988, 27, 157–162. [Google Scholar] [CrossRef]
  266. Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. Pressure induced superconductivity in molecular TTF(Pd(dmit)2)2. J. Phys. Fr. 1989, 50, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
  267. Kato, R.; Kobayashi, H.; Kobayashi, A.; Naito, T.; Tamura, M.; Tajima, H.; Kuroda, H. New molecular conductors, α- and β-(EDT-TTF)[Ni(dmit)2] metal with anomalous resistivity maximum vs. semiconductor with mixed stacks. Chem. Lett. 1989, 18, 1839–1842. [Google Scholar] [CrossRef]
  268. Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. Simultaneous competition and coexistence between charge-density waves and reentrant superconductivity in the pressure-temperature phase diagram of the molecular conductor TTF[Ni(dmit)2]2 (TTF is tetrathiafulvalene and dmit is the 1,3-dithia-2-thione-4,5-dithiolato group). Phys. Rev. B 1990, 42, 3935–3943. [Google Scholar] [CrossRef]
  269. Canadell, E.; Ravy, S.; Pouget, J.P.; Brossard, L. Concerning the band structure of D(M(dmit)2)2 (D = TTF,Cs,NMe4); M = Ni,Pd) molecular conductors and superconductors: Role of the M(dmit)2 Homo and Lumo. Solid State Commun. 1990, 75, 633–638. [Google Scholar] [CrossRef]
  270. Kobayashi, A.; Kim, H.; Sasaki, Y.; Murata, K.; Kato, R.; Kobayashi, H. Crystal and electronic structures of new molecular conductors tetramethylammonium and tetramethylarsonium complexes of Pd(dmit)2. J. Chem. Soc. Faraday Trans. 1990, 86, 361–369. [Google Scholar] [CrossRef]
  271. Cassoux, P.; Valade, L.; Kobayashi, H.; Kobayashi, A.; Clark, R.A.; Underhill, A.E. Molecular metals and superconductors derived from metal complexes of 1,3-dithiol-2-thione-4,5-dithiolate (dmit). Coord. Chem. Rev. 1991, 110, 115–160. [Google Scholar] [CrossRef]
  272. Kobayashi, A.; Kobayashi, H.; Miyamoto, A.; Kato, R.; Clark, R.A.; Unerhill, A.E. New molecular superconductor, β-[(CH3)4N][Pd(dmit)2]2. Chem. Lett. 1991, 20, 2163–2166. [Google Scholar] [CrossRef]
  273. Underhill, A.E.; Clark, R.A.; Marsden, I.; Allan, M.; Friend, R.H.; Tajima, H.; Naito, T.; Tamura, M.; Kuroda, H.; Kobayashi, A.; et al. Structural and electronic properties of Cs(Pd(dmit)2)2. J. Phys. Cond. Mat. 1991, 3, 933–954. [Google Scholar] [CrossRef]
  274. Tajima, H.; Naito, T.; Tamura, M.; Kobayashi, A.; Kuroda, H.; Kato, R.; Kobayashi, H.; Clark, R.A.; Underhill, A.E. Energy level inversion in strongly dimerized [Pd(dmit)2] salts. Solid State Commun. 1991, 79, 337–341. [Google Scholar] [CrossRef]
  275. Kobayashi, H.; Bun, K.; Naito, T.; Kato, R.; Kobayashi, A. New molecular superconductor, [Me2Et2N][Pd(dmit)2]2. Chem. Lett. 1992, 21, 1909–1912. [Google Scholar] [CrossRef]
  276. Olk, R.-M.; Olk, B.; Dietzsch, W.; Kirmse, R.; Hoyer, E. The chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit). Coord. Chem. Rev. 1992, 117, 99–131. [Google Scholar] [CrossRef]
  277. Tajima, H.; Inokuchi, M.; Kobayashi, A.; Ohta, T.; Kato, R.; Kobayashi, H.; Kuroda, H. First ambient-pressure superconductor based on Ni(dmit)2, α-EDT-TTF[Ni(dmit)2]. Chem. Lett. 1993, 22, 1235–1238. [Google Scholar] [CrossRef]
  278. Kobayashi, A.; Kato, R.; Clark, R.A.; Underhill, A.E.; Miyamoto, A.; Bun, K.; Naito, T.; Kobayashi, H. New molecular superconductors, β-[(CH3)4N][PD(dmit)2]2 and [(CH3)2(C2H5)2N][Pd(dmit)2]2. Synth. Met. 1993, 56, 2927–2932. [Google Scholar] [CrossRef]
  279. Kobayashi, A.; Naito, T.; Kobayashi, H. Crystal and electronic structures of the two-dimensional transition-metal-complex molecule -[(CH3)2(C2H5)2N] [Ni(dmit)2]2 (dmit = 1,3-dithiol-2-thione-4,5-dithiolate). Phys. Rev. B 1995, 51, 3198–3201. [Google Scholar] [CrossRef]
  280. Naito, T.; Sato, A.; Kawano, K.; Tateno, A.; Kobayashi, H.; Kobayashi, A. The new synthetic metals of M(dmise)2:[Me3HN] [Ni(dmise)2]2 and (EDT-TTF)[Ni(dmise)2]. J. Chem. Soc. Chem. Commun. 1995, 351–352. [Google Scholar] [CrossRef]
  281. Kobayashi, A.; Sato, A.; Kawano, K.; Naito, T.; Kobayashi, H.; Watanabe, T. Origin of the resistivity anomalies of (EDT-TTF)[M(dmit)2] (M = Ni, Pd). J. Mater. Chem. 1995, 5, 1671–1679. [Google Scholar] [CrossRef]
  282. Svenstrup, N.; Becher, J. The organic chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (DMIT). Synthesis 1995, 215–235. [Google Scholar] [CrossRef]
  283. Inokuchi, M.; Tajima, H.; Ohta, T.; Kuroda, H.; Kobayashi, A.; Sato, A.; Naito, T.; Kobayashi, H. Electrical Resistivity under High Pressure and Upper Critical Magnetic Field of the Molecular Superconductor α-(EDT-TTF)[Ni(dmit)2]. J. Phys. Soc. Jpn. 1996, 65, 538–544. [Google Scholar] [CrossRef]
  284. Canadell, E. Electronic structure of two-band molecular conductors. New J. Chem. 1997, 21, 1147–1159. [Google Scholar]
  285. Kato, R.; Liu, Y.-L.; Hosokoshi, Y.; Aonuma, S.; Sawa, H. Se-substitution and cation effects on the high-pressure molecular superconductor, β-Me4N[Pd(dmit)2]2–A unique two-band system. Mol. Cryst. Liq. Cryst. 1997, 296, 217–244. [Google Scholar] [CrossRef]
  286. Sato, A.; Kobayashi, H.; Naito, T.; Sakai, F.; Kobayashi, A. Enhancement of the Dimensionality of Molecular π Conductors by the selone substitution of M(dmit)2 (M = Ni, Pd) systems: Newly synthesized dmise compounds [MexH4−xN][Ni(dmise)2]2 (x = 1–3) and Cs[Pd(dmise)2]2 (dmise = 4,5-Dimercapto-1,3-dithiole-2-selone). Inorg. Chem. 1997, 36, 5262–5269. [Google Scholar] [CrossRef]
  287. Kato, R.; Kashimura, Y.; Aonuma, S.; Hanasaki, N.; Tajima, H. A new molecular superconductor β′-Et2Me2P[Pd(dmit)2]2 (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate). Solid State Commun. 1998, 105, 561–565. [Google Scholar] [CrossRef]
  288. Pullen, A.E.; Olk, R.-M. The coordination chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) and isologs. Coord. Chem. Rev. 1999, 188, 211–262. [Google Scholar] [CrossRef]
  289. Akutagawa, T.; Nakamura, T. [Ni(dmit)2] salts with supramolecular cation structure. Coord. Chem. Rev. 2000, 198, 297–311. [Google Scholar] [CrossRef]
  290. Naito, T.; Inabe, T.; Kobayashi, H.; Kobayashi, A. A new molecular metal based on Pd(dmit)2: Synthesis, structure and electrical properties of (C7H13NH)[Pd(dmit)2]2(dmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolate). J. Mater. Chem. 2001, 11, 2200–2205. [Google Scholar] [CrossRef]
  291. Kato, R.; Tajima, N.; Tamura, M.; Yamaura, J.-I. Uniaxial strain effect in a strongly correlated two-dimensional system β′-(CH3)4As[Pd (dmit)2]2. Phys. Rev. B 2002, 66, 020508. [Google Scholar] [CrossRef]
  292. Robertson, N.; Cronin, L. Metal bis-1,2-dithiolene complexes in conducting or magnetic crystalline assemblies. Coord. Chem. Rev. 2002, 227, 93–127. [Google Scholar] [CrossRef]
  293. Ribas, X.; Dias, J.C.; Morgado, J.; Wurst, K.; Molins, E.; Ruiz, E.; Almeida, M.; Veciana, J.; Rovira, C. Novel CuIII Bis-1,2-dichalcogenene complexes with tunable 3D framework through alkaline cation coordination: A structural and theoretical study. Chem. Eur. J. 2004, 10, 1691–1704. [Google Scholar] [CrossRef]
  294. Kato, R. Conducting metal dithiolene complexes: Structural and electronic properties. Chem. Rev. 2004, 104, 5319–5346. [Google Scholar] [CrossRef] [PubMed]
  295. Tajima, A.; Nakao, A.; Kato, R. Uniaxial strain effects in the conducting Pd(dmit)2 system (dmit = 1,3-dithiol-2-thione-4,5-dithiolate). J. Phys. Soc. Jpn. 2005, 74, 412–416. [Google Scholar] [CrossRef]
  296. Sarangi, R.; George, S.D.; Rudd, D.J.; Szilagyi, R.K.; Ribas, X.; Rovira, C.; Almeida, M.; Hodgson, K.O.; Hedman, B.; Solomon, E.I. Sulfur K-edge X-ray absorption spectroscopy as a probe of ligand-metal bond covalency: Metal vs. ligand oxidation in copper and nickel dithiolene complexes. J. Am. Chem. Soc. 2007, 129, 2316–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  297. Deplano, P.; Pilia, L.; Espa, D.; Mercuri, M.L.; Serpe, A. Square-planar d8 metal mixed-ligand dithiolene complexes as second order nonlinear optical chromophores: Structure/property relationship. Coord. Chem. Rev. 2010, 254, 1434–1447. [Google Scholar] [CrossRef]
  298. Kato, R. Development of π-electron systems based on [M(dmit)2] (M = Ni and Pd; dmit: 1,3-dithiole-2-thione-4,5-dithiolate) anion radicals. Bull. Chem. Soc. Jpn. 2014, 87, 355–374. [Google Scholar] [CrossRef] [Green Version]
  299. Aumüller, A.; Hünig, S. Multistep reversible redox systems, XLVI1) N,N′-Dicyanoquinonediimines—A new class of compounds, I: Synthesis and general properties. Liebigs Ann. Chem. 1986, 142–164. [Google Scholar] [CrossRef]
  300. Aumüller, A.; Erk, P.; Klebe, G.; Hünig, S.; von Schütz, J.U.; Werner, H.-P. A radical anion salt of 2,5-Dimethyl-N,N′-dicyanoquinonediimine with extremely high electrical conductivity. Angew. Chem. Int. Ed. Engl. 1986, 25, 740–741. [Google Scholar] [CrossRef]
  301. Mori, T.; Imaeda, K.; Kato, R.; Kobayashi, A.; Kobayashi, H.; Inokuchi, H. Pressure-induced one-dimensional instability in (DMDCNQI)2Cu. J. Phys. Soc. Jpn. 1987, 56, 3429–3431. [Google Scholar] [CrossRef]
  302. Kobayashi, A.; Kato, R.; Kobayashi, H.; Mori, T.; Inokuchi, H. The organic π-electron metal system with interaction through mixed-valence metal cation: Electronic and structural properties of radical salts of dicyano-quinodiimine, (DMe-DCNQI)2Cu and (MeCl-DCNQI)2Cu. Solid State Commun. 1987, 64, 45–51. [Google Scholar] [CrossRef]
  303. Tomić, S.; Jérome, D.; Aumüller, A.; Erk, P.; Hünig, S.; von Schütz, J.U. Pressure-temperature phase diagram of the organic conductor (DM-DCNQI)2Cu. Synth. Met. 1988, 27, B281–B288. [Google Scholar] [CrossRef]
  304. Tomić, S.; Jérome, D.; Aumüller, A.; Erk, P.; Hünig, S.; von Schutz, J.U. The pressure-temperature phase diagram of the organic conductor (2,5 DM-DCNQI)2Cu. J. Phys. C Solid State Phys. 1988, 21, L203–L207. [Google Scholar] [CrossRef]
  305. Tomić, S.; Jérome, D.; Aumüller, A.; Erk, P.; Hünig, S.; von Schutz, J.U. Pressure-induced metal-to-insulator phase transitions in the organic conductor (2,5 DM-DCNQI)2Cu. EPL 1988, 5, 553–558. [Google Scholar] [CrossRef]
  306. Mori, T.; Inokuchi, H.; Kobayashi, A.; Kato, R.; Kobayashi, H. Electrical conductivity, thermoelectric power, and ESR of a new family of molecular conductors, dicyanoquinonediimine-metal [(DCNQI)2M] compounds. Phys. Rev. B 1988, 38, 5913–5923. [Google Scholar] [CrossRef]
  307. Kobayashi, H.; Kato, R.; Kobayashi, A.; Mori, T.; Inokuchi, H. The first molecular metals with ordered spin structures, R1,R2-DCNQI2Cu (R1, R2 = CH3, CH3O, Cl, Br)—Jahn-Teller distortion, CDW instability and antiferromagnetic spin ordering. Solid State Commun. 1988, 65, 1351–1354. [Google Scholar] [CrossRef]
  308. Werner, H.P.; von Schütz, J.U.; Wolf, H.C.; Kremer, R.; Gehrke, M.; Aumüller, A.; Erk, P.; Hünig, S. Radical anion salts of N,N′-dicyanoquinonediimine (DCNQI): Conductivity and magnetic properties. Solid State Commun. 1988, 65, 809–813. [Google Scholar] [CrossRef]
  309. Kobayashi, A.; Kato, R.; Kobayashi, H. Reentrant behavior of the temperature dependence of resistivity of DCNQI-Cu alloy system, [(DMe)1−x(MeBr)x-DCNQI]2Cu. Chem. Lett. 1989, 18, 1843–1846. [Google Scholar] [CrossRef]
  310. Kobayashi, H.; Miyamoto, A.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. Reentrant behavior in the pressure-temperature dependence of the resistivity of (DMeO-DCNQI)2Cu. Solid State Commun. 1989, 72, 1–5. [Google Scholar] [CrossRef]
  311. Karutz, F.O.; von Schutz, J.U.; Wachtel, H.; Wolf, H.C. Optically reversed Peierls trasition in crystals of Cu(dicyanoquinonediimine)2. Phys. Rev. Lett. 1998, 81, 140–143. [Google Scholar] [CrossRef]
  312. Kato, R.; Kobayashi, H.; Kobayashi, A. Crystal and electronic structures of conductive anion-radical salts, (2,5-R1,R2-DCNQI)2Cu (DCNQI = N,N′-Dicyanoquinonediimine; R1, R2 = CH3, CH3O, Cl, Br). J. Am. Chem. Soc. 1989, 111, 5224–5232. [Google Scholar] [CrossRef]
  313. Erk, P.; Hünig, S.; Meixner, H.; Gross, H.-J.; Langohr, U.; Werner, H.-P.; von Schütz, J.U.; Wolf, H.C. Binary alloys of 2,5-disubstituted DCNQI radical anion salts of copper and their electrical conductivity. Angew. Chem. Int. Ed. Engl. 1989, 28, 1245–1246. [Google Scholar] [CrossRef]
  314. Koch, W. Extended-huckel energy band structures of organometallic compounds with one-dimensional crystal geometries. Computational results for bis(2,5-dimethyl-N,N′-dicyanoquinonediimine)copper, -silver, and -lithium. Z. Naturforsch. 1990, 45a, 148–156. [Google Scholar] [CrossRef]
  315. Yakushi, K.; Ugawa, A.; Ojima, G.; Ida, T.; Tajima, H.; Kuroda, H.; Kobayashi, A.; Kato, R.; Kobayashi, H. Polarized reflectance spectra of DCNQI salts. Mol. Cryst. Liq. Cryst. 1990, 181, 217–231. [Google Scholar] [CrossRef]
  316. Ermer, O. Sevenfold diamond structure and conductivity of copper dicyanoquinonediimines Cu(DCNQI)2. Adv. Mater. 1991, 3, 608–611. [Google Scholar] [CrossRef]
  317. Erk, P.; Meixner, H.; Metzenthin, T.; Hünig, S.; Langohr, U.; von Schütz, J.U.; Werner, H.-P.; Wolf, H.C.; Burkert, R.; Helberg, H.W.; et al. A guidance for stable metallic conductivity in copper salts of N,N′-dicyanobenzoquinonediimines (DCNQIs). Adv. Mater. 1991, 3, 311–315. [Google Scholar] [CrossRef]
  318. Hünig, S.; Erk, P. DCNQIs—new electron acceptors for charge-transfer complexes and highly conducting radical anion salts. Adv. Mater. 1991, 3, 225–236. [Google Scholar] [CrossRef]
  319. Lunardi, G.; Pecile, C. N,N′-dicyanoquinonediimines as a molecular constituent of organic conductors: Vibrational behavior and electron-molecular vibration coupling. J. Chem. Phys. 1991, 95, 6911–6923. [Google Scholar] [CrossRef]
  320. Kagoshima, S.; Sugimoto, N.; Osada, T.; Kobayashi, A.; Kato, R.; Kobayashi, H. Magnetic and structural properties of mixed-valence molecular conductors (DMeDCNQI)2Cu and (DMeODCNQI)2Cu. J. Phys. Soc. Jpn. 1991, 60, 4222–4229. [Google Scholar] [CrossRef]
  321. Miyamoto, A.; Kobayashi, H.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. Metal instability of (DMe-DCNQI)2Cu induced by uniaxial stress and enhancement of electron mass. Chem. Lett. 1992, 21, 115–118. [Google Scholar] [CrossRef]
  322. Fukuyama, H. (DCNQI)2Cu: A Luttinger-Peierls system. J. Phys. Soc. Jpn. 1992, 61, 3452–3456. [Google Scholar] [CrossRef]
  323. Suzumura, Y.; Fukuyama, H. Mean-field theory of mixed-valence conductors (R1,R2-DCNQI)2Cu. J. Phys. Soc. Jpn. 1992, 61, 3322–3330. [Google Scholar] [CrossRef]
  324. Inoue, I.H.; Kakizaki, A.; Namatame, H.; Fujimori, A.; Kobayashi, A.; Kato, R.; Kobayashi, H. Copper valence fluctuation in the organic conductor (dimethyl-N,N′-dicyanoquinonediimine)2Cu studied by x-ray photoemission spectroscopy. Phys. Rev. B 1992, 45, 5828–5833. [Google Scholar] [CrossRef] [PubMed]
  325. Nishio, Y.; Kajita, K.; Sasaki, W.; Kato, R.; Kobayashi, A.; Kobayashi, H. Thermal and magnetic properties in organic metals (DMe-DCNQI)2Cu, (DMeO-DCNQI)2Cu and (DMe1−x-MeBrx-DCNQI)2Cu: Enhancement of density of states. Solid State Commun. 1992, 81, 473–476. [Google Scholar] [CrossRef]
  326. Kobayashi, H.; Miyamoto, A.; Kato, R.; Sakai, F.; Kobayashi, A.; Yamakita, Y.; Furukawa, Y.; Tasumi, M.; Watanabe, T. Mixed valency of Cu, electron-mass enhancement, and three-dimensional arrangement of magnetic sites in the organic conductors (R1,R2-N,N′-dicyanoquinonediimine)2Cu (where R1,R2 = CH3,CH3O,Cl,Br). Phys. Rev. B 1993, 47, 3500–3510. [Google Scholar] [CrossRef] [PubMed]
  327. Kobayashi, H.; Sawa, H.; Aonuma, S.; Kato, R. Evidence for reentrant structural-phase transition in DCNQI-copper system. J. Am. Chem. Soc. 1993, 115, 7870–7871. [Google Scholar] [CrossRef]
  328. Bauer, D.; von Schütz, J.U.; Wolf, H.C.; Hünig, S.; Sinzger, K.; Kremer, R.K. Alloyed deuterated copper-DCNQI salts: Phase transitions and reentry of conductivity, giant hysteresis effects, and coexistence of metallic and semiconducting modes. Adv. Mater. 1993, 5, 829–834. [Google Scholar] [CrossRef]
  329. Sinzger, K.; Hünig, S.; Jopp, M.; Bauer, D.; Bietsch, W.; von Schütz, J.U.; Wolf, H.C.; Kremer, R.K.; Metzenthin, T.; Bau, R.; et al. The organic metal (Me2-DCNQI)2Cu: Dramatic changes in solid-state properties and crystal structure due to secondary deuterium effects. J. Am. Chem. Soc. 1993, 115, 7696–7705. [Google Scholar] [CrossRef]
  330. Aonuma, S.; Sawa, H.; Kato, R.; Kobayashi, H. Giant metal-insulator-metal transition induced by selective deuteration of the molecular conductor, (DMe-DCNQI)2Cu (DMe-DCNQI = 2,5-dimethyl-N,N′-dicyanoquinonediimine). Chem. Lett. 1993, 22, 513–516. [Google Scholar] [CrossRef]
  331. Sawa, H.; Tamura, M.; Aonuma, S.; Kato, R.; Kinoshita, M.; Kobayashi, H. Novel electronic states of partially deuterated (DMe-DCNQI)2Cu. J. Phys. Soc. Jpn. 1993, 62, 2224–2228. [Google Scholar] [CrossRef]
  332. Tamura, M.; Sawa, H.; Aonuma, S.; Kato, R.; Kinoshita, M.; Kobayashi, H. Weak ferromagnetism and magnetic anisotropy in copper salt of fully deuterated DMe-DCNQI, (DMe-DCNQI-d8)2Cu. J. Phys. Soc. Jpn. 1993, 62, 1470–1473. [Google Scholar] [CrossRef]
  333. Kato, R.; Sawa, H.; Aonuma, S.; Tamura, M.; Kinoshita, M.; Kobayashi, H. Preparation and physical properties of an alloyed (DMe-DCNQI)2Cu with fully deuterated DMe-DCNQI (DMe-DCNQI = 2,5-dimethyl-N,N′-dicyanoquinonediimine). Solid State Commun. 1993, 85, 831–835. [Google Scholar] [CrossRef]
  334. Uji, S.; Terashima, T.; Aoki, H.; Brooks, J.S.; Kato, R.; Sawa, H.; Aonuma, S.; Tamura, M.; Kinoshita, M. Coexistence of one- and three-dimensional Fermi surfaces and heavy cyclotron mass in the molecular conductor (DMe-DCNQI)2Cu. Phys. Rev. B 1994, 50, 15597–15601. [Google Scholar] [CrossRef] [PubMed]
  335. Sawa, H.; Tamura, M.; Aonuma, S.; Kinoshita, M.; Kato, R. Charge-transfer-controlled phase transition in a molecular conductor, (DMe-DCNQI)2Cu—Doping effect. J. Phys. Soc. Jpn. 1994, 63, 4302–4305. [Google Scholar] [CrossRef]
  336. Yamakita, Y.; Furukawa, Y.; Kobayashi, A.; Tasumi, M.; Kato, R.; Kobayashi, H. Vibrational studies on electronic structures in metallic and insulating phases of the Cu complexes of substituted dicyanoquinonediimines (DCNQI). A comparison with the cases of the Li and Ba complexes. J. Chem. Phys. 1994, 100, 2449–2457. [Google Scholar] [CrossRef]
  337. Kashimura, Y.; Sawa, H.; Aonuma, S.; Kato, R.; Takahashi, H.; Mori, N. Anomalous pressure-temperature phase diagram of the molecular conductor, (DI-DCNQI)2Cu (DI-DCNQI = 2,5-diiodo-N,N′-dicyanoquinonediimine). Solid State Commun. 1995, 93, 675–679. [Google Scholar] [CrossRef]
  338. Uji, S.; Terashima, T.; Aoki, H.; Kato, R.; Sawa, H.; Aonuma, S.; Tamura, M.; Kinoshita, M. Fermi surface and absence of additional mass enhancement near the insulating phase in (DMe-DCNQI)2Cu. Solid State Commun. 1995, 93, 203–207. [Google Scholar] [CrossRef]
  339. Hünig, S. N,N′-dicyanoquinonediimines (DCNQIs): Unique acceptors for conducting materials. J. Mater. Chem. 1995, 5, 1469–1479. [Google Scholar] [CrossRef]
  340. Hiraki, K.; Kobayashi, Y.; Nakamura, T.; Takahashi, T.; Aonuma, S.; Sawa, H.; Kato, R.; Kobayashi, H. Magnetic structure in the antiferromagnetic state of the organic conductor, (DMe-DCNQI[3,3:1]d7)2Cu: 1H-NMR analysis. J. Phys. Soc. Jpn. 1995, 64, 2203–2211. [Google Scholar] [CrossRef]
  341. Miyazaki, Y.; Terakura, K.; Morikawa, Y.; Yamasaki, T. First-principles theoretical study of metallic states of DCNQI-(Cu,Ag) systems: Simplicity and variety in complex systems. Phys. Rev. Lett. 1995, 74, 5104–5107. [Google Scholar] [CrossRef]
  342. Tamura, M.; Kashimura, Y.; Sawa, H.; Aonuma, S.; Kato, R.; Kinoshita, M. Enhanced magnetic susceptibility of (DI-DCNQI)2Cu. Solid State Commun. 1995, 93, 585–588. [Google Scholar] [CrossRef]
  343. Aonuma, S.; Sawa, H.; Kato, R. Chemical pressure effect by selective deuteration in the molecular-based conductor, 2,5-dimethyl-N,N′-dicyano-p-benzoquinone imine-copper salt, (DMe-DCNQI)2Cu. J. Chem. Soc. Perkin Trans. 1995, 2, 1541–1549. [Google Scholar] [CrossRef]
  344. Sekiyama, A.; Fujimori, A.; Aonuma, S.; Sawa, H.; Kato, R. Fermi-liquid versus Luttinger-liquid behavior and metal-insulator transition N,N′-dicyanoquinonediimine-Cu salt studied by photoemission. Phys. Rev. B 1995, 51, 13899–13902. [Google Scholar] [CrossRef]
  345. Takahashi, T.; Yokoya, T.; Chainani, A.; Kumigashira, H.; Akaki, O. Cooperative effects of electron correlation and charge ordering on the metal-insulator transition in quasi-one-dimensional deuterated (DMe-DCNQI)2Cu. Phys. Rev. B 1996, 53, 1790–1794. [Google Scholar] [CrossRef] [PubMed]
  346. Miyazaki, Y.; Terakura, K. First-principles theoretical study of metallic states of DCNQI-(Cu,Ag,Li) systems. Phys. Rev. B 1996, 54, 10452–10464. [Google Scholar] [CrossRef]
  347. Gómez, D.; von Schütz, J.U.; Wolf, C.H.; Hünig, S. Tunable phase transitions in conductive Cu(2,5-dimethyl-dicyanoquinonediimine)2 radical ion salts. J. Phys. I Fr. 1996, 6, 1655–1671. [Google Scholar] [CrossRef]
  348. Ogawa, T.; Suzumura, Y. Electronic properties of strongly correlated states in dicyanoquinonediimine-Cu organic conductors. Phys. Rev. B 1996, 53, 7085–7093. [Google Scholar] [CrossRef] [PubMed]
  349. Ogawa, T.; Suzumura, Y. Effect of strong correlation on metal-insulator transition of DCNQI-Cu salts—Rigorous treatment of the local constraint–. J. Phys. Soc. Jpn. 1997, 66, 690–702. [Google Scholar] [CrossRef]
  350. Seo, H.; Fukuyama, H. Antiferromagnetic phases of one-dimensional quarter-filled organic conductors. J. Phys. Soc. Jpn. 1997, 66, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
  351. Yonemitsu, K. Renormalization-group approach to the metal-insulator transitions in (DCNQI)2M (DCNQI is N,N′-dicyanoquinonediimine and M = Ag, Cu). Phys. Rev. B 1997, 56, 7262–7276. [Google Scholar] [CrossRef] [Green Version]
  352. Nogami, Y.; Hayashi, S.; Date, T.; Oshima, K.; Hiraki, K.; Kanoda, K. High pressure structures of organic low dimensional conductor DCNQI compounds. Rev. High Pressure Sci. Technol. 1998, 7, 404–406. [Google Scholar] [CrossRef]
  353. Uwatoko, Y.; Hotta, T.; Matsuoka, E.; Mori, H.; Ohki, T.; Sarraot, J.L.; Thompson, J.D.; Möri, N.; Oomi, G. High pressure apparatus for magnetization measurements. Rev. High Pressure Sci. Technol. 1998, 7, 1508–1510. [Google Scholar] [CrossRef]
  354. Kawamoto, A.; Miyagawa, K.; Kanoda, K. 13C NMR study of the metal-insulator transition in (DMe-DCNQI)2Cu systems with partial deuteration. Phys. Rev. B 1998, 58, 1243–1251. [Google Scholar] [CrossRef]
  355. Hünig, S.; Kemmer, M.; Meixner, H.; Sinzger, K.; Wenner, H.; Bauer, T.; Tillmanns, E.; Lux, F.R.; Hollstein, M.; Groß, H.-G.; et al. Multistep reversible redox systems, LXVII 2,5-Disubstituted N,N′-dicyanobenzoquinonediimines (DCNQIs): Charge-transfer complexes and radical-anion salts and copper salts with ligand alloys: Syntheses, structures and conductivities. Eur. J. Inorg. Chem. 1999, 899–916. [Google Scholar] [CrossRef]
  356. Miyagawa, K.; Kawamoto, A.; Kanoda, K. π-d orbital hybridization in the metallic state of organic-inorganic complexes seen by 13C and 15N NMR at selective sites. Phys. Rev. B 1999, 60, 14847–14851. [Google Scholar] [CrossRef]
  357. Yamamoto, T.; Tajima, H.; Yamaura, J.-I.; Aonuma, S.; Kato, R. Reflectance spectra and electrical resistivity of (Me2-DCNQI)2Li1−xCux. J. Phys. Soc. Jpn. 1999, 68, 1384–1391. [Google Scholar] [CrossRef]
  358. Kato, R. Conductive Copper Salts of 2,5-Disubstituted-N,N′-dicyanoquinonediimines (DCNQIs): Structural and physical properties. Bull. Chem. Soc. Jpn. 2000, 73, 515–534. [Google Scholar] [CrossRef]
  359. Yonemitsu, K.; Kishine, J. Charge gap and dimensional crossovers in quasi-one-dimensional organic conductors. J. Phys. Chem. Solids 2000, 62, 99–104. [Google Scholar] [CrossRef]
  360. Nishio, Y.; Tamura, M.; Kajita, K.; Aonuma, S.; Sawa, H.; Kato, R.; Kobayashi, H. Thermodynamic study of (DMe-DCNQI)2Cu system—Mechanism of reentrant metal-insulator transition–. J. Phys. Soc. Jpn. 2000, 69, 1414–1422. [Google Scholar] [CrossRef] [Green Version]
  361. Pinterić, M.; Vuletić, T.; Tomić, S.; von Schütz, J.U. Complex low-frequency dielectric relaxation of the charge-density wave state in the (2,5(OCH3)2DCNQI)2Li. Eur. Phys. J. B 2001, 22, 335–341. [Google Scholar] [CrossRef]
  362. Hünig, S.; Herberth, E. N,N′-Dicyanoquinone Diimines (DCNQIs): Versatile acceptors for organic conductors. Chem. Rev. 2004, 104, 5535–5563. [Google Scholar] [CrossRef]
  363. Tanaka, Y.; Ogata, M. Effects of charge ordering on the spin degrees of freedom in one-dimensional extended Hubbard model. J. Phys. Soc. Jpn. 2005, 3283–3287. [Google Scholar] [CrossRef]
  364. Kanoda, K. Metal-insulator transition in κ-(ET)2X and (DCNQI)2M: Two contrasting manifestation of electron correlation. J. Phys. Soc. Jpn. 2006, 75, 051007. [Google Scholar] [CrossRef]
  365. Takahashi, T.; Nogami, Y.; Yakushi, K. Charge ordering in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051008. [Google Scholar] [CrossRef]
  366. Shinohara, Y.; Kazama, S.; Mizoguchi, K.; Hiraoka, M.; Sakamoto, H.; Masubuchi, S.; Kato, R.; Hiraki, K.; Takahashi, T. Spin density distribution and electronic states in (DMe-DCNQI)2M (M = Li,Ag,Cu) from high-resolution solid state NMR. Phys. Rev. B 2007, 76, 35128. [Google Scholar] [CrossRef]
  367. Miyasaka, T.; Watanabe, T.; Fujishima, A.; Honda, K. Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes. J. Am. Chem. Soc. 1978, 100, 6657–6665. [Google Scholar] [CrossRef]
  368. Miyasaka, T.; Watanabe, T.; Fujishima, A.; Honda, K. Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrodes. Nature 1979, 277, 638–640. [Google Scholar] [CrossRef]
  369. Liu, Y.Q.; Wu, X.L.; Wang, X.H.; Yang, D.L.; Zhu, D.B. Conducting Langmuir-Blodgett films based on unsymmetrical alkylthiotetrathiafulvalene and alkylammonium-metal (dmit)2 complexes. Synth. Met. 1991, 42, 1529–1533. [Google Scholar] [CrossRef]
  370. Zhu, D.; Yang, C.; Liu, Y.; Xu, Y. Syntheses and Langmuir-Blodgett film formation of donor-acceptor molecules. Thin Solid Film 1992, 210–211, 205–207. [Google Scholar] [CrossRef]
  371. Miyasaka, T.; Koyama, K.; Itoh, I. Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science 1992, 255, 342–344. [Google Scholar] [CrossRef]
  372. Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469. [Google Scholar] [CrossRef]
  373. Koyama, K.; Yamaguchi, N.; Miyasaka, T. Antibody-mediated bacteriorhodopsin orientation for molecular device architectures. Science 1994, 265, 762–765. [Google Scholar] [CrossRef]
  374. Liu, Y.; Xu, Y.; Zhu, D.; Wada, T.; Sasabe, H.; Liu, L.; Wang, W. Langmuir-Blodgett films of an asymmetrically substituted metal-free phthalocyanine and the second-order non-linear optical properties. Thin Solid Films 1994, 244, 943–946. [Google Scholar] [CrossRef]
  375. Mitzi, D.B.; Wang, S.; Feild, C.A.; Chess, C.A.; Guloy, A.M. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 1995, 267, 1473–1476. [Google Scholar] [CrossRef]
  376. Mitzi, D.B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 1996, 8, 791–800. [Google Scholar] [CrossRef]
  377. Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 1997, 276, 1395–1397. [Google Scholar] [CrossRef] [Green Version]
  378. Kagan, C.R.; Mitzi, D.B.; Dimitrakopoulos, C.D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945–947. [Google Scholar] [CrossRef]
  379. Otsubo, T.; Aso, Y.; Takimiya, K. Functional oligothiophenes as advanced molecular electronic materials. J. Mater. Chem. 2002, 12, 2565–2575. [Google Scholar] [CrossRef]
  380. Chen, J.; Law, C.C.W.; Lam, J.W.Y.; Dong, Y.; Lo, S.M.F.; Williams, I.D.; Zhu, D.; Tang, B.Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-subsituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003, 15, 1535–1546. [Google Scholar] [CrossRef]
  381. Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D. Structures, electronic states, and electroluminescent properties of a Zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. J. Am. Chem. Soc. 2003, 125, 14816–14824. [Google Scholar] [CrossRef] [PubMed]
  382. Rovira, C. Bis(ethylenedithio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: From the molecule to functional molecular materials and devices (OFETs). Chem. Rev. 2004, 104, 5289–5317. [Google Scholar] [CrossRef]
  383. Mas-Torrent, M.; Hadley, P.; Bromly, S.T.; Ribas, X.; Tarrés, J.; Mas, M.; Molins, E.; Veciana, J.; Rovira, C. Correlation between crystal structure and mobility in organic filed-effect transistors based on single crystals of tetrathiafulvalene derivatives. J. Am. Chem. Soc. 2004, 126, 8546–8553. [Google Scholar] [CrossRef] [PubMed]
  384. Takahashi, A.; Adachi, C. Development of highly efficient thermally activated delayed fluorescent porphyrins and its application to the polymer OLEDs. In Proceedings of the Frontiers in Optics 2005, Tuscon, AZ, USA, 16–21 October 2005; OSA Publishing: Washington, DC, USA, 2005. [Google Scholar]
  385. Sun, Y.; Liu, Y.; Zhu, D. Advances in organic filed-effect transistors. J. Mater. Chem. 2005, 15, 53–65. [Google Scholar] [CrossRef]
  386. Takahashi, Y.; Hasegawa, J.; Abe, Y.; Tokura, Y.; Nishimura, K.; Saito, G. Tuning of electron injections for n-type organic transistor based on charge-transfer compounds. Appl. Phys. Lett. 2005, 86, 063504. [Google Scholar] [CrossRef]
  387. Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater. 2006, 18, 65–68. [Google Scholar] [CrossRef]
  388. Takahashi, Y.; Hasegawa, T.; Abe, Y.; Tokura, Y.; Saito, G. Organic metal electrodes for controlled p- and n-type carrier injections in organic field-effect transistors. Appl. Phys. Lett. 2006, 88, 073504. [Google Scholar] [CrossRef]
  389. Takahashi, Y.; Hasegawa, T.; Horiuchi, S.; Kumai, R.; Tokura, Y.; Saito, G. High mobility organic field-effect transistor based on hexamethylenetetrathiafulvalene with organic metal electrodes. Chem. Mater. 2007, 19, 6382–6384. [Google Scholar] [CrossRef]
  390. Takimiya, K.; Kunugi, Y.; Otsubo, T. Development of new semiconducting materials for durable high-performance air-stable organic field-effect transistors. Chem. Lett. 2007, 36, 578–583. [Google Scholar] [CrossRef]
  391. Torrent, M.-M.; Rovira, C. Novel small molecules for organic field-effect transistors: Towards processability and high performances. Chem. Soc. Rev. 2008, 37, 827–838. [Google Scholar] [CrossRef] [PubMed]
  392. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
  393. Haas, S.; Takahashi, Y.; Takimiya, K.; Hasegawa, T. High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl. Phys. Lett. 2009, 95, 022111. [Google Scholar] [CrossRef]
  394. Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light-emitting diodes—A novel mechanism for electroluminescence. Adv. Mater. 2009, 21, 4802–4806. [Google Scholar] [CrossRef] [PubMed]
  395. Zhan, X.; Zhu, D. Conjugated polymers for high-efficiency organic photovoltaics. Polym. Chem. 2010, 1, 409–419. [Google Scholar] [CrossRef]
  396. Takahashi, Y.; Obara, R.; Lin, Z.-Z.; Takahashi, Y.; Naito, T.; Inabe, T.; Ishibashi, S.; Terakura, K. Charge-transport in tin-iodide perovskite CH3NH3SnI3: Origin of high conductivity. Dalton Trans. 2011, 40, 5563–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  397. Mas-Torrent, M.; Rovira, C. Role of molecular order and solid-state structure in organic filed-effect transistors. Chem. Rev. 2011, 111, 4833–4856. [Google Scholar] [CrossRef]
  398. Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Thienoacene-based organic semiconductors. Adv. Mater. 2011, 23, 4347–4370. [Google Scholar] [CrossRef] [PubMed]
  399. Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011, 98, 083302. [Google Scholar] [CrossRef]
  400. Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [Green Version]
  401. Mas-Torrent, M.; Crivillers, N.; Rovira, C.; Veciana, J. Attaching persistent organic free radicals to surfaces: How and why. Chem. Rev. 2012, 112, 2506–2527. [Google Scholar] [CrossRef]
  402. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef] [PubMed]
  403. Inatomi, Y.; Hojo, N.; Yamamoto, T.; Watanabe, S.-I.; Misaki, Y. Construction of rechargeable batteries using multifused tetrathiafulvalene systems as cathode materials. ChemPlusChem 2012, 77, 973–976. [Google Scholar] [CrossRef]
  404. Youn Lee, S.; Yasuda, T.; Nomura, H.; Adachi, C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl. Phys. Lett. 2012, 101, 093306. [Google Scholar] [CrossRef]
  405. Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem. Commun. 2012, 48, 9580–9582. [Google Scholar] [CrossRef] [PubMed]
  406. Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 2012, 134, 14706–14709. [Google Scholar] [CrossRef] [PubMed]
  407. Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative. Chem. Commun. 2012, 48, 11392–11394. [Google Scholar] [CrossRef] [PubMed]
  408. Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem. 2013, 205, 39–43. [Google Scholar] [CrossRef]
  409. Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C.; Gao, X.; McNeil, C.R.; Thomsen, L.; Mannsfeld, S.C.B.; Yuan, W.; Sirringhaus, H.; et al. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2 V−1 s−1. J. Am. Chem. Soc. 2013, 135, 2338–2349. [Google Scholar] [CrossRef] [PubMed]
  410. Takimiya, K.; Nakano, M.; Kang, M.J.; Miyazaki, E.; Osaka, I. Thienannulation: Efficient synthesis of π-extended thienoacenes applicable to organic semiconductors. Eur. J. Org. Chem. 2013, 217–227. [Google Scholar] [CrossRef]
  411. Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 2014, 8, 326–332. [Google Scholar] [CrossRef]
  412. Kato, M.; Senoo, K.-I.; Yao, M.; Misaki, Y. A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4- diylidenes: A new positive electrode material for rechargeable batteries utilizing ten electron redox. J. Mater. Chem. A 2014, 2, 6747–6754. [Google Scholar] [CrossRef]
  413. Takimiya, K.; Osaka, I.; Nakano, M. π-building blocks for organic electronics: Revaluation of “inductive” and “resonance” effects of π-electron deficient units. Chem. Mater. 2014, 26, 587–593. [Google Scholar] [CrossRef]
  414. Saiki, T.; Mori, S.; Ohara, K.; Naito, T. Capacitor-like behavior of molecular crystal β-DiCC[Ni(dmit)2]. Chem. Lett. 2014, 43, 1119–1121. [Google Scholar] [CrossRef]
  415. Miyasaka, T. Perovskite photovoltaics: Rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett. 2015, 44, 720–729. [Google Scholar] [CrossRef] [Green Version]
  416. Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C.-A.; Yi, Y.; Sun, Y.; et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior. Nat. Commun. 2015, 6, 7408. [Google Scholar] [CrossRef] [Green Version]
  417. Osaka, I.; Takimiya, K. Backbone orientation in semiconducting polymers. Polymer 2015, 59, A1–A15. [Google Scholar] [CrossRef]
  418. Takimiya, K.; Nakano, M.; Sugino, H.; Osaka, I. Design and elaboration of organic molecules for high filed-effect-mobility semiconductors. Synth. Met. 2016, 217, 68–78. [Google Scholar] [CrossRef]
  419. Mori, T. Principles that govern electronic transport in organic conductors and transistors. Bull. Chem. Soc. Jpn. 2016, 89, 973–986. [Google Scholar] [CrossRef] [Green Version]
  420. Wong, M.Y.; Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 2017, 29, 1605444. [Google Scholar] [CrossRef] [Green Version]
  421. Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [Green Version]
  422. Nakano, M.; Takimiya, K. Sodium-sulfide promoted thiophene-annulations: Powerful tools for elaborating organic semiconducting materials. Chem. Mater. 2017, 29, 256–264. [Google Scholar] [CrossRef]
  423. Osaka, I.; Takimiya, K. Naphthobischalcogenadiazole conjugated polymers: Emerging materials for organic electronics. Adv. Mat. 2017, 29, 1605218. [Google Scholar] [CrossRef] [PubMed]
  424. Wang, Q.; Tian, Q.-S.; Zhang, Y.-L.; Tang, X.; Liao, L.-S. High-efficiency organic light-emitting diodes with exciplex hosts. J. Mater. Chem. C 2019, 7, 11329–11360. [Google Scholar] [CrossRef]
  425. Wang, Z.; Wang, C.; Zhang, H.; Liu, Z.; Zhao, B.; Li, W. The application of charge transfer host based exciplex and thermally activated delayed fluorescence materials in organic light-emitting diodes. Org. Elec. 2019, 66, 227–241. [Google Scholar] [CrossRef]
  426. Wang, S.; Zhang, H.; Zhang, B.; Xie, Z.; Wong, W.-Y. Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives. Mater. Sci. Eng. R 2020, 140, 100547. [Google Scholar] [CrossRef]
  427. Kim, M.; Ryu, S.U.; Park, S.A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: A progress report. Adv. Func. Mater. 2020, 30, 1904545. [Google Scholar] [CrossRef]
  428. Schmidbaur, H.; Raubenheimer, H.G. Excimer and exciplex formation in gold(I) complexes preconditioned by aurophilic interactions. Angew. Chem. Int. Ed. Engl. 2020, 59, 14748–14771. [Google Scholar] [CrossRef]
  429. Mallah, T.; Hollis, C.; Bott, S.; Kurmoo, M.; Day, P.; Allan, M.; Friend, R.H. Crystal structures and physical properties of bis(ethylenedithio)-tetrathiafulvalene charge-transfer salts with FeX4 (X = Cl or Br) anions. J. Chem. Soc. Dalton Trans. 1990, 859–865. [Google Scholar] [CrossRef]
  430. Day, P.; Kurmoo, M.; Mallah, T.; Marsden, I.R.; Friend, R.H.; Pratt, F.L.; Hayes, W.; Chasseau, D.; Gaultier, J.; Bravic, G.; et al. Structure and properties of tris[bis(ethylenedithio)tetrathiafulvalenium]tetrachlorocopper(II) hydrate, (BEDT-TTF)3CuCl4·H2O: First evidence for coexistence of localized and conduction electrons in a metallic charge-transfer salt. J. Am. Chem. Soc. 1992, 114, 10722–10729. [Google Scholar] [CrossRef]
  431. Gama, V.; Henriques, R.T.; Bonfait, G.; Almeida, M.; Meetsma, A.; van Smaalen, S.; de Boer, J.L. (Perylene)Co(mnt)2(CH2Cl2)0.5: A mixed molecular and polymeric conductor. J. Am. Chem. Soc. 1992, 114, 1986–1989. [Google Scholar] [CrossRef]
  432. Gama, V.; Henriques, R.; Bonfait, G.; Pereira, L.; Waerenborgh, J.C.; Santos, I.; Teresa Duarte, M.; Cabral, J.; Almeida, M. Low-dimensional molecular metals (Per)2M(mnt)2 (M = Fe and Co). Inorg. Chem. 1992, 31, 2598–2604. [Google Scholar] [CrossRef]
  433. Gómez-García, C.J.; Ouahab, L.; Giménez-Saiz, C.; Triki, S.; Coronado, E.; Delhaés, P. Coexistence of mobile and localized electrons in bis(ethylene)dithiotetrathiafulvalene (BEDT-TTF) radical salts with paramagnetic polyoxometalates: Synthesis and physical properties of (BEDT-TTF)8[CoW12O40]·5.5H2O. Angew. Chem. Int. Ed. Engl. 1994, 33, 223–226. [Google Scholar] [CrossRef]
  434. Graham, A.W.; Kurmoo, M.; Day, P. β″-(bedt-ttf)4[(H2O)Fe(C2O4)3]·PhCN: The first molecular superconductor containing paramagnetic metal ions. J. Chem. Soc. Chem. Commun. 1995, 2061–2062. [Google Scholar] [CrossRef]
  435. Galán-Mascarós, J.R.; Giménez-Saiz, C.; Triki, S.; Gómez-García, C.J.; Coronado, E.; Ouahab, L. A novel chainlike heteropolyanion formed by Keggin units: Synthesis and structure of (ET)8n[PMnW11O39]n·2nH2O. Angew. Chem. Int. Ed. Engl. 1995, 34, 1460–1462. [Google Scholar] [CrossRef]
  436. Ouahab, L. Organic/inorganic supramolecular assemblies and synergy between physical properties. Chem. Mater. 1997, 9, 1909–1926. [Google Scholar] [CrossRef]
  437. Ouahab, L. Coordination complexes in conducting and magnetic molecular materials. Coord. Chem. Rev. 1998, 178–180, 1501–1531. [Google Scholar] [CrossRef]
  438. Ribera, E.; Rovira, C.; Veciana, J.; Tarrés, J.; Canadell, E.; Rousseau, R.; Molins, E.; Mas, M.; Schoeffel, J.-P.; Pouget, J.-P.; et al. The [(DT-TTF)2M(mnt)2] family of radical ion salts: From a spin ladder to delocalised conduction electrons that interact with localised magnetic moments. Chem. Eur. J. 1999, 5, 2025–2039. [Google Scholar] [CrossRef]
  439. Coronado, E.; Gómez-García, C.J. Polyoxometalate-based molecular materials. Chem. Rev. 1998, 98, 273–296. [Google Scholar] [CrossRef]
  440. Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 2000, 408, 447–449. [Google Scholar] [CrossRef] [PubMed]
  441. Naito, T.; Inabe, T.; Takeda, K.; Awaga, K.; Akutagawa, T.; Hasegawa, T.; Nakamura, T.; Kakiuchi, T.; Sawa, H.; Yamamoto, T.; et al. β″-(ET)3(MnCl4)(1,1,2-C2H3Cl3) (ET = bis(ethylenedithio)tetrathiafulvalene); a pressure-sensitive new molecular conductor with localized spins. J. Mater. Chem. 2001, 11, 2221–2227. [Google Scholar] [CrossRef]
  442. Prokhorova, T.G.; Khasanov, S.S.; Zorina, L.V.; Burabov, L.I.; Tkacheva, V.A.; Baskakov, A.A.; Morgunov, R.B.; Gener, M.; Canadell, E.; Shibaeva, R.P.; et al. Molecular metals based on BEDT-TTF radical cation salts with magnetic metal oxalates as counterions: β″-(BEDT-TTF)4A[M(C2O4)3]·DMF (A = NH4+, K+; M = CrIII, FeIII). Adv. Func. Mater. 2003, 13, 403–411. [Google Scholar] [CrossRef]
  443. Naito, T.; Inabe, T. Molecular hexagonal perovskite: A new type of organic-inorganic hybrid conductor. J. Solid State Chem. 2003, 176, 243–249. [Google Scholar] [CrossRef]
  444. Coronado, E.; Galán-Mascarós, J.R.; Giménez-Saiz, C.; Gómez-García, C.J.; Martínez-Ferrero, E.; Almeida, M.; Lopes, E.B. Metallic conductivity in a polyoxovanadate radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): Synthesis, structure, and physical characterization of β″-(BEDT-TTF)5[H3V10O28]·4H2O. Adv. Mat. 2004, 16, 324–327. [Google Scholar] [CrossRef]
  445. Coronado, E.; Day, P. Magnetic molecular conductors. Chem. Rev. 2004, 104, 5419–5448. [Google Scholar] [CrossRef]
  446. Ouahab, L.; Enoki, T. Multiproperty molecular materials: TTF-based conducting and magnetic molecular materials. Eur. J. Inorg. Chem. 2004, 933–941. [Google Scholar] [CrossRef]
  447. Naito, T.; Inabe, T. Structural, electrical, and magnetic properties of α-(ET)7[MnCl4]2·(1,1,2-C2H3Cl3)2 (ET = bis(ethylenedithio) tetrathiafulvalene). Bull. Chem. Soc. Jpn. 2004, 77, 1987–1995. [Google Scholar] [CrossRef]
  448. Coronado, E.; Galán-Mascarós, J.R. Hybrid molecular conductors. J. Mater. Chem. 2005, 15, 66–74. [Google Scholar] [CrossRef]
  449. Fujiwara, H.; Wada, K.; Hiraoka, T.; Hayashi, T.; Sugimoto, T.; Nakazumi, H.; Yokogawa, K.; Teramura, M.; Yasuzuka, S.; Murata, K.; et al. Stable metallic behavior and antiferromagnetic ordering of Fe(III) d spins in (EDO-TTFVO)2·FeCl4. J. Am. Chem. Soc. 2005, 127, 14166–14167. [Google Scholar] [CrossRef]
  450. Kushch, N.D.; Kazakova, A.V.; Dubrovskii, A.D.; Shilov, G.V.; Buravov, L.I.; Morgunov, R.B.; Kurganova, E.V.; Tanimoto, Y.; Yagubskii, E.B. Molecular magnetism semiconductors formed by cationic and anionic networks: (ET)2Mn[N(CN)2]3 and (ET)2CuMn[N(CN)2]4. J. Mater. Chem. 2007, 17, 4407–4413. [Google Scholar] [CrossRef]
  451. Engler, E.M.; Patel, V.V. Anomalous reaction of selenium and carbon disulfide with sodium acetylide. Synthesis of selenium analogs of 1,3-Dithiole-2-thione. J. Org. Chem. 1975, 40, 387–389. [Google Scholar] [CrossRef]
  452. Engler, E.M.; Patel, V.V. Synthesis of cis- and trans-diselenadithiafulvalene and its highly conducting charge-transfer salt with tetracyano-p-quinodimethane. J. Chem. Soc. Chem. Commun. 1975, 671–672. [Google Scholar] [CrossRef]
  453. Engler, E.M.; Patel, V.V.; Schumaker, R.R. Triselenathiafulvalenes: A novel sulphur-selenium interchange on trimethyl phosphite coupling of substituted 1,3-diselenole-2-thiones. J. Chem. Soc. Chem. Commun. 1977, 835–836. [Google Scholar] [CrossRef]
  454. Schumaker, R.R.; Lee, Y.V.; Engler, E.M. New synthetic approaches to tetrathiafulvalene derivatives: Systematic modifications of BEDT-TTF and TMTTF donors. J. Phys. Colloques 1983, 44. [Google Scholar] [CrossRef]
  455. Lee, V.Y.; Engler, E.M.; Schumaker, R.R.; Parkin, S.S.P. Bis(ethylenediseleno)tetraselenafulvalene (BEDSe-TSeF). J. Chem. Soc. Chem. Commun. 1983, 235–236. [Google Scholar] [CrossRef]
  456. Bryce, M.R.; Moore, A.J.; Lorcy, D.; Dhindsa, A.S.; Robert, A. Unsymmetrical and highly-conjugated tetrathiafulvalene and selenatrithiafulvalene derivatives: Synthesis and reactions of novel heterocyclic Wittig-Horner reagents. J. Chem. Soc. Chem. Commun. 1983, 470–472. [Google Scholar] [CrossRef]
  457. Schumaker, R.R.; Lee, V.Y.; Engler, E.M. Noncoupling synthesis of tetrathiafulvalenes. J. Org. Chem. 1984, 49, 564–566. [Google Scholar] [CrossRef]
  458. Kato, R.; Kobayashi, H.; Kobayashi, A. Synthesis and properties of bis(ethylenedithio)tetraselenafulvalene (BEDT-TSeF) compounds. Synth. Met. 1991, 42, 2093–2096. [Google Scholar] [CrossRef]
  459. Moore, A.J.; Bryce, M.R. Highly conjugated π-electron donors for organic metals: Synthesis and redox chemistry of new 1,3-dithiole and 1,3-selenathiole derivatives. J. Chem. Soc. Perkin Trans. 1991, 157–168. [Google Scholar] [CrossRef]
  460. Moore, A.J.; Bryce, M.R.; Ando, D.J.; Hursthouse, M.B. New bis(ethylenedithio)tetrathiafulvalene derivatives with low oxidation potentials. J. Chem. Soc. Chem. Commun. 1991, 320–321. [Google Scholar] [CrossRef]
  461. Bryce, M.R.; Coffin, M.A.; Hursthouse, M.B.; Karaulov, A.I.; Müllen, K.; Scheich, H. Synthesis, x-ray crystal structure and multistage redox properties of a severely-distorted tetrathiafulvalene donor. Tetrahedron Lett. 1991, 32, 6029–6032. [Google Scholar] [CrossRef]
  462. Montgomery, L.K.; Burgin, T.; Husting, C.; Tilley, L.; Huffman, J.C.; Carlson, K.D.; Dudek, J.D.; Yaconi, G.A.; Geiser, U.; Williams, J.M. Synthesis and characterization of radical cation salts derived from tetraselenafulvalene and bis(ethylenedithio)tetraselenafulvalene. Mol. Cryst. Liq. Cryst. 1992, 211, 283–288. [Google Scholar] [CrossRef]
  463. Kobayashi, A.; Udagawa, T.; Tomita, H.; Naito, T.; Kobayashi, H. A New Organic Superconductor, λ-(BEDT-TSF)2GaCl4. Chem. Lett. 1993, 22, 1559–1562. [Google Scholar] [CrossRef]
  464. Kobayashi, H.; Udagawa, T.; Tomita, H.; Bun, K.; Naito, T.; Kobayashi, A. New organic metals based on BETS compounds with MX4 Anions (BETS = bis(ethylenedithio)tetraselenafulvalene; M = Ga, Fe, In; X = Cl, Br). Chem. Lett. 1993, 22, 2179–2182. [Google Scholar] [CrossRef]
  465. Goze, F.; Laukhin, V.N.; Brossard, L.; Audouard, A.; Ulmet, J.P.; Askenazy, S.; Naito, T.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; et al. Magnetotransport measurements on the λ-phase of the organic conductors (BETS)2MCl4 (M = Ga, Fe). Magnetic-field-restored highly conducting state in λ-(BETS)2FeCl4. EPL 1994, 28, 427–431. [Google Scholar] [CrossRef]
  466. Kobayashi, H.; Tomita, H.; Naito, T.; Kobayashi, A.; Sakai, F.; Watanabe, T.; Cassoux, P. New BETS superconductors with magnetic anions (BETS = bis(ethylenedithio)tetraselenafulvalene). J. Am. Chem. Soc. 1996, 118, 368–377. [Google Scholar] [CrossRef]
  467. Kobayashi, H.; Akutsu, H.; Arai, E.; Tanaka, H.; Kobayashi, A. Electric and magnetic properties and phase diagram of a series of organic superconductors λ-BETS2GaXzY4−z [BETS = bis(ethylenedithio)tetraselenafulvalene, X, Y = F, Cl, Br; 0 < z < 2]. Phys. Rev. B 1997, 56, R8526–R8529. [Google Scholar] [CrossRef]
  468. Courcet, T.; Malfant, I.; Pokhodnia, K.; Cassoux, P. Bis(ethylenedithio)tetraselenafulvalene: Short-cut synthesis, X-ray crystal structure and π-electron density distribution. New J. Chem. 1998, 22, 585–589. [Google Scholar] [CrossRef]
  469. Brossard, L.; Clerac, L.; Coulon, C.; Tokumoto, M.; Ziman, T.; Petrov, D.K.; Laukhin, D.N.; Naughton, M.J.; Audouard, A.; Goze, F.; et al. Interplay between chains of S = 5/2 localised spins and two-dimensional sheets of organic donors in the synthetically built magnetic multilayer λ-BETS2FeCl4. Eur. Phys. J. B 1998, 1, 439–452. [Google Scholar] [CrossRef]
  470. Sato, A.; Ojima, E.; Akutsu, H.; Kobayashi, H.; Kobayashi, A.; Cassoux, P. Temperature-composition phase diagram of the organic alloys, λ-BETS2(FexGa1−x)Cl4 with mixed magnetic and non-magnetic anions. Chem. Lett. 1998, 673–674. [Google Scholar] [CrossRef]
  471. Akutsu, H.; Kato, K.; Arai, E.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; Brossard, L.; Cassoux, P. A coupled metal-insulator and antiferromagnetic transition of λ-BETS2FeCl4 under high-pressure and magnetic field [BETS = bis(ethylenedithio)tetraselenafulvalene]. Solid State Commun. 1998, 105, 485–489. [Google Scholar] [CrossRef]
  472. Ojima, E.; Fujiwara, H.; Kato, K.; Kobayashi, H.; Tanaka, H.; Kobayashi, A.; Tokumoto, M.; Cassoux, P. Antiferromagnetic organic metal exhibiting superconducting transition, κ-BETS2FeBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 1999, 121, 5581–5582. [Google Scholar] [CrossRef]
  473. Tanaka, H.; Adachi, T.; Ojima, E.; Fujiwara, H.; Kato, K.; Kobayashi, H.; Kobayashi, A.; Cassoux, P. Pressure-induced superconducting transition of λ-BETS2FeCl4 with π-d coupled antiferromagnetic insulating ground state at ambient pressure [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 1999, 121, 11243–11244. [Google Scholar] [CrossRef]
  474. Otsuka, T.; Kobayashi, A.; Miyamoto, Y.; Kiuchi, J.; Wada, N.; Ojima, E.; Fujiwara, H.; Kobayashi, H. Successive antiferromagnetic and superconducting transitions in an organic metal, κ-BETS2FeCl4. Chem. Lett. 2000, 732–733. [Google Scholar] [CrossRef]
  475. Balicas, L.; Brooks, J.S.; Storr, K.; Graf, D.; Uji, S.; Shinagawa, H.; Ojima, E.; Fujiwara, H.; Kobayashi, H.; Kobayashi, A.; et al. Schubnikov-de-Haas effect and Yamaji oscillations in the antiferromagnetically ordered organic superconductor κ-(BETS)2FeBr4: A fermiology study. Solid State Commun. 2000, 116, 557–562. [Google Scholar] [CrossRef]
  476. Mazumdar, S.; Clay, R.T.; Campbell, D.K. Bond-order and charge-density waves in the isotropic interacting two-dimensional quarter-filled and the insulating state proximate to organic superconductivity. Phys. Rev. B Cond. Matter Mater. Phys. 2000, 62, 13400–13425. [Google Scholar] [CrossRef] [Green Version]
  477. Kobayashi, H.; Kobayashi, A.; Cassoux, P. BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem. Soc. Rev. 2000, 29, 325–333. [Google Scholar] [CrossRef]
  478. Hotta, C.; Fukuyama, H. Effects of localized spins in quasi-two dimensional organic conductors. J. Phys. Soc. Jpn. 2000, 69, 2577–2596. [Google Scholar] [CrossRef]
  479. Otsuka, T.; Kobayashi, A.; Miyamoto, Y.; Kiuchi, J.; Nakamura, S.; Wada, N.; Fujiwara, E.; Fujiwara, H.; Kobayashi, H. Organic antiferromagnetic metals exhibiting superconducting transitions κ-(BETS)2FeX4 (X = Cl, Br): Drastic effect of halogen substitution on the successive phase transitions. J. Solid State Chem. 2001, 159, 407–412. [Google Scholar] [CrossRef]
  480. Fujiwara, H.; Fujiwara, E.; Nakazawa, Y.; Narymbetov, B.Z.; Kato, K.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; Cassoux, P. A novel antiferromagnetic organic superconductor κ-BETS2FeBr4 [where BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 2001, 123, 306–314. [Google Scholar] [CrossRef]
  481. Uji, S.; Shinagawa, H.; Terashima, T.; Yakabae, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi, H. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature 2001, 410, 908–910. [Google Scholar] [CrossRef]
  482. Balicas, L.; Brooks, J.S.; Storr, K.; Uji, S.; Tokumoto, M.; Tanaka, H.; Kobayashi, H.; Kobayashi, A.; Barzykin, V.; Gor’kov, L.P. Superconductivity in an organic insulator at very high magnetic fields. Phys. Rev. Lett. 2001, 87, 670021–670024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  483. Uji, S.; Shinagawa, H.; Terakura, C.; Terashima, T.; Yakabe, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi, H. Fermi surface studies in the magnetic-field-induced superconductor λ-BETS2FeCl4. Phys. Rev. B 2001, 64, 024531. [Google Scholar] [CrossRef]
  484. Takimiya, K.; Jigami, T.; Kawashima, M.; Kodani, M.; Aso, Y.; Otsubo, T. Synthetic procedure for various selenium-containing electron donors of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) type. J. Org. Chem. 2002, 67, 4218–4227. [Google Scholar] [CrossRef] [PubMed]
  485. Uji, S.; Kobayashi, H.; Balicas, L.; Brooks, J.S. Superconductivity in an organic conductor stabilized by a high magnetic field. Adv. Mater. 2002, 14, 243–245. [Google Scholar] [CrossRef]
  486. Cépas, O.; McKenzie, R.H.; Merino, J. Magnetic-field-induced superconductivity in layered organic molecular crystals with localized magnetic moments. Phys. Rev. B 2002, 65, 100502(R). [Google Scholar] [CrossRef] [Green Version]
  487. Mori, T.; Katsuhara, M. Estimation of the πd-interactions in organic conductors including magnetic anions. J. Phys. Soc. Jpn. 2002, 71, 826–844. [Google Scholar] [CrossRef]
  488. Uji, S.; Terakura, C.; Terashima, T.; Yakabe, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Sakai, F.; Tanaka, H.; Kobayashi, H. Fermi surface and internal magnetic field of the organic conductors λ-BETS2FexGa1−xCl4. Phys. Rev. B Cond. Mat. Mat. Phys. 2002, 65, 113101. [Google Scholar] [CrossRef]
  489. Fujiwara, H.; Kobayashi, H.; Fujiwara, E.; Kobayashi, A. An indication of magnetic-field-induced superconductivity in a bifunctional layered organic conductor κ-BETS2FeBr4. J. Am. Chem. Soc. 2002, 124, 6816–6817. [Google Scholar] [CrossRef]
  490. Shimahara, H. Fulde-Ferrell-Larkin-Ovchinnikov state and field-induced superconductivity in an organic superconductor. J. Phys. Soc. Jpn. 2002, 71, 1644–1647. [Google Scholar] [CrossRef] [Green Version]
  491. Zhang, B.; Tanaka, H.; Fujiwara, H.; Kobayashi, H.; Fujiwara, E.; Kobayashi, A. Dual-action molecular superconductors with magnetic anions. J. Am. Chem. Soc. 2002, 124, 9982–9983. [Google Scholar] [CrossRef]
  492. Houzet, M.; Buzdin, A.; Bulaevskii, L.; Maley, M. New superconducting phases in field-induced organic superconductor λ-BETS2FeCl4. Phys. Rev. Lett. 2002, 88, 227001. [Google Scholar] [CrossRef] [Green Version]
  493. Alberola, A.; Coronado, E.; Galán-Mascarós, J.R.; Giménez-Saiz, C.; Gómez-García, C.J. A molecular ferromagnet from the organic donor bis(ethylenedithio)tetraselenafulvalene and bimetallic oxalate complexes. J. Am. Chem. Soc. 2003, 125, 10774–10775. [Google Scholar] [CrossRef]
  494. Uji, S.; Terashima, T.; Terakura, C.; Yakabe, T.; Terai, Y.; Yasuzuka, S.; Imanaka, Y.; Tokumoto, M.; Kobayashi, A.; Sakai, F.; et al. Global phase diagram of the magnetic-field-induced superconductors λ-BETS2FexGa1−xCl4. J. Phys. Soc. Jpn. 2003, 72, 369–373. [Google Scholar] [CrossRef]
  495. Kobayashi, H.; Cui, H.; Kobayashi, A. Organic metals and superconductors based on BETS (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem. Rev. 2004, 104, 5265–5288. [Google Scholar] [CrossRef] [PubMed]
  496. Pilia, L.; Malfant, I.; de Caro, D.; Senocq, F.; Zwick, A.; Valade, L. Conductive thin films of θ-BETS4[Fe(CN)5NO] on silicon electrodes—New perspectives on charge transfer salts. New J. Chem. 2004, 28, 52–55. [Google Scholar] [CrossRef]
  497. Konoike, T.; Uji, S.; Terashima, T.; Nishimura, M.; Yasuzuka, S.; Enomoto, K.; Fujiwara, H.; Zhang, B.; Kobayashi, H. Magnetic-field-induced superconductivity in the antiferromagnetic organic superconductor κ-(BETS)2FeBr4. Phys. Rev. B 2004, 70, 094514. [Google Scholar] [CrossRef]
  498. Fujiwara, H.; Kobayashi, H. Development of an antiferromagnetic organic superconductor κ-(BETS)2FeBr4. Bull. Chem. Soc. Jpn. 2005, 78, 1181–1196. [Google Scholar] [CrossRef]
  499. Powell, B.J.; McKenzie, R.H. Half-filled layers organic superconductors and the resonating-valence-bond theory of the Hubbard-Heisenberg model. Phys. Rev. Lett. 2005, 94, 047004. [Google Scholar] [CrossRef] [Green Version]
  500. Uji, S.; Brooks, J.S. Magnetic-field-induced superconductivity in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051014. [Google Scholar] [CrossRef]
  501. Uji, S.; Terashima, T.; Nishimura, M.; Takahide, Y.; Konoike, T.; Enomoto, K.; Cui, H.; Kobayashi, H.; Kobayashi, A.; Tanaka, H.; et al. Vortex dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov state in a magnetic-field-induced organic superconductor. Phys. Rev. Lett. 2006, 97, 157001. [Google Scholar] [CrossRef]
  502. Powell, B.J.; McKenzie, R.H. Strong electronic correlations in superconducting organic charge transfer salts. J. Phys. Condens. Matter 2006, 18, R827–R866. [Google Scholar] [CrossRef]
  503. Zhang, B.; Wang, Z.; Zhang, Y.; Takahashi, K.; Okano, Y.; Cui, H.; Kobayashi, H.; Inoue, K.; Kurmoo, M.; Pratt, F.L.; et al. Hybrid organic-inorganic conductor with a magnetic chain anion: κ-BETS2[FeIII(C2O4)Cl2] [BETS = bis(ethyleneditho)tetraselenafulvalene]. Inorg. Chem. 2006, 45, 3275–3280. [Google Scholar] [CrossRef] [PubMed]
  504. Hiraki, K.-I.; Mayaffre, H.; Horvatić, M.; Berthier, C.; Uji, S.; Yamaguchi, T.; Tanaka, H.; Kobayashi, A.; Kobayashi, H.; Takahashi, T. 77Se NMR evidence for the Jaccarino-Peter mechanism in the field induced superconductor, λ-BETS2FeCl4. J. Phys. Soc. Jpn. 2007, 76, 124708. [Google Scholar] [CrossRef] [Green Version]
  505. Kushch, N.D.; Yagubskii, E.B.; Kartsovnik, M.V.; Buravov, N.I.; Dubrovskii, A.D.; Chekhlov, A.N.; Biberacher, W. π-donor BETS based bifunctional superconductorwith polymeric dicyanamidomanganate(II) anion layer:κ-BETS2Mn[N(CN)2]3. J. Am. Chem. Soc. 2008, 130, 7238–7240. [Google Scholar] [CrossRef] [PubMed]
  506. Coronado, E.; Curreli, S.; Gimenez-Saiz, C.; Gómez-García, C.J.; Alberola, A.; Canadell, E. Molecular conductors based on the mixed-valence polyoxometallates [SMo12O4O]n− (n = 3 and 4) and the organic donors bis(ethylenedithio)tetrathiafulvalene and bis(ethylenedithio)tetraselenafulvalene. Inorg. Chem. 2009, 48, 11314–11324. [Google Scholar] [CrossRef] [PubMed]
  507. Waerenborgh, J.C.; Rabaça, S.; Almeida, M.; Lopes, E.B.; Kobayashi, A.; Zhou, B.; Brooks, J.S. Mössbauer spectroscopy and magnetic transition of λ-BETS2FeCl4. Phys. Rev. B 2010, 81, 060413(R). [Google Scholar] [CrossRef] [Green Version]
  508. Zverev, V.N.; Kartsovnik, M.V.; Biberacher, W.; Khasanov, S.S.; Shibaeva, R.P.; Ouahab, L.; Toupet, L.; Kushch, N.D.; Yagubskii, E.B.; Canadell, E. Temperature-pressure phase diagram and electronic properties of the organic metal κ-BETS2Mn[N(CN)2]3. Phys. Rev. B 2010, 82, 155123. [Google Scholar] [CrossRef] [Green Version]
  509. Vyaselev, O.M.; Kartsovnik, M.V.; Biberacher, W.; Zorina, L.V.; Kushch, N.D.; Yagubskii, E.B. Magnetic transformations in the organic conductor κ-(BETS)2Mn[N(CN)2]3 at the metal-insulator transition. Phys. Rev. B 2011, 83, 094425. [Google Scholar] [CrossRef] [Green Version]
  510. Kobayashi, H.; Kobayashi, A.; Tajima, H. Studies on molecular conductors: From organic semiconductors to molecular metals and superconductors. Chem. Asian J. 2011, 6, 1688–1704. [Google Scholar] [CrossRef]
  511. Naito, T.; Matsuo, S.; Inabe, T.; Toda, Y. Carrier dynamics in a series of organic magnetic superconductors. J. Phys. Chem. C 2012, 116, 2588–2593. [Google Scholar] [CrossRef] [Green Version]
  512. Akiba, H.; Shimada, K.; Tajima, N.; Kajita, K.; Nishio, Y. Paramagnetic metal-antiferromagnetic insulator transition in π-d system λ-BETS2FeCl4, BETS = bis(ethylenedithio)tetraselenafulvalene. Crystals 2012, 2, 984–995. [Google Scholar] [CrossRef]
  513. Uji, S.; Kodama, K.; Sugii, K.; Terashima, T.; Takahide, Y.; Kurita, N.; Tsuchiya, S.; Kimata, M.; Kobayashi, A.; Zhou, B.; et al. Magnetic torque studies on FFLO phase in magnetic-field-induced superconductor λ-BETS2FeCl4. J. Phys. Soc. Jpn. 2012, 85, 174530. [Google Scholar] [CrossRef]
  514. Uji, S.; Kodama, K.; Sugii, K.; Terashima, T.; Yamaguchi, T.; Kurita, N.; Tsuchiya, S.; Kimata, M.; Konoike, T.; Kobayashi, A.; et al. Orbital effect on FFLO phase and energy dissipation due to vortex dynamics in magnetic-field-induced superconductor λ-BETS2FeCl4. J. Phys. Soc. Jpn. 2013, 82, 034715. [Google Scholar] [CrossRef]
  515. Lyubovskaya, R.; Zhilyaeva, E.; Shilov, G.; Audouard, A.; Vignolles, D.; Canadell, E.; Pesotskii, S.; Lyubovskii, R. Dual-layered quasi-two-dimensional organic conductors with presumable incoherent electron transport. Eur. J. Inorg. Chem. 2014, 3820–3836. [Google Scholar] [CrossRef]
  516. Kushch, N.D.; Buravov, L.I.; Kushch, P.P.; Shilov, G.V.; Yamochi, H.; Ishikawa, M.; Otsuka, A.; Shakin, A.A.; Maximova, O.V.; Volkova, O.S.; et al. Multifunctional compound combining conductivity and single-molecule magnetism in the same temperature range. Inorg. Chem. 2018, 57, 2386–2389. [Google Scholar] [CrossRef] [PubMed]
  517. Fukuoka, S.; Fukuchi, S.; Akutsu, H.; Kawamoto, A.; Nakazawa, Y. Magnetic and electronic properties of π-d interacting molecular magnetic superconductor κ-(BETS)2FeX4 (X = Cl, Br) studied by angle-resolved heat capacity measurements. Crystals 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
  518. Ramazashvili, R.; Grigoriev, P.D.; Helm, T.; Kollmannsberger, F.; Kunz, M.; Biberacher, W.; Kampert, E.; Fujiwara, H.; Erb, A.; Wosnitza, J.; et al. Experimental evidence for Zeeman spin-orbit coupling in layered antiferromagnetic conductors. Npj. Quantum Mater. 2021, 6, 11. [Google Scholar] [CrossRef]
  519. Naito, T.; Kakizaki, A.; Wakeshima, M.; Hinatsu, Y.; Inabe, T. Photochemical modification of magnetic properties in organic low-dimensional conductors. J. Solid State Chem. 2009, 182, 2733–2742. [Google Scholar] [CrossRef] [Green Version]
  520. Naito, T. Development of control method of conduction and magnetism in molecular crystals. Bull. Chem. Soc. Jpn. 2017, 90, 89–136. [Google Scholar] [CrossRef] [Green Version]
  521. Coniglio, W.A.; Winter, L.E.; Cho, K.; Agosta, C.C.; Fravel, B.; Montgomery, L.K. Superconducting phase diagram and FFLO signature in λ-BETS2GaCl4 from rf penetration depth measurements. Phys. Rev. B 2011, 83, 224507. [Google Scholar] [CrossRef] [Green Version]
  522. Agosta, C.C.; Jin, J.; Coniglio, W.A.; Smith, B.E.; Cho, K.; Stroe, I.; Martin, C.; Tozer, S.W.; Murphy, T.P.; Palm, E.C.; et al. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state. Phys. Rev. B 2012, 85, 214514. [Google Scholar] [CrossRef] [Green Version]
  523. Koutroulakis, G.; Kühne, H.; Schlueter, J.A.; Wosnitza, J.; Brown, S.E. Microscopic study of the Fulde-Ferrell-Larkin-Ovchinnikov state in an all-organic superconductor. Phys. Rev. Lett. 2016, 116, 067003. [Google Scholar] [CrossRef] [PubMed]
  524. Uji, S.; Iida, Y.; Sugiura, S.; Isono, T.; Sugii, K.; Kikugawa, N.; Terashima, T.; Yasuzuka, S.; Akutsu, H.; Nakazawa, Y.; et al. Ferrell-Larkin-Ovchinnikov superconductivity in the layered organic superconductor β″-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2. Phys. Rev. B 2018, 97, 144505. [Google Scholar] [CrossRef] [Green Version]
  525. Akutsu, H.; Yamada, J.-I.; Nakasuji, S.; Turner, S.S. A novel BEDT-TTF-based purely organic magnetic conductor, α-(BEDT-TTF)2(TEMPO-N(CH3)COCH2SO3)·3H2O. Solid State Commun. 2006, 140, 256–260. [Google Scholar] [CrossRef] [Green Version]
  526. Akutsu, H.; Ohnishi, R.; Yamada, J.-I.; Nakasuji, S.; Turner, S.S. Novel bis(ethylenedithio)tetrathiafulvalene-based organic conductor with 1,1′-ferrocenedisulfonate. Inorg. Chem. 2007, 46, 8472–8474. [Google Scholar] [CrossRef]
  527. Akutsu, H.; Yamashita, S.; Yamada, J.-I.; Nakasuji, S.; Hosokoshi, Y.; Turner, S.S. A purely organic paramagnetic metal, κ-β″-(BEDT-TTF)2(PO-CONHC2H4SO3), where PO = 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl free radical. Chem. Mater. 2011, 23, 762–764. [Google Scholar] [CrossRef] [Green Version]
  528. Akutsu, H.; Yamada, J.-I.; Nakasuji, S. New BEDT-TTF-based organic conductor including an organic anion derived from the TEMPO radical, α-(BEDT-TTF)3(TEMPO-NHCOCH2SO3)2·6H2O. Chem. Lett. 2003, 32, 1118–1119. [Google Scholar] [CrossRef]
  529. Blanchard, P.; Boubekeur, K.; Sallé, M.; Duguay, G.; Jubault, M.; Gorgues, A.; Martin, J.D.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; et al. A construction principle of the κ-phase based on the efficient (O–H)donor···Oanion structural functionality: The examples of κ-(EDT-TTF(CH2OH))2X (X = ClO4 and ReO4). Adv. Mater. 1992, 4, 579–581. [Google Scholar] [CrossRef]
  530. Pénicaud, A.; Boubekeur, K.; Batail, P.; Canadell, E.; Auban-Senzier, P.; Jérome, D. Hydrogen-bond tuning of macroscopic transport properties from the neutral molecular component site along the series of metallic organic-inorganic solvates (BEDT-TTF)4Re6Se5Cl9[guest], [guest = DMF, THF, dioxane]. J. Am. Chem. Soc. 1993, 115, 4101–4112. [Google Scholar] [CrossRef]
  531. Imakubo, T.; Sawa, H.; Kato, R. Synthesis and crystal structure of the molecular metal based on iodine-bonded π-donor, (IEDT)[Pd(dmit)2]. J. Chem. Soc. Chem. Commun. 1995, 1097–1098. [Google Scholar] [CrossRef]
  532. Imakubo, T.; Sawa, H.; Kato, R. Novel molecular conductors, (DIETS)4M(CN)4 (M = Ni, Pd, Pt): Highly reticulated donor⋯anion contacts by –I⋯NC– interaction. J. Chem. Soc. Chem. Commun. 1995, 1667–1668. [Google Scholar] [CrossRef]
  533. Naito, T.; Kobayashi, N.; Inabe, T. Synthesis of new Ni-complexes with a chalcogen donor ligand and cyano groups. Chem. Lett. 1998, 27, 723–724. [Google Scholar] [CrossRef]
  534. Yamamoto, H.M.; Yamaura, J.-I.; Kato, R. Multicomponent molecular conductors with supramolecular assembly: Iodine-containing neutral molecules as building blocks. J. Am. Chem. Soc. 1998, 120, 5905–5913. [Google Scholar] [CrossRef]
  535. Heuzé, K.; Fourmigué, M.; Batail, P.; Canadell, E.; Auban-Senzier, P. Directing the structures and collective electronic properties of organic conductors: The interplay of π-overlap interactions and hydrogen bonds. Chem. Eur. J. 1999, 5, 2971–2976. [Google Scholar] [CrossRef]
  536. Dautel, O.J.; Fourmigué, M. Fluorinated tetrathiafulvalenes with preserved electron-donor properties and segregated fluorous bilayer structures based on F···F nonbonded interactions. J. Org. Chem. 2000, 65, 6479–6486. [Google Scholar] [CrossRef] [PubMed]
  537. Domercq, B.; Devic, T.; Fourmigué, M.; Auban-Senzier, P.; Canadell, E. Hal···Hal interactions in a series of three isostructural salts of halogenated tetrathiafulvalenes. Contribution of the halogen atoms to the HOMO-HOMO overlap interactions. J. Mater. Chem. 2001, 11, 1570–1575. [Google Scholar] [CrossRef]
  538. Fourmigué, M.; Batail, P. Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors. Chem. Rev. 2004, 104, 5379–5418. [Google Scholar] [CrossRef]
  539. Imakubo, T.; Shirahata, T.; Hervé, K.; Ouahab, L. Supramolecular organic conductors based on diiodo-TTFs and spherical halide ion X (X = Cl, Br). J. Mater. Chem. 2006, 16, 162–173. [Google Scholar] [CrossRef]
  540. Imakubo, T.; Shirahata, T.; Kibune, M.; Yoshino, H. Hybrid organic/inorganic supramolecular conductors D2[Au(CN)4] [D = diiodo(ethylenedichalcogeno)tetrachalcogenofulvalene], including a new ambient pressure superconductor. Eur. J. Inorg. Chem. 2007, 4727–4735. [Google Scholar] [CrossRef]
  541. Réthoré, C.; Madalan, A.; Fourmigué, M.; Canadell, E.; Lopes, E.B.; Almeida, M.; Clérac, R.; Avarvari, N. O⋯S vs. N⋯S intramolecular nonbonded interactions in neutral and radical cation salts of TTF-oxazoline derivatives: Synthesis, theoretical investigations, crystalline structures, and physical properties. New J. Chem. 2007, 31, 1468–1483. [Google Scholar] [CrossRef] [Green Version]
  542. Fourmigué, M. Halogen bonding in conducting or magnetic molecular materials. In Structure and Bonding; Metrangolo, P., Resnati, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 126, pp. 181–207. [Google Scholar] [CrossRef]
  543. Fourmigué, M. Halogen bonding: Recent advances. Curr. Opin. Solid State Mater. Sci. 2009, 13, 36–45. [Google Scholar] [CrossRef]
  544. Lieffrig, J.; Jeannin, O.; Frąckowiak, A.; Olejniczak, I.; Świetlik, R.; Dahaoui, S.; Aubert, E.; Espinosa, E.; Auban-Senzier, P.; Fourmigué, M. Charge-assisted halogen bonding: Donor-acceptor complexes with variable ionicity. Chem. Eur. J. 2013, 19, 14804–14813. [Google Scholar] [CrossRef] [PubMed]
  545. Brezgunova, M.E.; Lieffrig, J.; Aubert, E.; Dahaoui, S.; Fertey, P.; Lebègue, S.; Ángyán, J.G.; Fourmigué, M.; Espinosa, E. Chalcogen bonding: Experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic-nucleophilic interactions. Cryst. Growth Des. 2013, 13, 3283–3289. [Google Scholar] [CrossRef]
  546. Huynh, H.-T.; Jeannin, O.; Fourmigué, M. Organic selenocyanates as strong and directional chalcogen bond donors for crystal engineering. Chem. Commun. 2017, 53, 8467–8469. [Google Scholar] [CrossRef]
  547. Coronado, E.; Galán Mascarós, J.R.; Giménez-López, M.C.; Almeida, M.; Waerenborgh, J.C. Spin crossover FeII complexes as templates for bimetallic oxalate-based 3D magnets. Polyhedron 2007, 26, 1838–1844. [Google Scholar] [CrossRef]
  548. Zhang, G.; Jin, L.; Zhang, R.; Bai, Y.; Zhu, R.; Pang, H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord. Chem. Rev. 2021, 439, 213915. [Google Scholar] [CrossRef]
  549. Nohr, R.S.; Kuznesof, P.M.; Kenney, M.E.; Siebenmanu, P.G.; Wynne, K.J. Highly conducting linear stacked polymers: Iodine-doped fluoroaluminum and fluorogallium phthalocyanines. J. Am. Chem. Soc. 1981, 103, 4371–4377. [Google Scholar] [CrossRef]
  550. Metz, J.; Hanack, M. Synthesis, characterization, and conductivity of (μ-Cyano)(phthalocyaninato)cobalt(III). J. Am. Chem. Soc. 1983, 105, 828–830. [Google Scholar] [CrossRef]
  551. Dirk, C.W.; Inabe, T.; Schoch, K.F.; Marks, T.J. Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. chemical and architectural properties of the “face-to-face” polymers [M(phthalocyaninato)0], where M = Si, Ge, and Sn. J. Am. Chem. Soc. 1983, 105, 1539–1550. [Google Scholar] [CrossRef]
  552. Hanack, M.; Deger, S.; Lange, A. Bisaxially coordinated macrocyclic transition metal complexes. Coord. Chem. Rev. 1988, 83, 115–136. [Google Scholar] [CrossRef]
  553. Andre, J.-J.; Holczer, K.; Petit, P.; Riou, M.-T.; Clarisse, C.; Even, R.; Fourmigue, M.; Simon, J. Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato)lutetium. Chem. Phys. Lett. 1985, 115, 463–466. [Google Scholar] [CrossRef]
  554. Kennedy, B.J.; Murray, K.S.; Zwack, P.R.; Homborg, H.; Kalz, W. Spin states in iron(III) phthalocyanines studied by Mössbauer, magnetic susceptibility, and ESR measurements. Inorg. Chem. 1986, 25, 2539–2545. [Google Scholar] [CrossRef]
  555. Yakushi, K.; Sakuda, M.; Hamada, I.; Kuroda, H.; Kawamoto, A.; Tanaka, J.; Sugano, T.; Kinoshita, M. Preparation, structure and properties of metallic (phthalocyanato)nickel salts. Synth. Met. 1987, 19, 769–774. [Google Scholar] [CrossRef]
  556. Ogawa, M.Y.; Martinsen, J.; Palmer, S.M.; Stanton, J.L.; Tanaka, J.; Greene, R.L.; Hoffman, B.M.; Ibers, J.A. Cu(pc)I: A molecular metal with a one-dimensional array of local moments embedded in a “Fermi Sea” of charge carriers. J. Am. Chem. Soc. 1987, 109, 1115–1121. [Google Scholar] [CrossRef]
  557. Inabe, T.; Maruyama, Y. Multi-dimensional stacking structures in phthalocyanine-based electrical conductors, K[Co(phthalocyaninato)(CN)2]2·5CH3CN and Co(phthalocyaninato)(CN)2·2H2O. Bull. Chem. Soc. Jpn. 1990, 63, 2273–2280. [Google Scholar] [CrossRef] [Green Version]
  558. Hasegawa, H.; Naito, T.; Inabe, T.; Akutagawa, T.; Nakamura, T. A highly conducting partially oxidized salt of axially substituted phthalocyanine. Structure and physical properties of TPP[Co(Pc)(CN)2]2 {TPP = tetraphenylphosphonium, [Co(Pc)(CN)2] = dicyano(phthalocyaninate)cobalt(III)}. J. Mater. Chem. 1998, 8, 1567–1570. [Google Scholar] [CrossRef]
  559. Matsuda, M.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H.; Otsuka, T.; Awaga, K.; Narymbetov, B.; Kobayashi, H. A one-dimensional macrocyclic π-ligand conductor carrying a magnetic center. Structure and electrical, optical and magnetic properties of TPP[Fe(Pc)(CN)2]2 {TPP = tetraphenylphosphonium and [Fe(Pc)(CN)2] = dicyano(phthalocyaninato)iron(III)}. J. Mater. Chem. 2000, 10, 631–636. [Google Scholar] [CrossRef]
  560. Hanasaki, N.; Tajima, H.; Matsuda, M.; Naito, T.; Inabe, T. Giant negative magnetoresistance in quasi-one-dimensional conductor TPP[Fe(Pc)(CN)2]2: Interplay between local moments and one-dimensional conduction electrons. Phys. Rev. B 2000, 62, 5839–5842. [Google Scholar] [CrossRef]
  561. Matsuda, M.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H. Structure and electrical and magnetic properties of (PTMA)x[M(Pc)(CN)2] y(solvent) (PTMA = phenyltrimethylammonium and [M(Pc)(CN)2] = dicyano(phthalocyaninato)MIII with M = Co and Fe). Partial oxidation by partial solvent occupation of the cationic site. J. Mater. Chem. 2001, 11, 2493–2497. [Google Scholar] [CrossRef]
  562. Tajima, H.; Hanasaki, N.; Matsuda, M.; Sakai, F.; Naito, T.; Inabe, T. Magnetoresistance study on TPP[M(Pc)(CN)2]2 (M = Fe, Co, Fe0.30Co0.70) salts. J. Solid State Chem. 2002, 168, 509–513. [Google Scholar] [CrossRef]
  563. Hanasaki, N.; Matsuda, M.; Tajima, H.; Naito, T.; Inabe, T. Contribution of degenerate molecular orbitals to molecular orbital angular momentum in molecular magnet Fe(Pc)(CN)2. J. Phys. Soc. Jpn. 2003, 72, 3226–3230. [Google Scholar] [CrossRef]
  564. Inabe, T.; Tajima, H. Phthalocyanines—Versatile components of molecular conductors. Chem. Rev. 2004, 104, 5503–5533. [Google Scholar] [CrossRef] [PubMed]
  565. Matsuda, M.; Hanasaki, N.; Tajima, H.; Naito, T.; Inabe, T. Anisotropic giant magnetoresistance originating from the π-d interaction in a molecule. J. Phys. Chem. Solids 2004, 65, 749–752. [Google Scholar] [CrossRef]
  566. Hotta, C.; Ogata, M.; Fukuyama, H. Interaction of the ground state of quarter-filled one-dimensional strongly correlated electronic system with localized spins. Phys. Rev. Lett. 2005, 95, 216402. [Google Scholar] [CrossRef] [Green Version]
  567. Hanasaki, N.; Matsuda, M.; Tajima, H.; Ohmichi, E.; Osada, T.; Naito, T.; Inabe, T. Giant negative magnetoresistance reflecting molecular symmetry in dicyano(phthalocyaninato)iron compounds. J. Phys. Soc. Jpn. 2006, 75, 033703. [Google Scholar] [CrossRef]
  568. Hanasaki, N.; Masuda, K.; Kodama, K.; Matsuda, M.; Tajima, H.; Yamazaki, J.; Takigawa, M.; Yamaura, J.; Ohmichi, E.; Osada, T.; et al. Charge disproportionation in highly one-dimensional molecular conductor TPP[Co(Pc)(CN)2]2]. J. Phys. Soc. Jpn. 2006, 75, 104713. [Google Scholar] [CrossRef]
  569. Tajima, H.; Yoshida, G.; Matsuda, M.; Nara, K.; Kajita, K.; Nihsio, Y.; Hanasaki, N.; Naito, T.; Inabe, T. Magnetic torque and heat capacity measurements on TPP[Fe(Pc)(CN)2]2. Phys. Rev. B Cond. Matter Mater. Phys. 2008, 78, 064424. [Google Scholar] [CrossRef] [Green Version]
  570. Yu, D.E.C.; Matsuda, M.; Tajima, H.; Kikuchi, A.; Taketsugu, T.; Hanasaki, N.; Naito, T.; Inabe, T. Variable magnetotransport properties in the TPP[Fe(Pc)L2]2 system (TPP = tetraphenylphosphonium, Pc = phthalocyaninato, L = CN, Cl, and Br). J. Mater. Chem. 2009, 19, 718–723. [Google Scholar] [CrossRef]
  571. Tajima, H.; Yoshida, G.; Matsuda, M.; Yamaura, J.-I.Y.; Hanasaki, N.; Naito, T.; Inabe, T. Magnetic torque and ac and dc magnetic susceptibility measurements on PTMA0.5[Fe(Pc)(CN)2]CH3CN: Origin of spontaneous magnetization in [Fe(Pc)(CN)2] molecular conductors. Phys. Rev. B Cond. Matter Mater. Phys. 2009, 80, 024424. [Google Scholar] [CrossRef] [Green Version]
  572. Kimata, M.; Takahide, Y.; Harada, A.; Satsukawa, H.; Hazama, K.; Terashima, T.; Uji, S.; Naito, T.; Inabe, T. Interplay between magnetism and conductivity in the one-dimensional organic conductor TPP[Fe(Pc)(CN)2]2. Phys. Rev. B 2009, 80, 085110. [Google Scholar] [CrossRef] [Green Version]
  573. Ishikawa, M.; Yamashita, S.; Naito, T.; Matsuda, M.; Tajima, H.; Hanasaki, N.; Akutagawa, T.; Nakamura, T.; Inabe, T. Nonlinear transport phenomena in highly one-dimensional MIII(Pc)(CN)2 chains with π-d interaction (M = Co and Fe and Pc = phthalocyaninato). J. Phys. Soc. Jpn. 2009, 78, 104709. [Google Scholar] [CrossRef]
  574. Hotta, C. Interplay of strongly correlated electrons and localized Ising moments in one dimension. Phys. Rev. B 2010, 81, 245104. [Google Scholar] [CrossRef] [Green Version]
  575. Otsuka, Y.; Seo, H.; Motome, Y. Charge ordering due to π-d coupling in one-dimensional system. Phys. B Cond. Mat. 2010, 405, S317–S320. [Google Scholar] [CrossRef]
  576. Ishikawa, M.; Asari, T.; Matsuda, M.; Tajima, H.; Hanasaki, N.; Naito, T.; Inabe, T. Giant magnetoresistance response by the π–d interaction in an axially ligated phthalocyanine conductor with two-dimensional π–π stacking structure. J. Mater. Chem. 2010, 20, 4432–4438. [Google Scholar] [CrossRef]
  577. Hanasaki, N.; Tateishi, T.; Tajima, H.; Kimata, M.; Tokunaga, M.; Matsuda, M.; Kanda, A.; Muralawa, H.; Naito, T.; Inabe, T. Metamagnetic transition and its related magnetocapacitance effect in phthalocyanine-molecular conductor exhibiting giant magnetoresistance. J. Phys. Soc. Jpn. 2013, 82, 094713. [Google Scholar] [CrossRef]
  578. Torizuka, K.; Tajima, H.; Inoue, M.; Hanasaki, N.; Matsuda, M.; Yu, D.E.C.; Naito, T.; Inabe, T. Magnetic torque experiments on TPP[Fe(Pc)L2]2 (L = Br and Cl): Antiferromagnetic short range ordering of d electrons, antiferromagnetic ordering of π electrons, and the anisotropy energy. J. Phys. Soc. Jpn. 2013, 82, 034719. [Google Scholar] [CrossRef]
  579. Peierls, R.E. Quantum Theory of Solids; Clarendon Press: Oxford, UK, 1955; pp. 101–114. [Google Scholar]
  580. Soos, Z.G.; Mazumdar, S. Neutral-ionic interface in organic charge-transfer salts. Phys. Rev. B 1978, 18, 1991–2003. [Google Scholar] [CrossRef]
  581. Soos, Z.G.; Bondeson, S.R.; Mazumdar, S. Magnetic analog of mott transition. Chem. Phys. Lett. 1979, 65, 331–334. [Google Scholar] [CrossRef]
  582. Torrance, J.B.; Vazquez, J.E.; Mayerle, J.J.; Lee, V.Y. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 1981, 46, 253–257. [Google Scholar] [CrossRef]
  583. Torrance, J.B.; Girlando, A.; Mayerle, J.J.; Crowley, J.I.; Lee, V.Y.; Batail, P.; LaPlaca, S.J. Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 1981, 47, 1747–1750. [Google Scholar] [CrossRef]
  584. Mazumdar, S.; Soos, Z.G. Valence-bond analysis of extended Hubbard models: Charge-transfer excitations of molecular conductors. Phys. Rev. B 1981, 23, 2810–2823. [Google Scholar] [CrossRef]
  585. Girlando, A.; Marzola, F.; Pecile, C.; Torrance, J.B. Vibrational spectroscopy of mixed stack organic semiconductors: Neutral and ionic phases of tetrathiafulvalene-chloranil (TTF-CA) charge transfer complex. J. Chem. Phys. 1983, 79, 1075–1085. [Google Scholar] [CrossRef]
  586. Mazumdar, S.; Dixit, S.N. Coulomb effects on one-dimensional Peierls instability: The Peierls-Hubbard model. Phys. Rev. Lett. 1983, 51, 292–295. [Google Scholar] [CrossRef]
  587. Mazumdar, S.; Bloch, A.N. Systematic trends in short-range coulomb effects among nearly one-dimensional organic conductors. Phys. Rev. Lett. 1983, 50, 207–211. [Google Scholar] [CrossRef]
  588. Mazumdar, S.; Dixit, S.N.; Bloch, A.N. Correlation effects on charge-density waves in narrow-band one-dimensional conductors. Phys. Rev. B 1984, 30, 4842–4845. [Google Scholar] [CrossRef]
  589. Dixit, S.N.; Mazumdar, S. Electron-electron interaction effects on Peierls dimerization in a half-filled band. Phys. Rev. B 1984, 29, 1824–1839. [Google Scholar] [CrossRef]
  590. Painelli, A.; Girlando, A. Electron-molecular vibration (e-mv) coupling in charge-transfer compounds and its consequences on the optical spectra: A theoretical framework. J. Chem. Phys. 1985, 84, 5655–5671. [Google Scholar] [CrossRef]
  591. Mazumdar, S.; Dixit, S.N. Unified theory of segregated-stack organic charge-transfer solids: Magnetic properties. Phys. Rev. B 1986, 34, 3683–3699. [Google Scholar] [CrossRef]
  592. Ung, K.C.; Mazumdar, S.; Toussaint, D. Metal-insulator and insulator-insulator transitions in the quarter-filled band organic conductors. Phys. Rev. Lett. 1994, 73, 2603–2606. [Google Scholar] [CrossRef] [Green Version]
  593. Mazumdar, S.; Ramasesha, S.; Clay, R.T.; Campbell, D.K. Theory of coexisting charge- and spin-density waves in (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4. Phys. Rev. Lett. 1999, 82, 1522–1525. [Google Scholar] [CrossRef] [Green Version]
  594. Girlando, A.; Masino, M.; Visentini, G.; della Valle, R.G.; Brillante, A.; Venuti, E. Lattice dynamics and electron-phonon coupling in the β-(BEDT-TTF)2I3 organic superconductor. Phys. Rev. B 2000, 62, 14476–14486. [Google Scholar] [CrossRef] [Green Version]
  595. Moser, J.; Cooper, J.R.; Jérome, D.; Alavi, B.; Brown, S.E.; Bechgaard, K. Hall effect in the normal phase of the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett. 2000, 84, 2674–2677. [Google Scholar] [CrossRef]
  596. Chow, D.S.; Zamborszky, F.; Alavi, B.; Tantillo, D.J.; Baur, A.; Merlic, C.A.; Brown, S.E. Charge ordering in the TMTTF family of molecular conductors. Phys. Rev. Lett. 2000, 85, 1698–1701. [Google Scholar] [CrossRef] [Green Version]
  597. Girlando, A.; Masino, M.; Brillante, A.; Della Valle, R.G.; Venuti, E. BEDT-TTF organic superconductors: The role of phonons. Phys. Rev. B 2002, 66, 100507. [Google Scholar] [CrossRef] [Green Version]
  598. Zamborszky, F.; Yu, W.; Raas, W.; Brown, S.E.; Alavi, B.; Merlic, C.A.; Baur, A. Competition and coexistence of bond and charge orders in (TMTTF)2AsF6. Phys. Rev. B 2002, 66, 081103. [Google Scholar] [CrossRef] [Green Version]
  599. Lee, I.J.; Brown, S.E.; Clark, W.G.; Strouse, M.J.; Naughton, M.J.; Kang, W.; Chaikin, P.M. Triplet superconductivity in an organic superconductor probed by NMR Knight shift. Phys. Rev. Lett. 2002, 88, 017004. [Google Scholar] [CrossRef] [PubMed]
  600. Clay, R.T.; Mazumdar, S.; Campbell, D.K. Pattern of charge ordering in quasi-one-dimensional organic charge-transfer solids. Phys. Rev. B 2003, 67, 115121. [Google Scholar] [CrossRef] [Green Version]
  601. Dressel, M.; Drichko, N. Optical properties of two-dimensional organic conductors: Signatures of charge ordering and correlation effects. Cherm. Rev. 2004, 104, 5689–5715. [Google Scholar] [CrossRef]
  602. Yu, W.; Zhang, F.; Zamborszky, F.; Alavi, B.; Baur, A.; Merlic, C.A.; Brown, S.E. Electron-lattice coupling and broken symmetries of the molecular salt (TMTTF)2SbF6. Phys. Rev. B 2004, 70, 121101. [Google Scholar] [CrossRef] [Green Version]
  603. Yamamoto, T.; Yakushi, K.; Shimizu, Y.; Saito, G. Infrared and Raman study of the charge-ordered state of θ-(ET)2Cu2CN[N(CN)2]2. J. Phys. Soc. Jpn. 2004, 73, 2326–2332. [Google Scholar] [CrossRef]
  604. Yamamoto, T.; Uruichi, M.; Yamamoto, K.; Yakushi, K.; Kawamoto, A.; Taniguchi, H. Examination of the charge-sensitive vibrational modes in bis(ethylenedithio)tetrathiafulvalene. J. Phys. Chem. B 2005, 109, 15226–15235. [Google Scholar] [CrossRef] [PubMed]
  605. Bangura, A.F.; Coldea, A.I.; Singleton, J.; Ardavan, A.; Akutsu-Sato, A.; Akutsu, H.; Turner, S.S.; Day, P.; Yamamoto, T.; Yakushi, K. Robust superconducting state in the low-quasiparticle-density organic metals β″-(BEDT-TTF)4[(H3O)M(C2O4)3]Y: Superconductivity due to proximity to a charge-ordered state. Phys. Rev. B 2005, 72, 014543. [Google Scholar] [CrossRef] [Green Version]
  606. Seo, H.; Merino, J.; Yoshioka, H.; Ogata, M. Theoretical aspects of charge ordering in molecular conductors. J. Phys. Soc. Jpn. 2006, 75, 051009. [Google Scholar] [CrossRef] [Green Version]
  607. Drichko, N.; Dressel, M.; Kuntscher, C.A.; Pashkin, A.; Greco, A.; Merino, J.; Schlueter, J. Electronic properties of correlated metals in the vicinity of a charge-order transition: Optical spectroscopy of α-(BEDT-TTF)2MHg(SCN)4 (M = NH4, Rb, Tl). Phys. Rev. B 2006, 74, 235121. [Google Scholar] [CrossRef] [Green Version]
  608. Merino, J.; Greco, A.; Drichko, N.; Dressel, M. Non-Fermi liquid behavior in nearly charge ordered layered metals. Phys. Rev. Lett. 2006, 96, 216402. [Google Scholar] [CrossRef] [Green Version]
  609. Dressel, M. Ordering phenomena in quasi-one-dimensional organic conductors. Naturwissenschaften 2007, 94, 527–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  610. De Souza, M.; Foury-Leylekian, P.; Moradpour, A.; Pouget, J.-P.; Lang, M. Evidence for lattice effects at the charge-ordering transition in (TMTTF)2X. Phys. Rev. Lett. 2008, 101, 216403. [Google Scholar] [CrossRef] [Green Version]
  611. Yamamoto, T.; Yamamoto, H.M.; Kato, R.; Uruichi, M.; Yakushi, K.; Akutsu, H.; Sato-Akutsu, A.; Kawamoto, A.; Turner, S.S.; Day, P. Inhomogeneous site charges at the boundary between the insulating, superconducting, and metallic phases of β″-type bis-ethylenedithio-tetrathiafulvalene molecular charge-transfer salts. Phys. Rev. B 2008, 77, 205120. [Google Scholar] [CrossRef] [Green Version]
  612. Drichko, N.; Kaiser, S.; Sun, Y.; Clauss, C.; Dressel, M.; Mori, H.; Schlueter, J.; Zhyliaeva, E.I.; Torunova, S.A.; Lyubovskaya, R.N. Evidence for charge order in organic superconductors obtained by vibrational spectroscopy. Phys. B Cond. Mat. 2009, 404, 490–493. [Google Scholar] [CrossRef]
  613. Sawa, H.; Kakiuchi, T. Study of the novel charge ordering state in molecular conducting using synchrotron radiation X-ray diffraction. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 117–134. [Google Scholar]
  614. Girlando, A. Charge sensitive vibrations and electron-molecular vibration coupling in bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF). J. Phys. Chem. C 2011, 115, 19371–19378. [Google Scholar] [CrossRef]
  615. Dayal, S.; Clay, R.T.; Li, H.; Mazumdar, S. Paired electron crystal: Order from frustration in the quarter-filled band. Phys. Rev. B 2011, 83, 245106. [Google Scholar] [CrossRef] [Green Version]
  616. Yoshimi, K.; Seo, H.; Ishibashi, S.; Brown, S.E. Tuning the magnetic dimensionality by charge ordering in the molecular TMTTF salts. Phys. Rev. Lett. 2012, 108, 096402. [Google Scholar] [CrossRef] [Green Version]
  617. Sedlmeier, K.; Elsässer, S.; Neubauer, D.; Beyer, R.; Wu, D.; Ivek, T.; Tomić, S.; Schlueter, J.A.; Dressel, M. Absence of charge order in the dimerized κ-phase BEDT-TTF salts. Phys. Rev. B 2012, 86, 245103. [Google Scholar] [CrossRef] [Green Version]
  618. Dressel, M.; Dumm, M.; Knoblauch, T.; Masino, M. Comprehensive optical investigations of charge order in organic chain compounds (TMTTF)2X. Crystals 2012, 2, 528–578. [Google Scholar] [CrossRef] [Green Version]
  619. Girlando, A.; Masino, M.; Schlueter, J.A.; Drichko, N.; Kaiser, S.; Dressel, M. Charge-order fluctuations and superconductivity in two-dimensional organic metals. Phys. Rev. B 2014, 89, 174503. [Google Scholar] [CrossRef] [Green Version]
  620. Drichko, N.; Beyer, R.; Rose, E.; Dressel, M.; Schlueter, J.A.; Turunova, S.A.; Zhilyaeva, E.I.; Lyubovskaya, R.N. Metallic state and charge-order metal-insulator transition in the quasi-two-dimensional conductor κ-(BEDT-TTF)2Hg(SCN)2Cl. Phys. Rev. B 2014, 89, 075133. [Google Scholar] [CrossRef]
  621. Mazumdar, S.; Clay, R.T. The chemical physics of unconventional superconductivity. Int. J. Quant. Chem. 2014, 114, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
  622. Pustogow, A.; Peterseim, T.; Kolatschek, S.; Engel, L.; Dressel, M. Electronic correlations versus lattice interactions: Interplay of charge and anion orders in (TMTTF)2X. Phys. Rev. B 2016, 94, 195125. [Google Scholar] [CrossRef]
  623. Masino, M.; Castagnetti, N.; Girlando, A. Phenomenology of the neutral-ionic valence instability in mixed stack charge-transfer crystals. Crystals 2017, 7, 108. [Google Scholar] [CrossRef] [Green Version]
  624. Mazumdar, S. Valence transition model of the pseudogap, charge order, and superconductivity in electron-doped and hole-doped copper oxides. Phys. Rev. B 2018, 98, 205153. [Google Scholar] [CrossRef] [Green Version]
  625. Clay, R.T.; Mazumdar, S. From charge- and spin-ordering to superconductivity in the organic charge-transfer solids. Phys. Rep. 2019, 788, 1–89. [Google Scholar] [CrossRef] [Green Version]
  626. Kurmoo, M.; Rosseinsky, M.J.; Day, P.; Auban, P.; Kang, W.; Jérôme, D.; Batail, P. Competition between localisation and superconductivity in (BEDT-TTF)3Cl2.2H2O. Synth. Met. 1988, 27, A425–A431. [Google Scholar] [CrossRef]
  627. Lang, M.; Toyota, N.; Sasaki, T.; Sato, H. Magnetic penetration depth of κ-(BEDT-TTF)2Cu(NCS)2 strong evidence for conventional cooper pairing. Phys. Rev. Lett. 1992, 69, 1443–1446. [Google Scholar] [CrossRef]
  628. Lang, M.; Steglich, F.; Toyota, N.; Sasaki, T. Fluctuation effects and mixed-state properties of the layered organic superconductors κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1994, 49, 15227–15234. [Google Scholar] [CrossRef] [PubMed]
  629. Pintschovius, L.; Rietschel, H.; Sasaki, T.; Mori, H.; Tanaka, S.; Toyota, N.; Lang, M.; Steglich, F. Observation of superconductivity-induced phonon frequency changes in the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Eur. Phys. Lett. 1997, 37, 627–632. [Google Scholar] [CrossRef]
  630. Chow, D.S.; Wzietek, P.; Fogliatti, D.; Alavi, B.; Tantillo, D.J.; Merlic, C.A.; Brown, S.E. Singular behavior in the pressure-tuned competition between Spin-Peierls and antiferromagnetic ground states of (TMTTF)2PF6. Phys. Rev. Lett. 1998, 81, 3984–3987. [Google Scholar] [CrossRef]
  631. Schmalian, J. Pairing due to spin fluctuations in layered organic superconductors. Phys. Rev. Lett. 1998, 81, 4232–4235. [Google Scholar] [CrossRef] [Green Version]
  632. Kondo, H.; Moriya, T. Spin fluctuation-induced superconductivity in organic compounds. J. Phys. Soc. Jpn. 1998, 67, 3695–3698. [Google Scholar] [CrossRef] [Green Version]
  633. Kino, H.; Kontani, H. Phase diagram of superconductivity on the anisotropic triangular lattice hubbard model: An effective model of κ-(BEDT-TTF) salts. J. Phys. Soc. Jpn. 1998, 67, 3691–3694. [Google Scholar] [CrossRef] [Green Version]
  634. Müller, J.; Lang, M.; Steglich, F.; Schlueter, J.; Kini, A.; Geiser, U. Comparative thermal-expansion study of β″-(ET)2SF5CH2CF2SO3 and κ-(ET)2Cu(NCS)2: Uniaxial pressure coefficients of TC and upper critical fields. Phys. Rev. B 2000, 61, 11739–11744. [Google Scholar] [CrossRef]
  635. Merino, J.; McKenzie, R.H. Superconductivity mediated by charge fluctuations in layered molecular crystals. Phys. Rev. Lett. 2001, 87, 237002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  636. Yanase, Y.; Jujo, T.; Nomura, T.; Ikeda, H.; Hotta, T.; Yamada, K. Theory of superconductivity in strongly correlated electron systems. Phys. Rep. 2003, 387, 1–149. [Google Scholar] [CrossRef] [Green Version]
  637. Miyagawa, K.; Kanoda, K.; Kawamoto, A. NMR studies on two-dimensional molecular conductors and superconductors: Mott transition in κ-(BEDT-TTF)2X. Chem. Rev. 2004, 104, 5635–5653. [Google Scholar] [CrossRef] [PubMed]
  638. Lee, I.J.; Brown, S.E.; Yu, W.; Naughton, M.J.; Chaikin, P.M. Coexistence of superconductivity and antiferromagnetism probed by simultaneous nuclear magnetic resonance and electrical transport in (TMTSF)2PF6 system. Phys. Rev. Lett. 2005, 94, 197001. [Google Scholar] [CrossRef] [Green Version]
  639. Kuroki, K. Pairing symmetry competition in organic superconductors. J. Phys. Soc. Jpn. 2006, 75, 051013. [Google Scholar] [CrossRef] [Green Version]
  640. Nam, M.-S.; Ardavan, A.; Blundell, S.J.; Schlueter, J.A. Fluctuating superconductivity in organic molecular metals close to the Mott transition. Nature 2007, 449, 584–587. [Google Scholar] [CrossRef]
  641. Gantmakher, V.F.; Dolgopolov, V.T. Superconductor-insulator quantum phase transition. Phys. Uspekhi 2010, 53, 1–49. [Google Scholar] [CrossRef]
  642. Dressel, M. Quantum criticality in organic conductors? Fermi liquid versus non-Fermi-liquid behavior. J. Phys. Cond. Mat. 2011, 23, 293201. [Google Scholar] [CrossRef]
  643. Müller, J. Fluctuation spectroscopy: A new approach for studying low-dimensional molecular metals. ChemPhysChem 2011, 12, 1222–1245. [Google Scholar] [CrossRef] [PubMed]
  644. Wright, J.A.; Green, E.; Kuhns, P.; Reyes, A.; Brooks, J.; Schlueter, J.; Kato, R.; Yamamoto, H.; Kobayashi, M.; Brown, S.E. Zeeman-driven phase transition within the superconducting state of κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett. 2011, 107, 087002. [Google Scholar] [CrossRef]
  645. Agosta, C.C. Inhomogeneous superconductivity in organic and related superconductors. Crystals 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
  646. Pustogow, A.; Saito, Y.; Rohwer, A.; Schlueter, J.A.; Dressel, M. Coexistence of charge order and superconductivity in β″-(BEDT-TTF)2SF5CH2CF2SO3. Phys. Rev. B 2019, 99, 140509. [Google Scholar] [CrossRef] [Green Version]
  647. Tomić, S.; Jérome, D. A hidden low-temperature phase in the organic conductor (TMTSF)2ReO4. J. Phys. Condens. Matter. 1989, 1, 4451–4456. [Google Scholar] [CrossRef]
  648. Kagawa, F.; Oike, H. Quenching of charge and spin degrees of freedom in condensed matter. Adv. Mater. 2017, 29, 1601979. [Google Scholar] [CrossRef]
  649. Mori, H.; Tanaka, S.; Mori, T. Systematic study of the electronic state in θ-type BEDT-TTF organic conductors by changing the electronic correlation. Phys. Rev. B 1998, 57, 12023–12029. [Google Scholar] [CrossRef]
  650. Yamada, J.-I.; Akutsu, H.; Nishikawa, H.; Kikuchi, K. New trends in the synthesis of π-electron donors for molecular conductors and superconductors. Chem. Rev. 2004, 104, 5057–5083. [Google Scholar] [CrossRef] [PubMed]
  651. Yamada, J.-I. New approach to the achievement of organic superconductivity. J. Mater. Chem. 2004, 14, 2951–2953. [Google Scholar] [CrossRef]
  652. Faltermeier, D.; Barz, J.; Dumm, M.; Dressel, M.; Drichko, N.; Petrov, B.; Semkin, V.; Vlasova, R.; Meźière, C.; Batail, P. Bandwidth-controlled Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of localized charge excitations. Phys. Rev. B 2007, 76, 165113. [Google Scholar] [CrossRef] [Green Version]
  653. Dumm, M.; Faltermeier, D.; Drichko, N.; Dressel, M.; Mézière, C.; Batail, P. Bandwidth-controlled Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of correlated carriers. Phys. Rev. B 2009, 79, 195106. [Google Scholar] [CrossRef] [Green Version]
  654. Kaiser, S.; Dressel, M.; Sun, Y.; Greco, A.; Schlueter, J.A.; Gard, G.L.; Drichko, N. Bandwidth tuning triggers interplay of charge order and superconductivity in two-dimensional organic materials. Phys. Rev. Lett. 2010, 105, 206402. [Google Scholar] [CrossRef] [Green Version]
  655. Yamada, J.-I.; Akutsu, H. Chemical modifications of BDH-TTP [2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene]: Control of electron correlation. Crystals 2012, 2, 812–844. [Google Scholar] [CrossRef]
  656. Chamberlin, R.V.; Naughton, M.J.; Yan, X.; Chiang, L.Y.; Hsu, S.-Y.; Chaikin, P.M. Extreme quantum limit in a quasi-two-dimensional organic conductor. Phys. Rev. Lett. 1988, 60, 1189–1192. [Google Scholar] [CrossRef]
  657. Cooper, J.R.; Kang, W.; Auban, P.; Montambaux, G.; Jérome, D.; Bechgaard, K. Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett. 1989, 63, 1984–1987. [Google Scholar] [CrossRef] [PubMed]
  658. Kang, W.; Montambaux, G.; Cooper, J.R.; Jérome, D.; Batail, P.; Lenoir, C. Observation of giant magnetoresistance oscillations in the high-TC phase of the two-dimensional organic conductor β-(BEDT-TTF)2I3. Phys. Rev. Lett. 1989, 62, 2559–2562. [Google Scholar] [CrossRef] [PubMed]
  659. Kushch, N.D.; Buravov, L.I.; Kartsovnik, M.V.; Laukhin, V.N.; Pesotskii, S.I.; Shibaeva, R.P.; Rozenberg, L.P.; Yagubskii, E.B.; Zvarikina, A.V. Resistance and magnetoresistance anomaly in a new stable organic metal (ET)2TlHg(SCN)4. Synth. Met. 1992, 46, 271–276. [Google Scholar] [CrossRef]
  660. Dupuis, N.; Montambaux, G.; Sá de Melo, C.A.R. Quasi-one-dimensional superconductors in strong magnetic field. Phys. Rev. Lett. 1993, 70, 2613–2616. [Google Scholar] [CrossRef]
  661. Kovalev, A.E.; Kartsovnik, M.V.; Shibaeva, R.P.; Rozenberg, L.P.; Schegolev, I.F.; Kushch, N.D. Angular magnetoresistance oscillations in the organic conductor α-(ET)2KHg(SCN)4 above and below the phase transition. Solid State Commun. 1994, 89, 575–578. [Google Scholar] [CrossRef]
  662. Dupuis, N.; Montambaux, G. Superconductivity of quasi-one-dimensional conductors in a high magnetic field. Phys. Rev. B 1994, 49, 8993–9008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  663. Kartsovnik, M.V.; Logvenov, G.Y.; Ishiguro, T.; Biberacher, W.; Anzai, H.; Kushch, N.D. Direct Observation of the magnetic-breakdown induced quantum interference in the quasi-two-dimensional organic metal κ-(BEDT-TTF)2CU(NCS)2. Phys. Rev. Lett. 1996, 77, 2530–2533. [Google Scholar] [CrossRef]
  664. Kartsovnik, M.V.; Laukhin, V.N. Magnetotransport in quasi-two-dimensional organic conductors based on BEDT-TTF and its derivatives. J. Phys. I France 1996, 6, 1753–1786. [Google Scholar] [CrossRef]
  665. Herlach, F.; Agosta, C.C.; Bogaerts, R.; Boon, W.; Deckers, I.; de Keyser, A.; Harrison, N.; Lagutin, A.; Li, L.; Trappeniers, L.; et al. Experimental techniques for pulsed magnetic fields. Phys. B Cond. Mat. 1996, 216, 161–165. [Google Scholar] [CrossRef]
  666. Hill, S. Semiclassical description of cyclotron resonance in quasi-two-dimensional organic conductors: Theory and experiment. Phys. Rev. B 1997, 55, 4931–4940. [Google Scholar] [CrossRef]
  667. Kartsovnik, M.V.; Biberacher, W.; Steep, E.; Christ, P.; Andres, K.; Jansen, A.G.M.; Müller, H. High-field studies of the H-T phase diagram of α-(BEDT-TTF)2KHg(SCN)4. Synth. Met. 1997, 86, 1933–1936. [Google Scholar] [CrossRef]
  668. Chaikin, P.M.; Chashechkina, E.I.; Lee, I.J.; Naughton, M.J. Field-induced electronic phase transitions in high magnetic fields. J. Phys. Condens. Matter 1998, 10, 11301–11314. [Google Scholar] [CrossRef]
  669. Weiss, H.; Kartsovnik, M.V.; Biberacher, W.; Steep, E.; Balthes, E.; Jansen, A.G.M.; Andres, K.; Kushch, N.D. Magnetotransport studies of the Fermi surface in the organic superconductor κ-(BEDT–TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1999, 59, 12370–12378. [Google Scholar] [CrossRef]
  670. Singleton, J. Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields. Rep. Prog. Phys. 2000, 63, 1111–1207. [Google Scholar] [CrossRef]
  671. Christ, P.; Biberacher, W.; Kartsovnik, M.V.; Steep, E.; Balthes, E.; Weiss, H.; Müller, H. Magnetic field-temperature phase diagram of the organic conductor α-(BEDT-TTF)2KHg(SCN)4. JETP Lett. 2000, 71, 303–306. [Google Scholar] [CrossRef] [Green Version]
  672. Mola, M.; Hill, S.; Goy, P.; Gross, M. Instrumentation for millimeter-wave magnetoelectrodynamic investigations of low-dimensional conductors and superconductors. Rev. Sci. Instrum. 2000, 71, 186–200. [Google Scholar] [CrossRef] [Green Version]
  673. Andres, D.; Kartsovnik, M.V.; Biberacher, W.; Weiss, H.; Balthes, E.; Müller, H.; Kushch, N. Orbital effect of a magnetic field on the low-temperature state in the organic metal α-(BEDT-TTF)2KHg(SCN)4. Phys. Rev. B 2001, 64, 161104. [Google Scholar] [CrossRef] [Green Version]
  674. Kartsovnik, M.V.; Grigoriev, P.D.; Biberacher, W.; Kushch, N.D.; Wyder, P. Slow Oscillations of magnetoresistance in quasi-two-dimensional metals. Phys. Rev. Lett. 2002, 89, 126802. [Google Scholar] [CrossRef] [Green Version]
  675. Andres, D.; Kartsovnik, M.V.; Grigoriev, P.D.; Biberacher, W.; Müller, H. Orbital quantization in the high-magnetic-field state of a charge-density-wave system. Phys. Rev. B 2003, 68, 201101(R). [Google Scholar] [CrossRef] [Green Version]
  676. Maki, K.; Dóra, B.; Kartsovnik, M.; Virosztek, A.; Korin-Hamzić, B.; Basletić, M. Unconventional charge-density wave in the organic conductor α-(BEDT-TTF)2KHg(SCN)4. Phys. Rev. Lett. 2003, 90, 256402. [Google Scholar] [CrossRef] [Green Version]
  677. Graf, D.; Choi, E.S.; Brooks, J.S.; Matos, M.; Henriques, R.T.; Almeida, M. High magnetic field induced charge density wave state in a quasi-one-dimensional organic conductor. Phys. Rev. Lett. 2004, 93, 076406. [Google Scholar] [CrossRef] [Green Version]
  678. Graf, D.; Brooks, J.S.; Choi, E.S.; Uji, S.; Dias, J.C.; Almeida, M.; Matos, M. Suppression of a charge-density-wave ground state in high magnetic fields: Spin and orbital mechanisms. Phys. Rev. B 2004, 69, 125113. [Google Scholar] [CrossRef] [Green Version]
  679. Kartsovnik, M.V. High magnetic fields: A tool for studying electronic properties of layered organic metals. Chem. Rev. 2004, 104, 5737–5781. [Google Scholar] [CrossRef]
  680. Takahashi, S.; Hill, S. Rotating cavity for high-field angle-dependent microwave spectroscopy of low-dimensional conductors and magnets. Rev. Sci. Instrum. 2005, 76, 023114. [Google Scholar] [CrossRef] [Green Version]
  681. Cho, K.; Smith, B.E.; Coniglio, W.A.; Winter, L.E.; Agosta, C.C.; Schlueter, J.A. Upper critical field in the organic superconductor β″-(ET)2SF5CH2CF2SO3: Possibility of Fulde-Ferrell-Larkin-Ovchinnikov state. Phys. Rev. B 2009, 79, 220507(R). [Google Scholar] [CrossRef] [Green Version]
  682. Agosta, C.C.; Fortune, N.A.; Hannahs, S.T.; Gu, S.; Liang, L.; Park, J.-H.; Schleuter, J.A. Calorimetric Measurements of magnetic-field-induced inhomogeneous superconductivity above the paramagnetic limit. Phys. Rev. Lett. 2017, 118, 267001. [Google Scholar] [CrossRef] [Green Version]
  683. Koshihara, S.; Tokura, Y.; Mitani, T.; Saito, G.; Koda, T. Photoinduced valence instability in the organic molecular compound tetrathiafulvalene-p-chloranil (TTF-CA). Phys. Rev. B 1990, 42, 6853–6856. [Google Scholar] [CrossRef] [PubMed]
  684. Koshihara, S.-Y.; Takahashi, Y.; Sakai, H.; Tokura, Y.; Luty, T. Photoinduced cooperative charge transfer in low-dimensional organic crystals. J. Phys. Chem. B 1999, 103, 2592–2600. [Google Scholar] [CrossRef]
  685. Chollet, M.; Guerin, L.; Uchida, N.; Fukaya, S.; Shimoda, H.; Ishikawa, T.; Matsuda, K.; Hasegawa, T.; Ota, A.; Yamochi, H.; et al. Gigantic photoresponse in 1/4-filled-band organic salt (EDO-TTF)2PF6. Science 2005, 307, 86–89. [Google Scholar] [CrossRef]
  686. Tajima, N.; Fujisawa, J.-I.; Nakay, N.; Ishihara, T.; Kato, R.; Nishio, Y.; Kajita, K. Photo-induced insulator-metal transition in an organic conductor α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2005, 74, 511–514. [Google Scholar] [CrossRef]
  687. Tajima, N.; Sugawara, S.; Tamura, M.; Nishio, Y.; Kajita, K. Electronic phases in an organic conductor α-(BEDT-TTF)2I3: Ultra narrow gap semiconductor, superconductor, metal, and charge-ordered insulator. J. Phys. Soc. Jpn. 2006, 75, 051010. [Google Scholar] [CrossRef] [Green Version]
  688. Iwai, S.; Okamoto, H. Ultrafast phase control in one-dimensional correlated electron systems. J. Phys. Soc. Jpn. 2006, 75, 011007. [Google Scholar] [CrossRef]
  689. Okamoto, H.; Matsuzaki, H.; Wakabayashi, T.; Takahashi, Y.; Hasegawa, T. Photoinduced metallic state mediated by spin-charge separation in a one-dimensional organic mott insulator. Phys. Rev. Lett. 2007, 98, 037401. [Google Scholar] [CrossRef]
  690. Iwai, S.; Yamamoto, K.; Kashiwazaki, A.; Hiramatsu, F.; Nakaya, H.; Kawakami, Y.; Yakushi, K.; Okamoto, H.; Mori, H.; Nishio, Y. Photoinduced melting of a stripe-type charge-order and metallic domain formation in a layered BEDT-TTF-based organic salt. Phys. Rev. Lett. 2007, 98, 097402. [Google Scholar] [CrossRef] [PubMed]
  691. Iimori, T.; Ohta, N.; Naito, T. Molecular-based light-activated thyristor. Appl. Phys. Lett. 2007, 90, 262103. [Google Scholar] [CrossRef] [Green Version]
  692. Iimori, T.; Naito, T.; Ohta, N. Photoinduced phase transition in the organic conductor α-(BEDT-TTF)2I3 at temperatures near the metal-insulator phase transition. Chem. Lett. 2007, 36, 536–537. [Google Scholar] [CrossRef]
  693. Iimori, T.; Naito, T.; Ohta, N. A memory effect controlled by a pulsed voltage in photoinduced conductivity switching in an organic charge-transfer salt. J. Am. Chem. Soc. 2007, 129, 3486–3487. [Google Scholar] [CrossRef]
  694. Onda, K.; Ogihara, S.; Yonemitsu, K.; Maeshima, N.; Ishikawa, T.; Okimoto, Y.; Shao, X.; Nakano, Y.; Yamochi, H.; Saito, G.; et al. Photoinduced change in the charge order pattern in the quarter-filled organic conductor (EDO-TTF)2PF6 with a strong electron-phonon interaction. Phys. Rev. Lett. 2008, 101, 067403. [Google Scholar] [CrossRef]
  695. Yonemitsu, K.; Nasu, K. Theory of photoinduced phase transitions in itinerant electron systems. Phys. Rep. 2008, 465, 1–60. [Google Scholar] [CrossRef]
  696. Iwai, S.; Nakaya, H.; Kawakami, Y. Ultrafast photo-induced insulator to metal transition in layered BEDT-TTF based salts. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 37–58. [Google Scholar]
  697. Okamoto, H. Ultrafast photoinduced phase transitions in one-dimensional organic correlated electron systems. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 37–58. [Google Scholar]
  698. Tajima, N.; Fujisawa, J.-I.; Kato, R. Photoswitching between charge-ordered insulator and metal phases in an organic conductor α-(BEDT-TTF)2I3. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 155–165. [Google Scholar]
  699. Iimori, T.; Naito, T.; Ohta, N. Synergy effects of photoirradiation and applied voltage on electrical conductivity of α-(BEDT-TTF)2I3. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 167–184. [Google Scholar]
  700. Yonemitsu, K. Theory of photoinduced phase transitions in quasi-one-dimensional organic conductors. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 305–320. [Google Scholar]
  701. Iimori, T.; Naito, T.; Ohta, N. Unprecedented optoelectronic function in organic conductor: Memory effect of photoswitching controlled by voltage pulse width. J. Phys. Chem. C 2009, 113, 4654–4661. [Google Scholar] [CrossRef]
  702. Iimori, T.; Naito, T.; Ohta, N. Time-resolved measurement of the photoinduced change in the electrical conductivity of the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. J. Phys. Chem. C 2010, 114, 9070–9075. [Google Scholar] [CrossRef]
  703. Iimori, T.; Sabeth, F.; Naito, T.; Ohta, N. Time-resolved photoresponse measurements of the electrical conductivity of the quasi-two-dimensional organic superconductor β-(BEDT-TTF)2I3 using a nanosecond laser pulse. J. Phys. Chem. C 2011, 115, 23998–24003. [Google Scholar] [CrossRef] [Green Version]
  704. Toda, Y.; Mertelj, T.; Naito, T.; Mihailovic, D. Femtosecond carrier relaxation dynamics and photoinduced phase separation in κ-(BEDT-TTF)2Cu[N(CN)2]X (X = Br, Cl). Phys. Rev. Lett. 2011, 107, 227002. [Google Scholar] [CrossRef] [PubMed]
  705. Yonemitsu, K. Theory of photoinduced phase transitions in molecular conductors: Interplay between correlated electrons, lattice phonons and molecular vibrations. Crystals 2012, 2, 56–77. [Google Scholar] [CrossRef]
  706. Iwai, S. Photoinduced phase transitions in α-, θ-, and κ-type ET salts: Ultrafast melting of the electronic ordering. Crystals 2012, 2, 590–617. [Google Scholar] [CrossRef] [Green Version]
  707. Kakinuma, T.; Kojima, H.; Kawamoto, T.; Mori, T. Giant phototransistor response in dithienyltetrathiafulvalene derivatives. J. Mater. Chem. C 2013, 1, 2900–2905. [Google Scholar] [CrossRef]
  708. Ishikawa, T.; Hayes, S.A.; Keskin, S.; Corthey, G.; Hada, M.; Pichugin, K.; Marx, A.; Hirscht, J.; Shionuma, K.; Onda, K.; et al. Direct observation of collective modes coupled to molecular orbital-driven charge transfer. Science 2015, 350, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
  709. Morimoto, T.; Miyamoto, T.; Okamoto, H. Ultrafast electron and molecular dynamics in photoinduced and electric-field-induced neutral-ionic transitions. Crystals 2017, 7, 132. [Google Scholar] [CrossRef] [Green Version]
  710. Smit, B.; Hüwe, F.; Payne, N.; Olaoye, O.; Bauer, I.; Pflaum, J.; Schwoerer, M.; Schwoerer, H. Ultrafast pathways of the photoinduced insulator-metal transition in a low-dimensional organic conductor. Adv. Mater. 2019, 31, 1900652. [Google Scholar] [CrossRef]
  711. Bai, C.; Dai, C.; Zhu, C.; Chen, Z.; Huang, G.; Wu, X.; Zhu, D. Scanning tunneling microscopy of silver containing salt of bis(ethylenedithio)tetrathiafulvalene. J. Vac. Sci. Tech. 1990, 8, 484–487. [Google Scholar] [CrossRef] [Green Version]
  712. Wang, H.H.; Ferraro, J.R.; Williams, J.M.; Geiser, U.; Schlueter, J.A. Rapid Raman spectroscopic determination of the stoichiometry of microscopic quantities of BEDT-TTF-based organic conductors and superconductors. J. Chem. Soc. Chem. Commun. 1994, 1893–1894. [Google Scholar] [CrossRef]
  713. Shigekawa, H.; Miyake, K.; Miyauchi, A.; Ishida, M.; Oigawa, H.; Nannichi, Y.; Yoshizaki, R.; Mori, T. Surface superstructures of quasi-one-dimensional organic conductor β-(BEDT-TTF)2PF6 crystal studied by scanning tunneling microscopy. Phys. Rev. B 1995, 52, 16361–16364. [Google Scholar] [CrossRef] [Green Version]
  714. Shigekawa, H.; Miyake, K.; Oigawa, H.; Nannichi, Y.; Mori, T.; Saito, Y. Molecular structure of a crystal phase coexisting with κ-(BEDT-TTF)2Cu(NCS)2 studied by scanning tunneling microscopy. Phys. Rev. B 1995, 50, 15427–15430. [Google Scholar] [CrossRef] [PubMed]
  715. Arai, T.; Ichimura, K.; Nomura, K.; Takasaki, S.; Yamada, J.; Nakatsuji, S.; Anzai, H. Tunneling spectroscopy on the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 using STM. Phys. Rev. B 2001, 63, 104518. [Google Scholar] [CrossRef] [Green Version]
  716. Taylor, O.J.; Carrington, A.; Schlueter, J.A. Specific-heat measurements of the gap structure of the organic superconductors κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 2007, 99, 057001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  717. Claessen, R.; Schäfer, J.; Sing, M. Photoemission on quasi-one-dimensional solids: Peierls, Luttinger & Co. In Very High Resolution Photoelectron Spectroscopy. Lecture Notes in Physics; Hüfner, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 715, pp. 115–146. [Google Scholar] [CrossRef]
  718. Sasaki, T. Infrared imaging in the strongly correlated molecular conductors. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 99–116. [Google Scholar]
  719. Mori, E.; Usui, H.; Sakamoto, H.; Mizoguchi, K.; Naito, T. Charge distribution in the surface BEDT-TTF layer of α-(BEDT-TTF)2I3 at room temperature with scanning tunneling microscopy. J. Phys. Soc. Jpn. 2012, 81, 014707. [Google Scholar] [CrossRef]
  720. Sakamoto, H.; Mori, E.; Arimoto, H.; Namai, K.; Tahara, H.; Naito, T.; Hiramatsu, T.; Yamochi, H.; Mizoguchi, K. Wavefunction Analysis of STM Image: Surface Reconstruction of Organic Charge Transfer Salts. In Microscopy and Analysis; Stanciu, S.G., Ed.; IntechOpen: London, UK, 2016; Chapter 14. [Google Scholar] [CrossRef] [Green Version]
  721. Pustogow, A.; McLeod, A.S.; Saito, Y.; Basov, D.N.; Dressel, M. Internal strain tunes electronic correlations on the nanoscale. Sci. Adv. 2018, 4, eaau9123. [Google Scholar] [CrossRef] [Green Version]
  722. Maesato, M.; Kaga, Y.; Kondo, R.; Kagoshima, S. Uniaxial strain method for soft crystals: Application to the control of the electronic properties of organic conductors. Rev. Sci. Instrum. 2000, 71, 176–181. [Google Scholar] [CrossRef]
  723. Adachi, T.; Tanaka, H.; Kobayashi, H.; Miyazaki, T. Electrical resistivity measurements on fragile organic single crystals in the diamond anvil cell. Rev. Sci. Instrum. 2001, 72, 2358–2360. [Google Scholar] [CrossRef]
  724. Müller, J.; Lang, M.; Helfrich, R.; Steglich, F.; Sasaki, T. High-resolution ac-calorimetry studies of the quasi-two-dimensional organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. B 2002, 65, 14509. [Google Scholar] [CrossRef] [Green Version]
  725. Kagoshima, S.; Kondo, R. Control of electronic properties of molecular conductors by uniaxial strain. Chem. Rev. 2004, 104, 5593–5608. [Google Scholar] [CrossRef]
  726. Murata, K.; Kagoshima, S.; Yasuzuka, S.; Yoshino, H.; Kondo, R. High-pressure research in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051015. [Google Scholar] [CrossRef]
  727. Boldyreva, E.V. High-pressure diffraction studies of molecular organic solids. A personal view. Acta Cryst. 2008, 64, 218–231. [Google Scholar] [CrossRef] [Green Version]
  728. Iwase, F.; Miyagawa, K.; Kanoda, K. High-frequency nuclear quadrupole resonance apparatus for use in pressure cell. Rev. Sci. Instrum. 2012, 83, 064704. [Google Scholar] [CrossRef]
  729. Cui, H.; Kobayashi, H.; Ishibashi, S.; Sasa, M.; Iwase, F.; Kato, R.; Kobayashi, A. A single-component molecular superconductor. J. Am. Chem. Soc. 2014, 136, 7619–7622. [Google Scholar] [CrossRef]
  730. Shen, G.; Mao, H.K. High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 2017, 80, 016101. [Google Scholar] [CrossRef]
  731. Nakazawa, Y.; Imajo, S.; Matsumura, Y.; Yamashita, S.; Akutsu, H. Thermodynamic picture of dimer-Mott organic superconductors revealed by heat capacity measurements with external and chemical pressure control. Crystals 2018, 8, 143. [Google Scholar] [CrossRef] [Green Version]
  732. Mott, N.F. Metal-insulator transition. Rev. Mod. Phys. 1968, 40, 677–683. [Google Scholar] [CrossRef]
  733. Kanoda, K. Recent progress in NMR studies on organic conductors. Hyperfine Interact. 1997, 104, 235–249. [Google Scholar] [CrossRef]
  734. Sasaki, T.; Yoneyama, N.; Matsuyama, A.; Kobayashi, N. Magnetic and electronic phase diagram and superconductivity in the organic superconductors κ-(ET)2X. Phys. Rev. B 2002, 65, 060505. [Google Scholar] [CrossRef] [Green Version]
  735. Limelette, P.; Georges, A.; Jérome, D.; Wzietek, P.; Metcalf, P.; Honig, J.M. Universality and critical behavior at the Mott transition. Science 2003, 302, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  736. Limelette, P.; Wzietek, P.; Florens, S.; Georges, A.; Costi, T.A.; Pasquier, C.; Jérome, D.; Mézière, C.; Batail, P. Mott transition and transport crossovers in the organic compound κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 2003, 91, 016401. [Google Scholar] [CrossRef] [Green Version]
  737. Fournier, D.; Poirier, M.; Castonguay, M.; Truong, K.D. Mott transition, compressibility divergence, and the P-T phase diagram of layered organic superconductors: An ultrasonic investigation. Phys. Rev. Lett. 2003, 90, 127002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  738. Heuzé, K.; Fourmigué, M.; Batail, P.; Couion, C.; Clérac, R.; Canadell, E.; Auban-Senzier, P.; Ravy, S.; Jérome, D. A genuine quarter-filled band mott insulator, (EDT-TTF-CONMe2)2AsF6: Where the chemistry and physics of weak intermolecular interactions act in unison. Adv. Mat. 2003, 15, 1251–1254. [Google Scholar] [CrossRef]
  739. Kagawa, F.; Miyagawa, K.; Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 2005, 436, 534–537. [Google Scholar] [CrossRef]
  740. Scheffler, M.; Dressel, M.; Jourdan, M.; Adrian, H. Extremely slow Drude relaxation of correlated electrons. Nature 2005, 438, 1135–1137. [Google Scholar] [CrossRef]
  741. Sasaki, T.; Yoneyama, N.; Suzuki, A.; Kobayashi, N.; Ikemoto, Y.; Kimura, H. Real space imaging of the metal-insulator phase separation in the band width controlled organic Mott system κ-(BEDT-TTF)2Cu[N(CN)2]Br. J. Phys. Soc. Jpn. 2005, 74, 2351–2360. [Google Scholar] [CrossRef] [Green Version]
  742. Sasaki, T.; Yoneyama, N.; Suzuki, A.; Ito, I.; Kobayashi, N.; Ikemoto, Y.; Kimura, H.; Hanasaki, N.; Tajima, H. Electrical inhomogeneity at the Mott transition in the band width controlled κ-(BEDT-TTF)2Cu[N(CN)2Br. J. Low Temp. Phys. 2006, 142, 377–382. [Google Scholar] [CrossRef]
  743. De Souza, M.; Brühl, A.; Strack, C.; Wolf, B.; Schweitzer, D.; Lang, M. Anomalous lattice response at the Mott transition in a quasi-2D organic conductor. Phys. Rev. Lett. 2007, 99, 037003. [Google Scholar] [CrossRef] [Green Version]
  744. Merino, J.; Dumm, M.; Drichko, N.; Dressel, M.; McKenzie, R.H. Quasiparticles at the verge of localization near the mott metal-insulator transition in a two-dimensional material. Phys. Rev. Lett. 2008, 100, 086404. [Google Scholar] [CrossRef] [Green Version]
  745. Zorina, L.; Simonov, S.; Mézière, C.; Canadell, E.; Suh, S.; Brown, S.E.; Foury-Leylekian, P.; Fertey, P.; Pouget, J.-P.; Batail, P. Charge ordering, symmetry and electronic structure issues and Wigner crystal structure of the quarter-filled band Mott insulators and high pressure metals δ-(EDT-TTF-CONMe2)2X, X = Br and AsF6. J. Mater. Chem. 2009, 19, 6980–6994. [Google Scholar] [CrossRef] [Green Version]
  746. Basov, D.N.; Averitt, R.D.; van Der Marel, D.; Dressel, M.; Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 2011, 83, 471–541. [Google Scholar] [CrossRef]
  747. Wall, S.; Brida, D.; Clark, S.R.; Ehrke, H.P.; Jaksch, D.; Ardavan, A.; Bonora, S.; Uemura, H.; Takahashi, Y.; Hasegawa, T.; et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. 2011, 7, 114–118. [Google Scholar] [CrossRef]
  748. Sasaki, T. Mott-Anderson transition in molecular conductors: Influence of randomness on strongly correlated electrons in the κ-(BEDT-TTF)2X system. Crystals 2012, 2, 374–392. [Google Scholar] [CrossRef]
  749. Pinterić, M.; Lazić, P.; Pustogow, A.; Ivek, T.; Kuveždić, M.; Milat, O.; Gumhalter, B.; Basletić, M.; Čulo, M.; Korin-Hamzić, B.; et al. Anion effects on electronic structure and electrodynamic properties of the Mott insulator κ-(BEDT-TTF)2Ag2(CN)3. Phys. Rev. B 2016, 94, 161105. [Google Scholar] [CrossRef] [Green Version]
  750. Mori, H.; Kamiya, M.; Haemori, M.; Suzuki, H.; Tanaka, S.; Nishio, Y.; Kajita, K.; Moriyama, H. First systematic band-filling control in organic conductors. J. Am. Chem. Soc. 2002, 124, 1251–1260. [Google Scholar] [CrossRef]
  751. Naito, T.; Inabe, T.; Niimi, H.; Asakura, K. Light-induced transformation of molecular materials into devices. Adv. Mater. 2004, 16, 1786–1790. [Google Scholar] [CrossRef]
  752. Yamamoto, H.M.; Ito, H.; Shigeto, K.; Tsukagoshi, K.; Kato, R. Direct formation of micro/nanocrystalline 2,5-dimethyl-N,N′-dicyanoquinonediimine complexes on SiO2/Si substrates and multiprobe measurement of conduction properties. J. Am. Chem. Soc. 2006, 128, 700–701. [Google Scholar] [CrossRef]
  753. Naito, T.; Sugawara, H.; Inabe, T.; Kitajima, Y.; Miyamoto, T.; Niimi, H.; Asakura, K. UV-vis-induced vitrification of a molecular crystal. Adv. Func. Mater. 2007, 17, 1663–1670. [Google Scholar] [CrossRef]
  754. Naito, T.; Sugawara, H.; Inabe, T. Mechanism of spatially resolved photochemical control of resistivity of a molecular crystalline solid. Nanotechnology 2007, 18, 424008. [Google Scholar] [CrossRef] [Green Version]
  755. Miyamoto, T.; Niimi, H.; Chun, W.-J.; Kitajima, Y.; Sugawara, H.; Inabe, T.; Naito, T.; Asakura, K. Chemical states of Ag in Ag(DMe-DCNQI)2 photoproducts and a proposal for its photoinduced conductivity change mechanism. Chem. Lett. 2007, 36, 1008–1009. [Google Scholar] [CrossRef]
  756. Miyamoto, T.; Kitajima, Y.; Sugawara, H.; Naito, T.; Inabe, T.; Asakura, K. Origin of photochemical modification of the resistivity of Ag(DMe-DCNQI)2 studied by X-ray absorption fine structure. J. Phys. Chem. C 2009, 113, 20476–20480. [Google Scholar] [CrossRef]
  757. Naito, T. Spatially resolved control of electrical resistivity in organic materials—Development of a new fabrication method of junction structures. In Nanotechnology: Nanofabrication, Patterning, and Self Assembly; Dixon, C.J., Curtines, O.W., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2010; Chapter 7; pp. 275–292. [Google Scholar]
  758. Naito, T.; Kakizaki, A.; Inabe, T.; Sakai, R.; Nishibori, E.; Sawa, H. Growth of nanocrystals in a single crystal of different materials: A way of giving function to molecular crystals. Cryst. Growth Design 2011, 11, 501–506. [Google Scholar] [CrossRef]
  759. Naito, T. Optical control of electrical properties in molecular crystals; states of matter beyond thermodynamic restrictions. Chem. Lett. 2018, 47, 1441–1452. [Google Scholar] [CrossRef]
  760. Heuzé, K.; Mézière, C.; Fourmigué, M.; Batail, P.; Coulon, C.; Canadell, E.; Auban-Senzier, P.; Jérome, D. An efficient, redox-enhanced pair of hydrogen-bond tweezers for chloride anion recognition, a key synthon in the construction of a novel type of organic metal based on the secondary amide-functionalized ethylenedithiotetrathiafulvalene, β″-(EDT-TTF-CONHMe)2[Cl·H2O]. Chem. Mater. 2000, 12, 1898–1904. [Google Scholar] [CrossRef]
  761. Hirose, T.; Imai, H.; Naito, T.; Inabe, T. Charge carrier doping in the Ni(dmit)2 simple salts by hydrogen-bonding pyridinium cations (dmit = 1,3-dithiol-2thione-4,5-dithiolate). J. Solid State Chem. 2002, 168, 535–546. [Google Scholar] [CrossRef]
  762. Akutagawa, T.; Hasegawa, T.; Nakamura, T.; Saito, G. Hydrogen-bonded supramolecular (2,2′-bi-1H-benzimidazole)(2-(2-1H-benzimidazolyl)-1H-benzimidazolium+)2(Cl) as an electron donor in a TCNQ complex. CrystEngComm 2003, 5, 54–57. [Google Scholar] [CrossRef]
  763. Baudron, S.A.; Avarvari, N.; Batail, P.; Coulon, C.; Clérac, R.; Canadell, E.; Auban-Senzier, P. Singular crystalline β′-layered topologies directed by ribbons of self-complementary amide⋯amide ring motifs in [EDT-TTF-(CONH2)2]2X (X = HSO4, ClO4, ReO4, AsF6): Coupled activation of ribbon curvature, electron interactions, and magnetic susceptibility. J. Am. Chem. Soc. 2003, 125, 11583–11590. [Google Scholar] [CrossRef]
  764. Devic, T.; Avarvari, N.; Batail, P. A series of redox active, tetrathiafulvalene-based amidopyridines and bipyridines ligands: Syntheses, crystal structures, a radical cation salt and group 10 transition-metal complexes. Chem. Eur. J. 2004, 10, 3697–3707. [Google Scholar] [CrossRef] [PubMed]
  765. Baudron, S.A.; Avarvari, N.; Canadell, E.; Auban-Senzier, P.; Batail, P. Structural isomerism in crystals of redox-active secondary ortho-diamides: The role of competing intra- and intermolecular hydrogen bonds in directing crystalline topologies. Chem. Eur. J. 2004, 10, 4498–4511. [Google Scholar] [CrossRef]
  766. Akutsu-Sato, A.; Akutsu, H.; Turner, S.S.; Day, P.; Probert, M.R.; Howard, J.A.K.; Akutagawa, T.; Takeda, S.; Nakamura, T.; Mori, T. The first proton-conducting metallic ion-radical salts. Angew. Chem. Int. Ed. Engl. 2004, 44, 292–295. [Google Scholar] [CrossRef]
  767. Akutagawa, T.; Takeda, S.; Hasegawa, T.; Nakamura, T. Proton transfer and a dielectric phase transition in the molecular conductor (HDABCO+)2(TCNQ)3. J. Am. Chem. Soc. 2004, 126, 291–294. [Google Scholar] [CrossRef]
  768. Réthoré, C.; Fourmigué, M.; Avarvari, N. Tetrathiafulvalene-hydroxyamides and -oxazolines: Hydrogen bonding, chirality, and a radical cation salt. Tetrahedron 2005, 61, 10935–10942. [Google Scholar] [CrossRef]
  769. Baudron, S.A.; Batail, P.; Coulon, C.; Clérac, R.; Canadell, E.; Laukhin, V.; Melzi, R.; Wzietek, P.; Jérome, D.; Auban-Senzier, P.; et al. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic-inorganic hybrid compound: Electronic instability, molecular motion, and charge localization. J. Am. Chem. Soc. 2005, 127, 11785–11797. [Google Scholar] [CrossRef]
  770. Isono, T.; Kamo, H.; Ueda, A.; Takahashi, K.; Nakao, A.; Kumai, R.; Nakao, H.; Kobayashi, K.; Murakami, Y.; Mori, H. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 2013, 4, 1344. [Google Scholar] [CrossRef] [Green Version]
  771. Ueda, A.; Yamada, S.; Isono, T.; Kamo, H.; Nakao, A.; Kumai, R.; Nakao, H.; Murakami, Y.; Yamamoto, K.; Nishio, Y.; et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: A phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 2014, 136, 12184–12192. [Google Scholar] [CrossRef] [PubMed]
  772. Makhotkina, O.; Lieffrig, J.; Jeannin, O.; Fourmigué, M.; Aubert, E.; Espinosa, E. Cocrystal or salt: Solid state-controlled iodine shift in crystalline halogen-bonded systems. Cryst. Growth Design 2015, 15, 3464–3473. [Google Scholar] [CrossRef]
  773. Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366. [Google Scholar] [CrossRef]
  774. Akutagawa, T.; Koshinaka, H.; Sato, D.; Takeda, S.; Noro, S.-I.; Takahashi, H.; Kumai, R.; Tokura, Y.; Nakamura, T. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat. Mater. 2009, 8, 342–347. [Google Scholar] [CrossRef] [PubMed]
  775. Kawamoto, T.; Mori, T.; Graf, D.; Brooks, J.S.; Takahide, Y.; Uji, S.; Shirahata, T.; Imakubo, T. Interlayer charge disproportionation in the layered organic superconductor κH-(DMEDO-TSeF)2[Au(CN)4](THF) with polar dielectric insulating layers. Phys. Rev. Lett. 2012, 109, 147005. [Google Scholar] [CrossRef] [Green Version]
  776. Tomić, S.; Dressel, M. Ferroelectricity in molecular solids: A review of electrodynamic properties. Rep. Prog. Phys. 2015, 78, 096501. [Google Scholar] [CrossRef]
  777. Harada, J.; Shimojo, T.; Oyamaguchi, H.; Hasegawa, H.; Takahashi, Y.; Satomi, K.; Suzuki, Y.; Kawamata, J.; Inabe, T. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules. Nat. Chem. 2016, 8, 946–952. [Google Scholar] [CrossRef] [Green Version]
  778. Akutsu, H.; Ishihara, K.; Yamada, J.-I.; Nakatsuji, S.; Turner, S.S.; Nakazawa, Y. A strongly polarized organic conductor. CrystEngComm 2016, 18, 8151–8154. [Google Scholar] [CrossRef]
  779. Akutsu, H.; Ishihara, K.; Ito, S.; Nishiyama, F.; Yamada, J.-I.; Nakasuji, S.; Turner, S.S.; Nakazawa, Y. Anion polarity-induced self-doping in a purely organic paramagnetic conductor, α′-α′-(BEDT-TTF)2(PO-CONH-m-C6H4SO3)·H2O where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene and PO is the radical 2,2,5,5-Tetramethyl-3-pyrrolin-1-oxyl. Polyhedron 2017, 136, 23–29. [Google Scholar] [CrossRef]
  780. Huang, Y.; Wang, Z.; Chen, Z.; Zhang, Q. Organic cocrystals: Beyond electrical conductivities and field-effect transistors (FETs). Angew. Chem. Int. Ed. Engl. 2019, 58, 9696–9711. [Google Scholar] [CrossRef] [PubMed]
  781. Harada, J.; Kawamura, Y.; Takahashi, Y.; Uemura, Y.; Hasegawa, T.; Taniguchi, H.; Maruyama, K. Plastic/ferroelectric crystals with easily switchable polarization: Low-voltage operation, unprecedentedly high pyroelectric performance, and large piezoelectric effect in polycrystalline forms. J. Am. Chem. Soc. 2019, 141, 9349–9357. [Google Scholar] [CrossRef] [PubMed]
  782. Lim, D.-W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416–8467. [Google Scholar] [CrossRef]
  783. Yoshimoto, R.; Yamashita, S.; Akutsu, H.; Nakazawa, Y.; Kusamoto, T.; Oshima, Y.; Nakano, T.; Yamamoto, H.M.; Kato, R. Electric dipole induced bulk ferromagnetism in dimer Mott molecular compounds. Sci. Rep. 2021, 11, 1332. [Google Scholar] [CrossRef]
  784. Lunkenheimer, P.; Müller, J.; Krohns, S.; Schrettle, F.; Loidl, A.; Hartmann, B.; Rommel, R.; de Souza, M.; Hotta, C.; Schlueter, J.A.; et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 2012, 11, 755–758. [Google Scholar] [CrossRef]
  785. Rothaemel, B.; Forro, L.; Cooper, J.R.; Schilling, J.S.; Weger, M.; Bele, P.; Brunner, H.; Schweitzer, D.; Keller, H.J. Magnetic susceptibility of α and β phases of di[bis(ethylenediothiolo) tetrathiafulvalene] tri-iodide [(BEDT-TTF)2I3] under pressure. Phys. Rev. B 1986, 34, 704–712. [Google Scholar] [CrossRef] [PubMed]
  786. Moldenhauer, J.; Horn, C.H.; Pokhodnia, K.I.; Schweitzer, D.; Heinen, I.; Keller, H.J. FT-IR absorption spectroscopy of BEDT-TTF radical salts: Charge transfer and donor-anion interaction. Synth. Met. 1993, 60, 31–38. [Google Scholar] [CrossRef] [Green Version]
  787. Kino, H.; Fukuyama, H. On the phase transition of α-(ET)2I3. J. Phys. Soc. Jpn. 1995, 64, 1877–1880. [Google Scholar] [CrossRef]
  788. Seo, H. Charge ordering in organic ET compounds. J. Phys. Soc. Jpn. 2000, 69, 805–820. [Google Scholar] [CrossRef] [Green Version]
  789. Takano, Y.; Hiraki, K.; Yamamoto, H.M.; Nakamura, T.; Takahashi, T. Charge disproportionation in the organic conductor, α-(BEDT-TTF)2I3. J. Phys. Chem. Solids 2001, 62, 393–395. [Google Scholar] [CrossRef]
  790. Wojciechowski, R.; Yamamoto, K.; Yakushi, K.; Inokuchi, M.; Kawamoto, A. High-pressure Raman study of the charge ordering in α-(BEDT-TTF)2I3. Phys. Rev. B 2003, 67, 224105. [Google Scholar] [CrossRef]
  791. Kakiuchi1, T.; Wakabayashi, Y.; Sawa, H.; Takahashi, T.; Nakamura, T. Charge ordering in α-(BEDT-TTF)2I3 by synchrotron X-ray diffraction. J. Phys. Soc. Jpn. 2007, 76, 113702. [Google Scholar] [CrossRef] [Green Version]
  792. Yamamoto, K.; Kowalska, A.A.; Yakushi, K. Direct observation of ferroelectric domains created by Wigner crystallization of electrons in α-[Bis (ethylenedithio) tetrathiafulvalene]2I3. Appl. Phys. Lett. 2010, 96, 122901. [Google Scholar] [CrossRef]
  793. Yue, Y.; Nakano, C.; Yamamoto, K.; Uruichi, M.; Wojciechowski, R.; Inokuchi, M.; Yakushi, K.; Kawamoto, A. Charge order-disorder phase transition in α′-[bis(ethylenedithio) tetrathiafulvalene]2IBr2 [α′-(BEDT-TTF)2IBr2]. J. Phys. Soc. Jpn. 2009, 78, 044701. [Google Scholar] [CrossRef]
  794. Yamamoto, K.; Yakushi, K. Second-harmonic generation study of ferroelectric organic conductors α-(BEDT-TTF)2X (X = I3 and I2Br). In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 185–201. [Google Scholar]
  795. Ivek, T.; Korin-Hamzić, B.; Milat, O.; Tomić, S.; Clauss, C.; Drichko, N.; Schweitzer, D.; Dressel, M. Electrodynamic response of the charge ordering phase: Dielectric and optical studies of α-(BEDT-TTF)2I3. Phys. Rev. B 2011, 83, 165128. [Google Scholar] [CrossRef] [Green Version]
  796. Potember, R.S.; Poehler, T.O.; Cowan, D.O. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl. Phys. Lett. 1979, 34, 405–407. [Google Scholar] [CrossRef]
  797. Bässler, H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Stat. Sol. 1993, 175, 15–56. [Google Scholar] [CrossRef]
  798. Nishikawa, H.; Kojima, S.; Kodama, T.; Ikemoto, I.; Suzuki, S.; Kikuchi, K.; Fujitsuka, M.; Luo, H.; Araki, Y.; Ito, O. Photophysical study of new methanofullerene-TTF diads: An obvious intramolecular charge transfer in the ground states. J. Phys. Chem. A 2004, 108, 1881–1890. [Google Scholar] [CrossRef]
  799. Mataga, N.; Chosrowjan, H.; Taniguchi, S. Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: Our early studies and recent developments. J. Photochem. Photobio. C: Photochem. Rev. 2005, 6, 37–79. [Google Scholar] [CrossRef]
  800. Loosli, C.; Jia, C.; Liu, S.-X.; Haas, M.; Dias, M.; Levillain, E.; Neels, A.; Labat, G.; Hauser, A.; Decurtins, S. Synthesis and electrochemical and photophysical studies of tetrathiafulvalene-annulated phthalocyanines. J. Org. Chem. 2005, 70, 4988–4992. [Google Scholar] [CrossRef] [Green Version]
  801. Shigehiro, T.; Yagi, S.; Maeda, T.; Nakazumi, H.; Fujiwara, H.; Sakurai, Y. Novel 10,13-disubstitutedd dipyrido[3,2-a:2′,3′-c]phenazines and their platinum(II) complexes: Highly luminescent ICT-type fluorophores based on D–A–D structures. Tetrahed. Lett. 2005, 55, 5195–5198. [Google Scholar] [CrossRef]
  802. Fujiwara, H.; Tsujimoto, K.; Sugishima, Y.; Takemoto, S.; Matsuzaka, H. New fluorene-substituted TTF derivatives as photofunctional materials. Phys. B 2010, 405, S12–S14. [Google Scholar] [CrossRef]
  803. Fujiwara, H.; Yokota, S.; Hayashi, S.; Takemoto, S.; Matsuzaka, H. Development of photofunctional materials using TTF derivatives containing a 1,3-benzothiazole ring. Phys. B 2010, 405, S15–S18. [Google Scholar] [CrossRef]
  804. Wenger, S.; Bouit, P.-A.; Chen, Q.; Teuscher, J.; di Censo, D.; Humphry-Baker, R.; Moser, J.-E.; Delgado, J.L.; Martín, N.; Zakeeruddin, S.M.; et al. Efficient electron transfer and sensitizer regeneration in stable π-extended tetrathiafulvalene-sensitized solar cells. J. Am. Chem. Soc. 2010, 132, 5164–5169. [Google Scholar] [CrossRef] [Green Version]
  805. Lemmetyinen, H.; Tkachenko, N.V.; Efimov, A.; Niemi, M. Photoinduced intra- and intermolecular electron transfer in solutions and in solid organized molecular assemblies. Phys. Chem. Chem. Phys. 2011, 13, 397–412. [Google Scholar] [CrossRef]
  806. Furukawa, K.; Sugishima, Y.; Fujiwara, H.; Nakamura, T. Photoinduced triplet states of photoconductive TTF derivatives including a fluorescent group. Chem. Lett. 2011, 40, 292–294. [Google Scholar] [CrossRef]
  807. Naito, T.; Karasudani, T.; Mori, S.; Ohara, K.; Konishi, K.; Takano, T.; Takahashi, Y.; Inabe, T.; Nishihara, S.; Inoue, K. Molecular photoconductor with simultaneously photocontrollable localized spins. J. Am. Chem. Soc. 2012, 134, 18656–18666. [Google Scholar] [CrossRef]
  808. Naito, T.; Karasudani, T.; Ohara, K.; Takano, T.; Takahashi, Y.; Inabe, T.; Furukawa, K.; Nakamura, T. Simultaneous control of carriers and localized spins with light in organic materials. Adv. Mater. 2012, 24, 6153–6157. [Google Scholar] [CrossRef]
  809. Brunetti, F.G.; López, J.L.; Atienza, C.; Martín, N. π-extended TTF: A versatile molecule for organic electronics. J. Mater. Chem. 2012, 22, 4188–4205. [Google Scholar] [CrossRef]
  810. Maeda, T.; Mineta, S.; Fujiwara, H.; Nakao, H.; Yagi, S.; Nakazumi, H. Conformationla effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 1303–1309. [Google Scholar] [CrossRef]
  811. Tsujimoto, K.; Ogasawara, R.; Fujiwara, H. Photocurrent generation based on new tetrathiafulvalene-BODIPY dyads. Tetrahedron Lett. 2013, 54, 1251–1255. [Google Scholar] [CrossRef]
  812. Takubo, N.; Tajima, N.; Yamamoto, H.M.; Cui, H.; Kato, R. Lattice distortion stabilizes the photoinduced metallic phase in the charge-ordered organic salts (BEDT-TTF)3X2 (X = ReO4, ClO4). Phys. Rev. Lett. 2013, 110, 227401. [Google Scholar] [CrossRef]
  813. Naito, T.; Karasudani, T.; Nagayama, N.; Ohara, K.; Konishi, K.; Mori, S.; Takano, T.; Takahashi, Y.; Inabe, T.; Kinose, S.; et al. Giant photoconductivity in NMQ[Ni(dmit)2]. Eur. J. Inorg. Chem. 2014, 4000–4009. [Google Scholar] [CrossRef]
  814. Noma, H.; Ohara, K.; Naito, T. [Cu(dmit)2]2− Building block for molecular conductors and magnets with photocontrollable spin distribution. Chem. Lett. 2014, 43, 1230–1232. [Google Scholar] [CrossRef]
  815. Tsujimoto, K.; Ogasawara, R.; Kishi, Y.; Fujiwara, H. TTF-fluorene dyads and their M(CN)2 (M = Ag, Au) salts designed for photoresponsive conducting materials. New J. Chem. 2014, 38, 406–418. [Google Scholar] [CrossRef]
  816. Tsujimoto, K.; Ogasawara, R.; Nakagawa, T.; Fujiwara, H. Photofunctional conductors based on TTF-BODIPY dyads bearing p-phenylene and p-phenylenevinylene spacers. Eur. J. Inorg. Chem. 2014, 2014, 3960–3972. [Google Scholar] [CrossRef]
  817. Ng, T.-W.; Lo, M.-F.; Fung, M.-K.; Zhang, W.-J.; Lee, C.-S. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics. Adv. Mater. 2014, 26, 5569–5574. [Google Scholar] [CrossRef] [PubMed]
  818. Nagayama, N.; Yamamoto, T.; Naito, T. Activation energy for photoconduction in molecular crystals. Chem 2015, 2, 74–80. [Google Scholar]
  819. Mitrano, M.; Cantaluppi, A.; Nicoletti, D.; Kaiser, S.; Perucchi, A.; Lupi, S.; di Pietro, P.; Pontiroli, D.; Riccò, M.; Clark, S.R.; et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 2016, 530, 461–464. [Google Scholar] [CrossRef]
  820. Noma, H.; Ohara, K.; Naito, T. Direct control of spin distribution and anisotropy in Cu-dithiolene complex anions by light. Inorganics 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
  821. Yamamoto, R.; Yamamoto, T.; Ohara, K.; Naito, T. Dye-sensitized molecular charge transfer complexes: Magnetic and conduction properties in the photoexcited states of Ni(dmit)2 salts containing photosensitive dyes. Magnetochemistry 2017, 3, 20. [Google Scholar] [CrossRef] [Green Version]
  822. Naito, T.; Yamamoto, T.; Yamamoto, R.; Zhang, M.Y.; Yamamoto, T. A possibly highly conducting state in an optically excited molecular crystal. J. Mater. Chem. C 2019, 7, 9175–9183. [Google Scholar] [CrossRef]
  823. Naito, T.; Watanabe, N.; Sakamoto, Y.; Miyaji, Y.; Shirahata, T.; Misaki, Y.; Kitou, S.; Sawa, H. A molecular crystal with an unprecedentedly long-lived photoexcited state. Dalton Trans. 2019, 48, 12858–12866. [Google Scholar] [CrossRef]
  824. Mogensen, J.; Michaels, H.; Roy, R.; Broløs, L.; Kilde, M.D.; Freitag, M.; Nielsen, M.B. Indenofluorene-Extended tetrathiafulvalene scaffolds for dye-sensitized solar cells. Eur. J. Org. Chem. 2020, 2020, 6127–6134. [Google Scholar] [CrossRef]
  825. Naito, T. Prototype material for new strategy of photon energy storage. Inorganics 2020, 8, 53. [Google Scholar] [CrossRef]
  826. Tsujimoto, K.; Yamamoto, S.; Fujiwara, H. Synthesis and physical properties of tetrathiafulvalene-8-quinolinato zinc(II) and nickel(II) complexes. Inorganics 2021, 9, 11. [Google Scholar] [CrossRef]
  827. Schultz, A.J.; Wang, H.H.; Soderholm, L.C.; Sifter, T.L.; Williams, J.M.; Bechgaard, K.; Whangbo, M.-H. Crystal structures of [Au(DDDT)2]0 and [(n-Bu)4N][Ni(DDDT)2] and the ligandlike character of the isoelectronic radicals [Au(DDDT)2]0 and [Ni(DDDT)2]. Inorg. Chem. 1987, 26, 3757–3761. [Google Scholar] [CrossRef]
  828. Rindorf, G.; Thorup, N.; Bjørnholm, T.; Bechgaard, K. Structure of bis(benzene-1,2-dithiolato)gold(IV). Acta Crystallogr. Sec. C 1990, 46, 1437–1439. [Google Scholar] [CrossRef]
  829. Schiødt, N.C.; Bjørnholm, T.; Bechgaard, K.; Neumeier, J.J.; Allgeier, C.; Jacobsen, C.S.; Thorup, N. Structural, electrical, magnetic, and optical properties of bis-benzene-1,2-dithiolate-Au(IV) crystals. Phys. Rev. B 1996, 53, 1773–1778. [Google Scholar] [CrossRef] [Green Version]
  830. Belo, D.; Alves, H.; Lopes, E.B.; Duarte, M.T.; Gama, V.; Henriques, R.T.; Almeida, M.; Perez-Benitez, A.; Rovira, C.; Veciana, J. Gold complexes with dithiothiphene ligands: A metal based on a neutral molecule. Chem. Eur. J. 2001, 7, 511–519. [Google Scholar] [CrossRef]
  831. Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki, W.; Kobayashi, A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science 2001, 291, 285–287. [Google Scholar] [CrossRef] [PubMed]
  832. Kobayashi, A.; Tanaka, H.; Kobayashi, H. Molecular design and development of single-component molecular metals. J. Mater. Chem. 2001, 11, 2078–2088. [Google Scholar] [CrossRef]
  833. Dautel, O.J.; Fourmigué, M.; Canadell, E.; Auban-Senzier, P. Fluorine segregation controls the solid-state organization and Electronic properties of Ni and Au dithiolene complexes: Stabilization of a conducting single-component gold dithiolene complex. Adv. Funct. Mater. 2002, 12, 693–698. [Google Scholar] [CrossRef]
  834. Tanaka, H.; Kobayashi, H.; Kobayashi, A. A conducting crystal based on a single-component paramagnetic molecule, [Cu(dmdt)2] (dmdt = dimethyltetrathiafulvalenedithiolate). J. Am. Chem. Soc. 2002, 124, 10002–10003. [Google Scholar] [CrossRef]
  835. Suzuki, W.; Fujiwara, E.; Kobayashi, A.; Fujishiro, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Fujiwara, H.; Kobayashi, H. Highly conducting crystals based on single-component gold complexes with extended-TTF dithiolate ligands. J. Am. Chem. Soc. 2003, 125, 1486. [Google Scholar] [CrossRef]
  836. Kobayashi, A.; Sasa, M.; Suzuki, W.; Fujiwara, E.; Tanaka, H.; Tokumoto, M.; Okano, Y.; Fujiwara, H.; Kobayashi, H. Infrared electronic absorption in a single-component molecular metal. J. Am. Chem. Soc. 2004, 126, 426–427. [Google Scholar] [CrossRef] [PubMed]
  837. Kobayashi, A.; Fujiwara, E.; Kobayashi, H. Single-component molecular metals with extended-TTF dithiolate ligands. Chem. Rev. 2004, 104, 5243–5264. [Google Scholar] [CrossRef] [PubMed]
  838. Tanaka, H.; Tokumoto, M.; Ishibashi, S.; Graf, D.; Choi, E.S.; Brooks, J.S.; Yasuzuka, S.; Okano, Y.; Kobayashi, H.; Kobayashi, A. Observation of three-dimensional Fermi surface in a single-component molecular metal, [Ni(tmdt)2]. J. Am. Chem. Soc. 2004, 126, 10518–10519. [Google Scholar] [CrossRef] [PubMed]
  839. Lusar, R.; Uriel, S.; Vicent, C.; Clemente-Juan, J.M.; Coronado, E.; Gómez-García, C.J.; Braïda, B.; Canadell, E. Single-component magnetic conductors based on Mo3S7 trinuclear clusters with outer dithiolate ligands. J. Am. Chem. Soc. 2004, 126, 12076–12083. [Google Scholar] [CrossRef]
  840. Ishibashi, S.; Tanaka, H.; Kohyama, M.; Tokumoto, M.; Kobayashi, A.; Kobayashi, H.; Terakura, K. Ab initio electronic structure calculation for single-component molecular conductor Au(tmdt)2 (tmdt = trimethylenetetrathiafulvalenedithiolate). J. Phys. Soc. Jpn. 2005, 74, 843–846. [Google Scholar] [CrossRef]
  841. Sasa, M.; Fujiwara, E.; Kobayashi, A.; Ishibashi, S.; Terakura, K.; Okano, Y.; Fujiwara, H.; Kobayashi, H. Crystal structures and physical properties of single-component molecular conductors consisting of nickel and gold complexes with (trifluoromethyl)tetrathiafulvalenedithiolate ligands. J. Mater. Chem. 2005, 15, 155–163. [Google Scholar] [CrossRef]
  842. Kobayashi, A.; Zhou, B.; Kobayashi, H. Development of metallic crystals composed of single-component molecules. J. Mater. Chem. 2005, 15, 3449–3451. [Google Scholar] [CrossRef]
  843. Zhou, B.; Shimamura, M.; Fujiwara, E.; Kobayashi, A.; Higashi, T.; Nishibori, E.; Sakata, M.; Cui, H.B.; Takahashi, K.; Kobayashi, H. Magnetic transitions of single-component molecular metal [Au(tmdt)2] and its alloy systems. J. Am. Chem. Soc. 2006, 128, 3872–3873. [Google Scholar] [CrossRef]
  844. Kobayashi, A.; Okano, Y.; Kobayashi, H. Molecular design and physical properties of single-component molecular metals. J. Phys. Soc. Jpn. 2006, 75, 051002. [Google Scholar] [CrossRef]
  845. Nunes, J.P.M.; Figueira, M.J.; Belo, D.; Santos, I.C.; Ribeiro, B.; Lopes, E.B.; Henriques, R.T.; Vidal-Gancedo, J.; Veciana, J.; Rovira, C.; et al. Transition metal bisdithiolene complexes based on extended ligands with fused terathiafulvalene and thiophene moieties: New single-component molecular metals. Chem. Eur. J. 2007, 13, 9841–9849. [Google Scholar] [CrossRef]
  846. Llusar, R.; Triguero, S.; Polo, V.; Vicent, C.; Gómez-García, C.J.; Jeannin, O.; Fourmigué, M. Trinuclear Mo3S7 clusters coordinated to dithiolate or diselenolate ligands and their use in the preparation of magnetic single component molecular conductors. Inorg. Chem. 2008, 47, 9400–9409. [Google Scholar] [CrossRef]
  847. Seo, H.; Ishibashi, S.; Okano, Y.; Kobayashi, H.; Kobayashi, A.; Fukuyama, H.; Terakura, K. Single-componenet molecular metals as multiband π-d systems. J. Phys. Soc. Jpn. 2008, 77, 023714. [Google Scholar] [CrossRef] [Green Version]
  848. Hara, Y.; Miyagawa, K.; Kanoda, K.; Shimamura, M.; Zhou, B.; Kobayashi, A.; Kobayashi, H. NMR evidence for antiferromagnetic transition in the single-component molecular conductor, [Au(tmdt)2] at 110 K. J. Phys. Soc. Jpn. 2008, 77, 053706. [Google Scholar] [CrossRef] [Green Version]
  849. Tenn, N.; Bellec, N.; Jeannin, O.; Piekara-Sady, L.; Auban-Senzier, P.; Iniguez, J.; Canadell, E.; Lorcy, D. A single-component molecular metal based on a thiazole dithiolate gold complex. J. Am. Chem. Soc. 2009, 131, 16961–16967. [Google Scholar] [CrossRef]
  850. Zhou, B.; Kobayashi, A.; Okano, Y.; Nakashima, T.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Tokumoto, M.; Kobayashi, H. Single-component molecular conductor [Pt(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate)—An advanced molecular metal exhibiting high metallicity. Adv. Mat. 2009, 21, 3596–3600. [Google Scholar] [CrossRef]
  851. Mercuri, M.L.; Deplano, P.; Pilia, L.; Serpe, A.; Artizzu, F. Interactions modes and physical properties in transition metal chalcogenolene-based molecular materials. Coord. Chem. Rev. 2010, 254, 1419–1433. [Google Scholar] [CrossRef]
  852. Garreau-de Bonneval, B.; Ching, K.I.M.-C.; Alary, F.; Bui, T.-T.; Valade, L. Neutral d8 metals bis-dithiolene complexes: Synthesis, electronic properties and applications. Coord. Chem. Rev. 2010, 254, 1457–1467. [Google Scholar] [CrossRef]
  853. Belo, D.; Almeida, M. Transition metal complexes based on thiophene-dithiolene ligands. Coord. Chem. Rev. 2010, 254, 1479–1492. [Google Scholar] [CrossRef]
  854. Zhou, B.; Yajima, H.; Kobayashi, A.; Okano, Y.; Tanaka, H.; Kumashiro, T.; Nishibori, E.; Sawa, H.; Kobayashi, H. Single-component molecular conductor [Cu(tmdt)2] containing an antiferromagnetic Heisenberg chain. Inorg. Chem. 2010, 49, 6740–6747. [Google Scholar] [CrossRef]
  855. Perochon, R.; Davidson, P.; Rouzière, S.; Camerel, F.; Piekara-Sady, L.; Guizouarn, T.; Fourmigué, M. Probing magnetic interactions in columnar phases of a paramagnetic gold dithiolene complex. J. Mater. Chem. 2011, 21, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
  856. Takagi, R.; Miyagawa, K.; Kanoda, K.; Zhou, B.; Kobayashi, A.; Kobayashi, H. NMR evidence for antiferromagnetic transition in the single-component molecular system [Cu(tmdt)2]. Phys. Rev. B 2012, 85, 184424. [Google Scholar] [CrossRef] [Green Version]
  857. Zhou, B.; Idobata, Y.; Kobayashi, A.; Cui, H.; Kato, R.; Takagi, R.; Mitagawa, K.; Kanoda, K.; Kobayashi, H. Single-component molecular conductor [Cu(dmdt)2] with three-dimensionally arranged magnetic moments exhibiting a coupled electric and magnetic transition. J. Am. Chem. Soc. 2012, 134, 12724–12731. [Google Scholar] [CrossRef]
  858. Yzambart, G.; Bellec, N.; Nasser, G.; Jeannin, O.; Roisnel, T.; Fourmigué, M.; Auban-Senzier, P.; Íňiguez, J.; Canadell, E.; Lorcy, D. Anisotropic chemical pressure effects in single-component molecular metals based on radical dithiolene and diselenolene gold complexes. J. Am. Chem. Soc. 2012, 134, 17138–17148. [Google Scholar] [CrossRef]
  859. Zhou, B.; Yajima, H.; Idobata, Y.; Kobayashi, A.; Kobayashi, T.; Nishibori, E.; Sawa, H.; Kobayashi, H. Single-component layered molecular conductor, [Au(ptdt)2]. Chem. Lett. 2012, 41, 154–156. [Google Scholar] [CrossRef]
  860. Papavassiliou, G.C.; Anyfantis, G.C.; Mousdis, G.A. Neutral metal 1,2-dithiolenes: Preparations, properties and possible applications of unsymmetrical in comparison to the symmetrical. Crystals 2012, 2, 762–811. [Google Scholar] [CrossRef] [Green Version]
  861. Filatre-Furcate, A.; Bellec, N.; Jeannin, O.; Auban-Senzier, P.; Fourmigué, M.; Vacher, A.; Lorcy, D. Radical or not radical: Compared structures of metal (M = Ni, Au) bis-dithiolene complexes with a thiazole backbone. Inorg. Chem. 2014, 53, 8681–8690. [Google Scholar] [CrossRef] [PubMed]
  862. Le Gal, Y.; Roisnel, T.; Auban-Senzier, P.; Guizouarn, T.; Lorcy, D. Hydrogen-bonding interactions in a single-component molecular conductor: A hydroxyethyl-substituted radical gold dithiolene. Inorg. Chem. 2014, 53, 8755–8761. [Google Scholar] [CrossRef]
  863. Higashino, T.; Jeannin, O.; Kawamoto, T.; Lorcy, D.; Mori, T.; Fourmigué, M. A single-component conductor based on a radical gold dithiolene complex with alkyl-substituted thiophene-2,3-dithiolene ligand. Inorg. Chem. 2015, 54, 9908–9913. [Google Scholar] [CrossRef] [PubMed]
  864. Mebrouk, K.; Kaddour, W.; Auban-Senzier, P.; Pasquier, C.; Jeannin, O.; Camerel, F.; Fourmigué, M. Molecular alloys of neutral nickel/gold dithiolene complexes in single-component semiconductors. Inorg. Chem. 2015, 54, 7454–7460. [Google Scholar] [CrossRef] [PubMed]
  865. Filatre-Furcate, A.; Bellec, N.; Jeannin, O.; Auban-Senzier, P.; Fourmigué, M.; Íňiguez, J.; Canadell, E.; Brière, B.; Lorcy, D. Single-component conductors: A sturdy electronic structure generated by bulky substituents. Inorg. Chem. 2016, 55, 6036–6046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  866. Branzea, D.G.; Pop, F.; Auban-Senzier, P.; Clérac, R.; Alemany, P.; Canadell, E.; Avarvari, N. Localization versus delocalization in chiral single component conductors of gold bis(dithiolene) complexes. J. Am. Chem. Soc. 2016, 138, 6838–6851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  867. Pop, F.; Avarvari, N. Chiral metal-dithiolene complexes. Coord. Chem. Rev. 2017, 346, 20–31. [Google Scholar] [CrossRef]
  868. Filatre-Furcate, A.; Roisnel, T.; Fourmigué, M.; Jeannin, O.; Bellec, N.; Auban-Senzier, P.; Lorcy, D. Subtle steric differences impact the structural and conducting properties of radical gold bis(dithiolene) complexes. Chem. Eur. J. 2017, 23, 16004–16013. [Google Scholar] [CrossRef]
  869. Kato, R.; Suzumura, Y. Novel Dirac electron in single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). J. Phys. Soc. Jpn. 2017, 86, 064705. [Google Scholar] [CrossRef]
  870. Kato, R.; Cui, H.-B.; Tsumuraya, T.; Miyazaki, T.; Suzumura, Y. Emergence of the Dirac electron system in a single-component molecular conductor under high pressure. J. Am. Chem. Soc. 2017, 139, 1770–1773. [Google Scholar] [CrossRef]
  871. Suzumura, Y. Anisotropic conductivity of nodal line semimetal in single-component molecular conductor [Pd(dddt)2]. J. Phys. Soc. Jpn. 2017, 86, 124710. [Google Scholar] [CrossRef] [Green Version]
  872. Suzumura, Y.; Kato, R. Magnetic susceptibility of Dirac electrons in single-component molecular conductor [Pd(dddt)2] under pressure. Jpn. J. Appl. Phys. 2017, 56, 05FB02. [Google Scholar] [CrossRef]
  873. Kobayashi, Y.; Terauchi, T.; Sumi, S.; Matsushita, Y. Carrier generation and electronic properties of a single-component pure organic metal. Nat. Mater. 2017, 16, 109–114. [Google Scholar] [CrossRef] [PubMed]
  874. Le Gal, Y.; Roisnel, T.; Auban-Senzier, P.; Bellec, N.; Íñiguez, J.; Canadell, E.; Lorcy, D. Stable Metallic state of a neutral-radical single-component conductor at ambient pressure. J. Am. Chem. Soc. 2018, 140, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
  875. Tsumuraya, T.; Kato, R.; Suzumura, Y. Effective hamiltonian of topological nodal line semimetal in single-component molecular conductor [Pd(dddt)2] from first-principles. J. Phys. Soc. Jpn. 2018, 87, 113701. [Google Scholar] [CrossRef]
  876. Suzumura, Y.; Cui, H.; Kato, R. Conductivity and resistivity of Dirac electrons in single-component molecular conductor [Pd(dddt)2]. J. Phys. Soc. Jpn. 2018, 87, 084702. [Google Scholar] [CrossRef] [Green Version]
  877. Silva, R.A.L.; Vieira, B.J.C.; Andrade, M.M.A.; Santos, I.C.; Rabaça, S.; Lopes, E.B.; Coutinho, J.T.; Pereira, L.C.J.; Almeida, M.; Belo, D. Gold and nickel extended thiophenic-TTF bisdithiolene complexes. Molecules 2018, 23, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  878. Zhou, B.; Ishibashi, S.; Ishii, T.; Sekine, T.; Takehara, R.; Miyagawa, K.; Kanoda, K.; Nishibori, E.; Kobayashi, A. Single-component molecular conductor [Pt(dmdt)2]—A three-dimensional ambient-pressure molecular Dirac electron system. Chem. Commun. 2019, 55, 3327–3330. [Google Scholar] [CrossRef] [PubMed]
  879. Hachem, H.; Bellec, N.; Fourmigué, M.; Lorcy, D. Hydrogen bonding interactions in single component molecular conductors based on metal (Ni, Au) bis(dithiolene) complexes. Dalton Trans. 2020, 49, 6056–6064. [Google Scholar] [CrossRef]
  880. Suzumura, Y.; Kato, R.; Ogata, M. Electric transport of nodal line semimetals in single-component molecular conductors. Crystals 2020, 10, 862. [Google Scholar] [CrossRef]
  881. Kato, R.; Cui, H.; Minamidate, T.; Yeung, H.H.-M.; Suzumura, Y. Electronic structure of a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) under high pressure. J. Phys. Soc. Jpn. 2020, 89, 124706. [Google Scholar] [CrossRef]
  882. Cui, H.; Yeung, H.H.-M.; Kawasugi, Y.; Minamidate, T.; Saunders, L.K.; Kato, R. High-pressure crystal structure and unusual magnetoresistance of a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). Crystals 2021, 11, 534. [Google Scholar] [CrossRef]
  883. Tajima, N.; Sugawara, S.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K. Transport properties of massless Dirac fermions in an organic conductor α-(BEDT-TTF)2I3 under pressure. EPL 2007, 80, 47002-p1-p5. [Google Scholar] [CrossRef]
  884. Kobayashi, A.; Suzumura, Y.; Fukuyama, H. Hall effect and orbital diamagnetism in zerogap state of molecular conductor α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2008, 77, 064718. [Google Scholar] [CrossRef]
  885. Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
  886. Montambaux, G.; Piéchon, F.; Fuchs, J.-N.; Goerbig, M.O. Merging of Dirac points in a two-dimensional crystal. Phys. Rev. B 2009, 80, 153412. [Google Scholar] [CrossRef]
  887. Hirata, M.; Ishikawa, K.; Miyagawa, K.; Kanoda, K.; Tamura, M. 13C NMR study on the charge-disproportionated conducting state in the quasi-two-dimensional organic conductor α-(BEDT-TTF)2I3. Phys. Rev. B 2011, 84, 125133. [Google Scholar] [CrossRef] [Green Version]
  888. Hiraki, K.-I.; Harada, S.; Arai, K.; Takano, Y.; Takahashi, T.; Tajima, N.; Kato, R.; Naito, T. Local spin susceptibility of α-D2I3 (D = bis(ethylendithio)tetraselenafulvalene (BETS) and bis(ethylendithio) dithiadiselenafulvalene (BEDT-STF)) studied by 77Se NMR. J. Phys. Soc. Jpn. 2011, 80, 014715. [Google Scholar] [CrossRef]
  889. Suzumura, Y.; Kobayashi, A. Berry curvature of the dirac particle in α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2011, 80, 104701. [Google Scholar] [CrossRef] [Green Version]
  890. Hosur, P.; Parameswaran, S.A.; Vishwanash, A. Charge transport in Weyl semimetals. Phys. Rev. Lett. 2012, 108, 046602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  891. Tajima, N.; Kato, R.; Sugawara, S.; Nishio, Y.; Kajita, K. Interband effects of magnetic field on Hall conductivity in the multilayered massless Dirac fermion system α-(BEDT-TTF)2I3. Phys. Rev. B 2012, 85, 033401. [Google Scholar] [CrossRef] [Green Version]
  892. Suzumura, Y.; Kobayashi, A. Theory of Dirac electrons in organic conductors. Crystals 2012, 2, 266–283. [Google Scholar] [CrossRef] [Green Version]
  893. Bácsi, Á.; Virosztek, A. Low-frequency optical conductivity in graphene and in other scale-invariant two-band systems. Phys. Rev. B 2013, 87, 125425. [Google Scholar] [CrossRef] [Green Version]
  894. Timusk, T.; Carbotte, J.P.; Homes, C.C.; Bosov, D.N.; Sharapov, S.G. Three-dimensional Dirac fermions in quasicrystals seen via optical conductivity. Phys. Rev. B 2013, 87, 235121. [Google Scholar] [CrossRef] [Green Version]
  895. Monteverde, M.; Goerbig, M.O.; Auban-Senzier, P.; Navarin, F.; Henck, H.; Pasquier, C.R.; Mézière, C.; Batail, P. Coexistence of Dirac and massive carriers in α-(BEDT-TTF)2I3 under hydrostatic pressure. Phys. Rev. B 2013, 87, 245110. [Google Scholar] [CrossRef] [Green Version]
  896. Suzumura, Y.; Kobayashi, A. Effects of zero line and ferrimagnetic fluctuation on nuclear magnetic resonance for Dirac electrons in molecular conductor α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2013, 82, 054715. [Google Scholar] [CrossRef] [Green Version]
  897. Kajita, K.; Nishio, Y.; Tajima, N.; Suzumura, Y.; Kobayashi, A. Molecular Dirac fermion systems—Theoretical and experimental approaches. J. Phys. Soc. Jpn. 2014, 83, 072002. [Google Scholar] [CrossRef]
  898. Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Adv. Phys. 2014, 63, 1–76. [Google Scholar] [CrossRef] [Green Version]
  899. Wang, J.; Deng, S.; Liu, Z.; Liu, Z. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2, 22–39. [Google Scholar] [CrossRef] [Green Version]
  900. Fuseya, Y.; Ogata, M.; Fukuyama, H. Transport properties and diamagnetism of Dirac electrons in bismuth. J. Phys. Soc. Jpn. 2015, 84, 012001. [Google Scholar] [CrossRef] [Green Version]
  901. Neubauer, D.; Carbotte, J.P.; Nateprov, A.A.; Löhle, A.; Dressel, M.; Pronin, A.V. Interband optical conductivity of the [001]-oriented Dirac semimetal Cd3As2. Phys. Rev. B 2016, 93, 121202(R). [Google Scholar] [CrossRef] [Green Version]
  902. Miyagawa, K.; Sata, Y.; Taniguchi, T.; Hirata, M.; Liu, D.; Tamura, M.; Kanoda, K. Transition from a metal to a massless–Dirac-fermion phase in an organic conductor investigated by 13C NMR. J. Phys. Soc. Jpn. 2016, 85, 073710. [Google Scholar] [CrossRef]
  903. Matsuno, G.; Omori, Y.; Eguchi, T.; Kobayashi, A. Topological domain wall and valley Hall effect in charge ordered phase of molecular Dirac fermion system α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2016, 85, 094710. [Google Scholar] [CrossRef]
  904. Hirata, M.; Ishikawa, K.; Miyagawa, K.; Tamura, M.; Berthier, C.; Basko, D.; Kobayashi, A.; Matsuno, G.; Kanoda, K. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor. Nat. Commun. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  905. Liu, D.; Ishikawa, K.; Takehara, R.; Miyagawa, K.; Tamura, M.; Kanoda, K. Insulating nature of strongly correlated massless Dirac fermions in an organic crystal. Phys. Rev. Lett. 2016, 116, 226401. [Google Scholar] [CrossRef] [Green Version]
  906. Beyer, R.; Dengl, A.; Peterseim, T.; Wackerow, S.; Ivek, T.; Pronin, A.V.; Schweitzer, D.; Dressel, M. Pressure-dependent optical investigations of α-(BEDT-TTF)2I3: Tuning charge order and narrow gap towards a Dirac semimetal. Phys. Rev. B 2016, 93, 195116. [Google Scholar] [CrossRef] [Green Version]
  907. Zhang, C.; Jiao, Y.; Ma, F.; Bottle, S.; Zhao, M.; Chen, Z.; Du, A. Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin-orbit coupling. Phys. Chem. Chem. Phys. 2017, 19, 5449–5453. [Google Scholar] [CrossRef] [PubMed]
  908. Hirata, M.; Ishikawa, K.; Matsuno, G.; Kobayashi, A.; Miyagawa, K.; Tamura, M.; Berthier, C.; Kanoda, K. Anomalous spin correlations and excitonic instability of interacting 2D Weyl fermions. Science 2017, 358, 1403–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  909. Suzumura, Y. Effect of long-range coulomb interaction on NMR shift in massless Dirac electrons of organic conductor. J. Phys. Soc. Jpn. 2018, 87, 024705. [Google Scholar] [CrossRef]
  910. Tajima, N. Effects of carrier doping on the transport in the Dirac electron system α-(BEDT-TTF)2I3 under high pressure. Crystals 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
  911. Neubauer, D.; Yaresko, A.; Li, W.; Löhle, A.; Hübner, R.; Schilling, M.B.; Shekhar, C.; Felser, C.; Dressel, M.; Pronin, A.V. Optical conductivity of the Wyle semimetal NbP. Phys. Rev. B 2018, 98, 195203. [Google Scholar] [CrossRef] [Green Version]
  912. Huang, C.; Li, Y.; Wang, N.; Xue, Y.; Zuo, Z.; Liu, H.; Li, Y. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803. [Google Scholar] [CrossRef] [PubMed]
  913. Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M.H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 6370–6387. [Google Scholar] [CrossRef] [PubMed]
  914. Zheng, H.; Hasan, M.Z. Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: A review. Adv. Phys. X 2018, 3, 569–591. [Google Scholar] [CrossRef]
  915. Osada, T. Topological properties of τ-type organic conductors with a checkerboard lattice. J. Phys. Soc. Jpn. 2018, 88, 114707. [Google Scholar] [CrossRef]
  916. Suzumura, Y.; Tsumuraya, T.; Kato, R.; Matsuura, H.; Ogata, M. Role of velocity field and principal axis of tilted Dirac cones in effective Hamiltonian of non-coplanar nodal loop. J. Phys. Soc. Jpn. 2019, 88, 124704. [Google Scholar] [CrossRef]
  917. Tani, T.; Tajima, N.; Kobayashi, A. Field-angle dependence of interlayer magnetoresistance in organic Dirac electron system α-(BEDT-TTF)2I3. Crystals 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
  918. Li, W.; Uykur, E.; Kuntscher, C.A.; Dressel, M. Optical signatures of energy gap in correlated Dirac fermions. NPJ Quantum Mater. 2019, 4, 19. [Google Scholar]
  919. Mandal, I.; Saha, K. Thermopower in an anisotropic two-dimensional Weyl semimetal. Phys. Rev. B 2020, 101, 045101. [Google Scholar] [CrossRef] [Green Version]
  920. Naito, T.; Doi, R.; Suzumura, Y. Exotic Dirac cones on the band structure of α-STF2I3 at ambient temperature and pressure. J. Phys. Soc. Jpn. 2020, 89, 023701. [Google Scholar] [CrossRef] [Green Version]
  921. Naito, T.; Doi, R. Band structure and physical properties of α-STF2I3: Dirac electrons in disordered conduction sheets. Crystals 2020, 10, 270. [Google Scholar] [CrossRef] [Green Version]
  922. Kobara, R.; Igarashi, S.; Kawasugi, Y.; Doi, R.; Naito, T.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K.; Tajima, N. Universal behavior of magnetoresistance in organic Dirac electron systems. J. Phys. Soc. Jpn. 2020, 89, 113703. [Google Scholar] [CrossRef]
  923. Ohki, D.; Yoshimi, K.; Kobayashi, A. Transport properties of the organic Dirac electron system α-(BEDT-TSeF)2I3. Phys. Rev. B 2020, 102, 235116. [Google Scholar] [CrossRef]
  924. Tsumuraya, T.; Suzumura, Y. First-principles study of the effective Hamiltonian for Dirac fermions with spin-orbit coupling in two-dimensional molecular conductor α-(BETS)2I3. Eur. Phys. J. B 2021, 94, 17. [Google Scholar] [CrossRef]
  925. Kitou, S.; Tsumuraya, T.; Sawahata, H.; Ishii, F.; Hiraki, K.-I.; Nakamura, T.; Katayama, N.; Sawa, H. Ambient-pressure Dirac electron system in the quasi-two-dimensional molecular conductor α-(BETS)2I3. Phys. Rev. B 2021, 103, 035135. [Google Scholar] [CrossRef]
  926. Martin, L.; Turner, S.S.; Day, P.; Guionneau, P.; Haward, J.A.K.; Hibbs, D.E.; Light, M.E.; Hoursthouse, M.B.; Uruichi, M.; Yakushi, K. Crystal chemistry and physical properties of superconducting and semiconducting charge transfer salts of the type (BEDT-TTF)4[AIMIII(C2O4)3]·PhCN (AI = H3O, NH4, K.; MIII = Cr, Fe, Co, Al; BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). Inorg. Chem. 2001, 40, 1363–1371. [Google Scholar] [CrossRef]
  927. Minguet, M.; Luneau, D.; Lhotel, E.; Villar, V.; Paulsen, C.; Amabilino, D.B.; Veciana, J. An enantiopure molecular ferromagnet. Angew. Chem. Int. Ed. Engl. 2002, 41, 586–589. [Google Scholar] [CrossRef]
  928. Réthoré, C.; Fourmigué, M.; Avarvari, N. Tetrathiafulvalene based phosphino-oxazolines: A new family of redox active chiral ligands. Chem. Commun. 2004, 4, 1384–1385. [Google Scholar] [CrossRef] [PubMed]
  929. Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Murcia-Martínez, A.; Canadell, E. A chiral molecular conductor: Synthesis, structure, and physical properties of [ET]3[Sb2(L-tart)2]·CH3CN (ET = bis(ethylendithio)tetrathiafulvalene; L-tart = (2R,3R)-(+)-tartrate). Inorg. Chem. 2004, 43, 8072–8077. [Google Scholar] [CrossRef] [PubMed]
  930. Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Martínez-Ferrero, E.; Almeida, M.; Waerenborgh, J.C. Oxalate-based 3D chiral magnets: The series [ZII(bpy)3][ClO4][MIIFeIII (ox)3] (ZII = Fe, Ru; MII = Mn, Fe; bpy = 2,2′-bipyridine; ox = oxalate dianion). Eur. J. Inorg. Chem. 2005, 2064–2070. [Google Scholar] [CrossRef]
  931. Réthoré, C.; Avarvari, N.; Canadell, E.; Auban-Senzier, P.; Fourmigué, M. Chiral molecular metals: Syntheses, structures, and properties of the AsF6 salts of racemic (±)-, (R)-, and (S)-tetrathiafulvalene-oxazoline derivatives. J. Am. Chem. Soc. 2005, 127, 5748–5749. [Google Scholar] [CrossRef]
  932. Martin, L.; Day, P.; Akutsu, H.; Yamada, J.-I.; Nakatsuji, S.; Clegg, W.; Harrington, R.W.; Horton, P.N.; Hursthouse, M.B.; McMillan, P.; et al. Metallic molecular crystals containing chiral or racemic guest molecules. CrystEngComm 2007, 9, 865–867. [Google Scholar] [CrossRef]
  933. Avarvari, N.; Wallis, J.D. Strategies towards chiral molecular conductors. J. Mater. Chem. 2009, 19, 4061–4076. [Google Scholar] [CrossRef] [Green Version]
  934. Yang, S.; Brooks, A.C.; Martin, L.; Day, P.; Li, H.; Horton, P.; Male, L.; Wallis, J.D. Novel enantiopure bis(pyrrolo)tetrathiafulvalene donors exhibiting chiral crystal packing arrangements. CrystEngComm 2009, 11, 993–996. [Google Scholar] [CrossRef]
  935. Martin, L.; Day, P.; Nakatsuji, S.; Yamada, J.; Akutsu, H.; Horton, P. A molecular charge transfer salt of BEDT-TTF containing a single enantiomer of tris(oxalate)chromate(III) crystallised from a chiral solvent. CrystEngComm 2010, 12, 1369–1372. [Google Scholar] [CrossRef]
  936. Martin, L.; Day, P.; Horton, P.; Nakatsuji, S.; Yamada, J.; Akutsu, H. Chiral conducting salts of BEDT-TTF containing a single enantiomer tris(oxalate)chromate(III) crystallised from a chiral solvent. J. Mater. Chem. 2010, 20, 2738–2742. [Google Scholar] [CrossRef]
  937. Madalan, A.M.; Réthoré, C.; Fourmigué, M.; Canadell, E.; Lopes, E.B.; Almeida, M.; Auban-Senzier, P.; Avarvari, N. Order versus disorder in chiral tetrathiafulvalene-oxazoline radical-cation salts: Structural and theoretical investigations and physical properties. Chem. Eur. J. 2010, 16, 528–537. [Google Scholar] [CrossRef]
  938. Yang, S.; Brooks, A.C.; Martin, L.; Day, P.; Pilkington, M.; Clegg, W.; Harrington, R.W.; Russo, L.; Wallis, J.D. New chiral organosulfur donors related to bis(ethylenedithio)tetrathiafulvalene. Tetrahedron 2010, 66, 6977–6989. [Google Scholar] [CrossRef]
  939. Awheda, I.; Krivickas, S.J.; Yang, S.; Martin, L.; Guziak, M.A.; Brooks, A.C.; Pelletier, F.; Le Kerneau, M.; Day, P.; Horton, P.N.; et al. Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts. Tetrahedron 2013, 69, 8738–8750. [Google Scholar] [CrossRef] [Green Version]
  940. Biet, T.; Fihey, A.; Cauchy, T.; Vanthuyne, N.; Roussel, C.; Crassous, J.; Avarvari, N. Ethylenedithio-tetrathiafulvalene-helicenes: Electroactive helical precursors with switchable chiroptical properties. Chem. Eur. J. 2013, 19, 13160–13167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  941. Pop, F.; Auban-Senzier, P.; Frąckowiak, A.; Ptaszyński, K.; Olejniczak, I.; Wallis, J.D.; Canadell, E.; Avarvari, N. Chirality driven metallic versus semiconducting behavior in a complete series of radical cation salts based on dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF). J. Am. Chem. Soc. 2013, 135, 17176–17186. [Google Scholar] [CrossRef] [Green Version]
  942. Pop, F.; Laroussi, S.; Cauchy, T.; Gomez-Garcia, C.J.; Wallis, J.D.; Avarvari, N. Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) revisited: Crystal structures, chiroptical properties, theoretical calculations, and a complete series of conducting radical cation salts. Chirality 2013, 25, 466–474. [Google Scholar] [CrossRef] [PubMed]
  943. Pop, F.; Auban-Senzier, P.; Canadell, E.; Rikken, G.L.J.A.; Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 2014, 5, 3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  944. Yang, S.; Pop, F.; Melan, C.; Brooks, A.C.; Martin, L.; Horton, P.; Auban-Senzier, P.; Rikken, G.L.J.A.; Avarvari, N.; Wallis, J.D. Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors. CrystEngComm 2014, 16, 3906–3916. [Google Scholar] [CrossRef] [Green Version]
  945. Martin, L.; Akutsu, H.; Horton, P.N.; Hursthouse, M.B. Chirality in charge-transfer salts of BEDT-TTF of tris(oxalato)chromate(III). CrystEngComm 2015, 17, 2783–2790. [Google Scholar] [CrossRef] [Green Version]
  946. Martin, L.; Akutsu, H.; Horton, P.N.; Hursthouse, M.B.; Harrington, R.W.; Clegg, W. Chiral radical-cation salts of BEDT-TTF containing a single enantiomer of tris(oxalato)aluminate(III) and –chromate(III). Eur. J. Inorg. Chem. 2015, 2015, 1865–1870. [Google Scholar] [CrossRef]
  947. Atzori, M.; Pop, F.; Auban-Senzier, P.; Clérac, R.; Canadell, E.; Mercuri, M.L.; Avarvari, N. Complete series of chiral paramagnetic molecular conductors based on tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) and chloranilate-bridged heterobimetallic honeycomb layers. Inorg. Chem. 2015, 54, 3643–3653. [Google Scholar] [CrossRef]
  948. Togawa, Y.; Kousaka, Y.; Inoue, K.; Kishine, J.-I. Symmetry, structure, and dynamics of monoaxial chiral magnets. J. Phys. Soc. Jpn. 2016, 85, 112001. [Google Scholar] [CrossRef]
  949. Martin, L. Molecular conductors of BEDT-TTF with tris(oxalate)metallate anions. Coord. Chem. Rev. 2018, 376, 277–291. [Google Scholar] [CrossRef] [Green Version]
  950. Pop, F.; Zigon, N.; Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 2019, 119, 8435–8478. [Google Scholar] [CrossRef] [PubMed]
  951. Chen, T.; Tomita, T.; Minami, S.; Fu, M.; Koretsune, T.; Kitatani, M.; Muhammad, I.; Nishio-Hamane, D.; Ishii, R.; Ishii, F.; et al. Anomalous transport due to Wyle fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 2021, 12, 572. [Google Scholar] [CrossRef]
  952. Pouget, J.-P.; Alemany, P.; Canadell, E. Donor-anion interactions in quarter-filled low-dimensional organic conductors. Mater. Horiz. 2018, 5, 590–640. [Google Scholar] [CrossRef] [Green Version]
  953. Mroweh, N.; Auban-Senzier, P.; Vanthuyne, N.; Canadell, E.; Avarvari, N. Chiral EDT-TTF precursors with one stereogenic centre: Substituent size modulation of the conducting properties in the (R-EDT-TTF)2PF6 (R = Me or Et) series. J. Mater. Chem. C 2019, 7, 12664–12673. [Google Scholar] [CrossRef] [Green Version]
  954. Mroweh, N.; Pop, F.; Mézière, C.; Allain, M.; Auban-Senzier, P.; Vanthuyne, N.; Alemany, P.; Canadell, E.; Avarvari, N. Combining chirality and hydrogen bonding in methylated ethylenedithio-tetrathiafulvalene primary diamide precursors and radical cation salts. Cryst. Growth Des. 2020, 20, 2516–2526. [Google Scholar] [CrossRef]
  955. Mroweh, N.; Mézière, C.; Pop, F.; Auban-Senzier, P.; Alemany, P.; Canadell, E.; Avarvari, N. In search of chiral molecular superconductors: κ-[(S,S)-DM-BEDT-TTF]2ClO4 Revisited. Adv. Mater. 2020, 32, 2002811. [Google Scholar] [CrossRef] [PubMed]
  956. Mroweh, N.; Mézière, C.; Allain, M.; Auban-Senzier, P.; Canadell, E.; Avarvari, N. Conservation of structural arrangements and 3 :1 stoichiometry in a series of crystalline conductors of TMTTF, TMTSF, BEDT-TTF, and chiral DM-EDT-TTF with the oxo-bis[pentafluorotantalate(v)] dianion. Chem. Sci. 2020, 11, 10078–10091. [Google Scholar] [CrossRef] [PubMed]
  957. Mroweh, N.; Auban-Senzier, P.; Vanthuyne, N.; Lopes, E.B.; Almeida, M.; Canadell, E.; Avarvari, N. Chiral conducting Me-EDT-TTF and Et-EDT-TTF-based radical cation salts with the perchlorate anion. Crystals 2020, 10, 1069. [Google Scholar] [CrossRef]
  958. Short, J.I.; Blundell, T.J.; Krivickas, S.J.; Yang, S.; Wallis, J.D.; Akutsu, H.; Nakazawa, Y.; Martin, L. Chiral molecular conductor with an insulator-metal transition close to room temperature. Chem. Commun. 2020, 56, 9497–9500. [Google Scholar] [CrossRef] [PubMed]
  959. Blundell, T.J.; Brannan, M.; Nishimoto, H.; Kadoya, T.; Yamada, J.-I.; Akutsu, H.; Nakazawa, Y.; Martin, L. Chiral metal down to 4.2 K—A BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2. Chem. Commun. 2021, 57, 5406–5409. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The history of the superconducting critical temperatures (TCs) of organic and related conductors (not an exhaustive list). Note that all the component molecules, except for M(dmit)2 and C60, belong to donor systems. Reproduced and modified from Ref. [21] with permission.
Figure 1. The history of the superconducting critical temperatures (TCs) of organic and related conductors (not an exhaustive list). Note that all the component molecules, except for M(dmit)2 and C60, belong to donor systems. Reproduced and modified from Ref. [21] with permission.
Crystals 11 00838 g001
Figure 2. (a) The structure of the DCQNI (DCQNI = 2,5-disubstituted N,N′-dicyanoquionediimine) molecule; (b,c) A typical crystal structure of a Cu salt: Cu(Br2-DCNQI)2. The white, grey, purple, pink, and dark-red spheres designate H, C, N, Cu, and Br atoms, respectively. Note that every –NCN group at the end of DCNQI makes a coordination bond with a Cu ion in a tetrahedral geometry. Reproduced and modified from Refs. [519,520] with permission.
Figure 2. (a) The structure of the DCQNI (DCQNI = 2,5-disubstituted N,N′-dicyanoquionediimine) molecule; (b,c) A typical crystal structure of a Cu salt: Cu(Br2-DCNQI)2. The white, grey, purple, pink, and dark-red spheres designate H, C, N, Cu, and Br atoms, respectively. Note that every –NCN group at the end of DCNQI makes a coordination bond with a Cu ion in a tetrahedral geometry. Reproduced and modified from Refs. [519,520] with permission.
Crystals 11 00838 g002
Figure 3. (A) The chemical structure of the BETS (BETS = (bis(ethylenedithio)-tetraselenafulvalene)) molecule; (B) A typical crystal structure of the magnetic superconductors: λ-(BETS)2FeCl4. Note that one of the ethylene groups at the end of BETS is bent toward FeCl4 to favor the π–d interaction. Reproduced from Ref. [511] with permission.
Figure 3. (A) The chemical structure of the BETS (BETS = (bis(ethylenedithio)-tetraselenafulvalene)) molecule; (B) A typical crystal structure of the magnetic superconductors: λ-(BETS)2FeCl4. Note that one of the ethylene groups at the end of BETS is bent toward FeCl4 to favor the π–d interaction. Reproduced from Ref. [511] with permission.
Crystals 11 00838 g003
Figure 4. (a) The molecular structure of a metal phthalocyanine (MPc) [M(Pc)(CN)2]n unit (0 ≤ n ≤ 1); (b) A typical crystal structure of Cat[M(Pc)X2]2 salts (Cat = onium monocations): (C6H5)4P[Fe(Pc)(CN)2]2; (c) A close-up view of a 1D column of [Fe(Pc)(CN)2]0.5−. Reproduced from Ref. [559] with permission from The Royal Society of Chemistry.
Figure 4. (a) The molecular structure of a metal phthalocyanine (MPc) [M(Pc)(CN)2]n unit (0 ≤ n ≤ 1); (b) A typical crystal structure of Cat[M(Pc)X2]2 salts (Cat = onium monocations): (C6H5)4P[Fe(Pc)(CN)2]2; (c) A close-up view of a 1D column of [Fe(Pc)(CN)2]0.5−. Reproduced from Ref. [559] with permission from The Royal Society of Chemistry.
Crystals 11 00838 g004aCrystals 11 00838 g004b
Figure 5. Sequential transient photocurrent measurements under synchronized voltage and photoirradiation pulses using the single crystal of α-(BEDT-TTF)2I3 and a four-probe method at 115 K, where the material is in an insulating phase. Photoirradiation was synchronized only at the first voltage pulse (11 V) and was turned off for the second and following pulses: the voltage pulse widths (ΔW) are (a) 7 ms and (b) 6 ms. Note that ΔW drastically affects the current, i.e., the relaxation time of the highly conducting state (HS) after the cessation of photoirradiation, while ΔW does not affect the resistivity in the HS. Adapted from Ref. [693] with permission.
Figure 5. Sequential transient photocurrent measurements under synchronized voltage and photoirradiation pulses using the single crystal of α-(BEDT-TTF)2I3 and a four-probe method at 115 K, where the material is in an insulating phase. Photoirradiation was synchronized only at the first voltage pulse (11 V) and was turned off for the second and following pulses: the voltage pulse widths (ΔW) are (a) 7 ms and (b) 6 ms. Note that ΔW drastically affects the current, i.e., the relaxation time of the highly conducting state (HS) after the cessation of photoirradiation, while ΔW does not affect the resistivity in the HS. Adapted from Ref. [693] with permission.
Crystals 11 00838 g005
Figure 6. A schematic phase diagram of κ-(BEDT-TTF)2Cu[N(CN)2]X (X = Br, Cl) complexes, which are considered typical, organic Mott insulators and superconductors depending on the anion X. An increase in the horizontal axis (U/t) corresponds to a decrease in the actual pressure. Adapted from Ref. [704] with permission.
Figure 6. A schematic phase diagram of κ-(BEDT-TTF)2Cu[N(CN)2]X (X = Br, Cl) complexes, which are considered typical, organic Mott insulators and superconductors depending on the anion X. An increase in the horizontal axis (U/t) corresponds to a decrease in the actual pressure. Adapted from Ref. [704] with permission.
Crystals 11 00838 g006
Figure 7. Temperature dependence of the physical properties of κ-H3(Cat-EDT-TTF)2 (κ-H) and κ-D3(Cat-EDT-TTF)2 (κ-D): (a) electrical resistivity measured using a single crystal; (b) magnetic susceptibility measured using a polycrystalline sample. In both figures, the blue and red circles denote the data observed in the cooling and heating processes, respectively, for κ-D, while the black circles denote the data for κ-H observed in the cooling processes. The orange broken curve in (b) represents the best fitting curve for the κ-D data using a singlet–triplet dimer model with an antiferromagnetic coupling of 2J/kB ~ −600 K. Adapted from Ref. [771] with permission.
Figure 7. Temperature dependence of the physical properties of κ-H3(Cat-EDT-TTF)2 (κ-H) and κ-D3(Cat-EDT-TTF)2 (κ-D): (a) electrical resistivity measured using a single crystal; (b) magnetic susceptibility measured using a polycrystalline sample. In both figures, the blue and red circles denote the data observed in the cooling and heating processes, respectively, for κ-D, while the black circles denote the data for κ-H observed in the cooling processes. The orange broken curve in (b) represents the best fitting curve for the κ-D data using a singlet–triplet dimer model with an antiferromagnetic coupling of 2J/kB ~ −600 K. Adapted from Ref. [771] with permission.
Crystals 11 00838 g007
Figure 8. The crystal structure of a photomagnetic conductor, MV[Ni(dmit)2]2: (a) MV2+ and [Ni(dmit)2]; (b) Molecular packing motif in van der Waals (upper) and ball-and-stick (lower) models; (A) Chemical structures of MV2+ and [Ni(dmit)2] and (B) 3D conduction pathways composed of [Ni(dmit)2]. MV[Ni(dmit)2]2 is a diamagnetic insulator under dark conditions, but it turns into a metallic substance with localized spins on the MV2+ species under UV irradiation, thus exhibiting the Kondo effect at low temperature. The UV (~375 nm) irradiation triggers a CT transition between MV2+ and [Ni(dmit)2].
Figure 8. The crystal structure of a photomagnetic conductor, MV[Ni(dmit)2]2: (a) MV2+ and [Ni(dmit)2]; (b) Molecular packing motif in van der Waals (upper) and ball-and-stick (lower) models; (A) Chemical structures of MV2+ and [Ni(dmit)2] and (B) 3D conduction pathways composed of [Ni(dmit)2]. MV[Ni(dmit)2]2 is a diamagnetic insulator under dark conditions, but it turns into a metallic substance with localized spins on the MV2+ species under UV irradiation, thus exhibiting the Kondo effect at low temperature. The UV (~375 nm) irradiation triggers a CT transition between MV2+ and [Ni(dmit)2].
Crystals 11 00838 g008
Figure 9. Crystal structures of single component molecular materials: (a) A 1D soft Mott insulator, Au(bdt)2 (bdt = benzene-1,2-dithiolate); (b) A 3D metallic conductor, Ni(tmdt)2 (tmdt = trimethylenetetrathiafulvalenedithiolate), viewed along (A) the b axis and (B) the long molecular axis. A, B1, B2, and C denote intermolecular interactions responsible for conductivity. Reproduced from (a) Ref. [829] and (b) Ref. [831] with permission.
Figure 9. Crystal structures of single component molecular materials: (a) A 1D soft Mott insulator, Au(bdt)2 (bdt = benzene-1,2-dithiolate); (b) A 3D metallic conductor, Ni(tmdt)2 (tmdt = trimethylenetetrathiafulvalenedithiolate), viewed along (A) the b axis and (B) the long molecular axis. A, B1, B2, and C denote intermolecular interactions responsible for conductivity. Reproduced from (a) Ref. [829] and (b) Ref. [831] with permission.
Crystals 11 00838 g009
Figure 10. A characteristic curvature of the band structure, which is referred to as a Dirac cone. A close-up view around one of the two Dirac points, shown by 0 in the figure. The band structure was calculated for α-STF2I3. Reproduced from Ref. [920] with permission.
Figure 10. A characteristic curvature of the band structure, which is referred to as a Dirac cone. A close-up view around one of the two Dirac points, shown by 0 in the figure. The band structure was calculated for α-STF2I3. Reproduced from Ref. [920] with permission.
Crystals 11 00838 g010
Figure 11. Organic crystal with a chiral molecular arrangement (upper; Space Group P1) containing a bis(pyrrolo)tetrathiafulvalene derivative (lower). The donor packing motif represents a 43 axis along the c axis (vertical). Reproduced and modified from Ref. [934] with permission from The Royal Society of Chemistry.
Figure 11. Organic crystal with a chiral molecular arrangement (upper; Space Group P1) containing a bis(pyrrolo)tetrathiafulvalene derivative (lower). The donor packing motif represents a 43 axis along the c axis (vertical). Reproduced and modified from Ref. [934] with permission from The Royal Society of Chemistry.
Crystals 11 00838 g011
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Naito, T. Modern History of Organic Conductors: An Overview. Crystals 2021, 11, 838. https://doi.org/10.3390/cryst11070838

AMA Style

Naito T. Modern History of Organic Conductors: An Overview. Crystals. 2021; 11(7):838. https://doi.org/10.3390/cryst11070838

Chicago/Turabian Style

Naito, Toshio. 2021. "Modern History of Organic Conductors: An Overview" Crystals 11, no. 7: 838. https://doi.org/10.3390/cryst11070838

APA Style

Naito, T. (2021). Modern History of Organic Conductors: An Overview. Crystals, 11(7), 838. https://doi.org/10.3390/cryst11070838

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop