Modern History of Organic Conductors: An Overview
Abstract
:1. Introduction
1.1. Renaissance of Organic Superconductors
1.2. Beyond π-Systems: d-Electrons
1.2.1. The Rise of an Acceptor: DCNQI Salts
1.2.2. Comeback of the Donor Dynasty: BETS Salts with Magnetic Anions
1.2.3. The Return of 1D Systems: Axially Ligated Iron(III) Phthalocyanines
1.3. To Be or Not to Be a Conductor—That Is the Problem: Fluctuation
2. Recent Progress and New Trends
2.1. Mott Insulators: Mysterious Clues to Superconductors
2.2. Between Electron and Lattice Systems: Proton Dynamics
2.3. Light Control: Unique Properties Otherwise Impossible
2.4. Single-Component Molecular Conductors: The Simplest and Most Difficult Molecular Conductors
2.5. Dirac Electrons: Beyond Fermions
2.6. Chiral Conductors: Electrons in an Asymmetric Wonderland
3. Concluding Remarks: Towards the New Age
Funding
Informed Consent Statement
Conflicts of Interest
References
- Pouget, J.-P.; Moret, R.; Comes, R.; Bechgaard, K.; Fabre, J.M.; Giral, L. X-ray diffuse scattering study of some (TMTSF)2X and (TMTTF)2X salts. Mol. Cryst. Liq. Cryst. 1981, 79, 129–143. [Google Scholar] [CrossRef]
- Bryce, M.R.; Murphy, L.C. Organic Metals. Nature 1984, 309, 119–126. [Google Scholar] [CrossRef]
- Williams, J.M.; Beno, M.A.; Wang, H.H.; Leung, P.C.W.; Emge, T.J.; Geiser, U.; Carlson, K.D. Organic superconductors: Structural aspects and design of new material. Acc. Chem. Res. 1985, 18, 261–267. [Google Scholar] [CrossRef]
- Saito, G. Tetrachalcogenafulvalenes with outer chalcogeno substituents. Precursors of organic metals, superconductors, LB fims, etc. Pure Appl. Chem. 1987, 59, 999–1004. [Google Scholar] [CrossRef]
- Schweitzer, D.; Gogu, E.; Henning, I.; Klutz, T.; Keller, H.J. Electrochemically prepared radical salts of BEDT-TTF: Molecular metals and superconductors. Ber. Bunsenges. Phys. Chem. 1987, 91, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.M.; Wang, H.H.; Emje, T.J.; Geiser, U.; Beno, M.A.; Leung, P.C.W.; Carlson, K.D.; Thorn, R.J.; Schultz, A.J. Rational design of synthetic metal superconductors. Prog. Inorg. Chem. 1987, 35, 51–218. [Google Scholar] [CrossRef]
- Inokuchi, H. New organic supercondcutors. Angew. Chem. Int. Ed. Engl. 1988, 27, 1747–1751. [Google Scholar] [CrossRef]
- Yoshida, Z.-I.; Sugimoto, T. New donors for molecular organic (super)conductors and ferromagnets. Angew. Chem. Int. Ed. Engl. 1988, 27, 1573–1577. [Google Scholar] [CrossRef]
- Ishiguro, T.; Yamaji, K. Organic Superconductors; Springer: New York, NY, USA, 1990. [Google Scholar]
- Williams, J.M.; Schultz, A.J.; Geiser, U.; Carlson, K.D.; Kini, A.M.; Wang, H.H.; Kwok, W.-K.; Whangbo, M.-H.; Schirber, J.E. Organic superconductors-new benchmarks. Science 1991, 252, 1501–1508. [Google Scholar] [CrossRef]
- Jérôme, D. The physics of organic superconductors. Science 1991, 252, 1509–1514. [Google Scholar] [CrossRef]
- Bryce, M.R. Recent progress on conducting organic charge-transfer salts. Chem. Soc. Rev. 1991, 20, 355–390. [Google Scholar] [CrossRef]
- Williams, J.M.; Ferraro, J.R.; Thorn, R.J.; Carlson, K.D.; Geiser, U.; Wang, H.H.; Kini, A.M.; Whangbo, M.-H. Organic Superconductors (Including Fullerenes); Prentice Hall: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
- Adam, M.; Müllen, K. Oligomeric Tetrathiafulvalenes: Extended donors for increasing the dimensionality of electrical conduction. Adv. Mater. 1994, 6, 439–459. [Google Scholar] [CrossRef]
- Bryce, M.R. Current trends in tetrathiafulvalene chemistry: Towards increased dimensionality. J. Mater. Chem. 1995, 5, 1481–1496. [Google Scholar] [CrossRef]
- Wzietek, P.; Mayaffre, H.; Jérôme, D.; Brazovskii, S. NMR in the 2D organic superconductors. J. Phys. I France 1996, 6, 2011–2041. [Google Scholar] [CrossRef]
- Ishiguro, T.; Yamaji, K.; Saito, G. Organic Superconductors, 2nd ed.; Springer: Berlin, Germany, 1998. [Google Scholar]
- Batail, P.; Boubekeur, K.; Fourmigué, M.; Gabriel, J.-C.P. Electrocrystallization, an Invaluable tool for the construction of ordered, electroactive molecular solids. Chem. Mater. 1998, 10, 3005–3015. [Google Scholar] [CrossRef]
- Bryce, M.R. Tetrathiafulvalenes as π-electron donors for intramolecular charge-transfer materials. Adv. Mater. 1999, 11, 11–23. [Google Scholar] [CrossRef]
- Molecular Conductors. Chem. Rev. 2004, 104, 4887–5782. [CrossRef] [Green Version]
- Naito, T. Control of magnetism and conduction in organic materials by light. In Functional Materials: Advances and Applications in Energy Storage and Conversion; Naito, T., Ed.; Pan Stanford Publishing: Singapore, 2019; Chapter 1; pp. 1–82. [Google Scholar]
- Akamatu, H.; Inokuchi, H.; Matsunaga, Y. Electrical conductivity of the perylene-bromine complex. Nature 1954, 173, 168–169. [Google Scholar] [CrossRef]
- Cohen, M.J.; Coleman, L.B.; Garito, A.F.; Heeger, A.J. Electronic properties of tetrathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Phys. Rev. B 1976, 13, 5111–5116. [Google Scholar] [CrossRef]
- Thomas, G.A.; Schafer, D.E.; Wudl, F.; Horn, P.M.; Rimai, D.; Cook, J.W.; Glocker, D.A.; Skove, M.J.; Chu, C.W.; Groff, R.P.; et al. Electrical conductivity of terathiafulvalenium-tetracyanoquinodimethanide (TTF-TCNQ). Phys. Rev. B 1976, 13, 5105–5110. [Google Scholar] [CrossRef]
- Pouget, J.-P.; Khanna, S.K.; Denoyer, F.; Comès, R.; Garito, A.F.; Heeger, A.J. X ray observation of 2kF and 4kF scatterings in tetrathiafulvalene- tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. Lett. 1976, 37, 437–440. [Google Scholar] [CrossRef]
- Gutfreund, H.; Weger, M. Temperature dependence of the metallic conductivity of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 1977, 16, 1753–1755. [Google Scholar] [CrossRef]
- Khanna, S.K.; Pouget, J.-P.; Comes, R.; Garito, A.F.; Heeger, A.J. X-ray studies of 2kF and 4kF anomalies in tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 1977, 16, 1468–1479. [Google Scholar] [CrossRef]
- Claessen, R.; Sing, M.; Schwingenschlögl, U.; Blaha, P.; Dressel, M.; Jacobsen, C.S. Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. Lett. 2002, 88, 096402. [Google Scholar] [CrossRef] [Green Version]
- Sing, M.; Schwingenschlögl, U.; Claessen, R.; Blaha, P.; Carmelo, P.; Martelo, M.; Sacramento, D.; Dressel, M.; Jacobsen, S. Electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ. Phys. Rev. B 2003, 68, 125111. [Google Scholar] [CrossRef] [Green Version]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 1977, 578–580. [Google Scholar] [CrossRef]
- Jérome, D.; Mazaud, A.; Ribault, M.; Bechggard, K. Superconductivity in a synthetic organic conductor (TMTSF)2PF6. J. Phys. Lett. 1980, 41, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Ribault, M.; Pouget, J.-P.; Jérome, D.; Bechggard, K. Superconductivity and absence of a Kohn anomaly in the quasi-one-dimensional organic conductor: (TMTSF)2AsF6. J. Phys. Lett. 1980, 41, 607–610. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Ribault, M.; Jerome, D.; Bechgaard, K. Three new superconducting members of the family of tetramethyltetraselenafulvalene (TMTSF) salts: TMTSF2CIO4, TMTSF2SbF6, TMTSF2TaF6. J. Phys. C 1981, 14, L445–L450. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Ribault, M.; Jérome, D.; Bechggard, K. Superconductivity in a family of organic salts based on the teramethyltetraselenafulvalene (TMTSF) molecule: (TMTSF)2X (X = ClO4, PF6, AsF6, SbF6, TaF6). J. Phys. C 1981, 14, 5305–5326. [Google Scholar] [CrossRef]
- Bechgaard, K.; Carneiro, K.; Olsen, M.; Rasmussen, F.B.; Jacobsen, C.S. Zero-pressure organic superconductor: Di-(Tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2ClO4]. Phys. Rev. Lett. 1981, 46, 852–855. [Google Scholar] [CrossRef] [Green Version]
- Parkin, S.S.P.; Jérome, D.; Bechgaard, K. Pressure dependence of the metal-insulator and superconducting phase transitions in (TMTSF)2ReO4. Mol. Cryst. Liq. Cryst. 1981, 79, 213–224. [Google Scholar]
- Pouget, J.-P.; Shirane, G.; Bechgaard, K.; Fabre, J.M. X-ray evidence of a structural phase transition in di-tetramethyltetraselenafulvalenium perchlorate [(TMTSF)2ClO4], pristine and slightly doped. Phys. Rev. B 1983, 27, 5203–5206. [Google Scholar] [CrossRef]
- Schulz, H.J.; Bourbonnais, C. Quantum fluctuations in quasi-one-dimensional superconductors. Phys. Rev. B 1983, 27, 5856–5859. [Google Scholar] [CrossRef]
- Lacoe, R.C.; Wolf, S.A.; Chaikin, P.M.; Wudl, F.; Aharon-Shalom, E. Metal-insulator transitions and superconductivity in ditetramethyltetraselenafulvalenium fluorosulfonate [(TMTSF)2FSO3]. Phys. Rev. B 1983, 27, 1947–1950. [Google Scholar] [CrossRef]
- Pesty, F.; Garoche, P.; Bechgaard, K. Cascade of field-induced phase transitions in the organic metal tetramethyltetraselenafulvalenium perchlorate [(TMTSF)2ClO4]. Phys. Rev. Lett. 1985, 55, 2495–2498. [Google Scholar] [CrossRef]
- Bourbonnais, C.; Caron, L.G. New mechanisms for phase transitions in quasi-one-dimensional conductors. Europhys. Lett. 1988, 5, 209–215. [Google Scholar] [CrossRef]
- Whangbo, M.-H.; Canadell, E.; Foury, P.; Pouget, J.-P. Hidden Fermi surface nesting and charge density wave instability in low-dimensional metals. Science 1991, 252, 96–98. [Google Scholar] [CrossRef]
- Kang, W.; Hannahs, S.T.; Chaikin, P.M. Toward a unified phase diagram in (TMTSF)2X. Phys. Rev. Lett. 1993, 70, 3091–3094. [Google Scholar] [CrossRef] [PubMed]
- Klemme, B.J.; Brown, S.E.; Wzietek, P.; Kriza, G.; Batail, P.; Jérome, D.; Fabre, J.M. Commensurate and incommensurate spin-density waves and a modified phase diagram of the bechgaard salts. Phys. Rev. Lett. 1995, 75, 2408–2411. [Google Scholar] [CrossRef] [PubMed]
- Behnia, K.; Balicas, L.; Kang, W.; Jérome, D.; Carretta, P.; Fagot-Revurat, Y.; Berthier, C.; Horvatić, M.; Ségransan, P.; Hubert, L.; et al. Confinement in Bechgaard salts: Anomalous magnetoresistance and nuclear relaxation. Phys. Rev. Lett. 1995, 74, 5272–5275. [Google Scholar] [CrossRef] [PubMed]
- Pouget, J.P.; Ravy, S. Structural aspects of the Bechgaard salts and related compounds. J. Phys. I 1996, 6, 1501–1525. [Google Scholar] [CrossRef]
- Degiorgi, L.; Dressel, M.; Schwartz, A.; Alavi, B.; Grüner, G. Direct observation of the spin-density-wave gap in (TMTSF)2PF6. Phys. Rev. Lett. 1996, 76, 3838–3841. [Google Scholar] [CrossRef]
- Dressel, M.; Schwartz, A.; Grüner, G. Deviations from drude response in low-dimensional metals: Electrodynamics of the metallic state of (TMTSF)2PF6. Phys. Rev. Lett. 1996, 77, 398–401. [Google Scholar] [CrossRef]
- Pouget, J.P.; Ravy, S. X-Ray evidence of charge density wave modulations in the magnetic phases of (TMTSF)2PF6 and (TMTTF)2Br. Synth. Met. 1997, 85, 1523–1528. [Google Scholar] [CrossRef]
- Zwick, F.; Brown, S.; Margaritondo, G.; Merlic, C.; Onellion, M.; Voit, J.; Grioni, M. Absence of quasiparticles in the photoemission spectra of quasi-one-dimensional bechgaard salts. Phys. Rev. Lett. 1997, 79, 3982–3985. [Google Scholar] [CrossRef]
- Moser, J.; Gabay, M.; Auban-Senzier, P.; Jérome, D.; Bechgaard, K.; Fabre, J.M. Transverse transport in (TM)2X organic conductors: Possible evidence for a Luttinger liquid. Eur. Phys. J. B 1998, 1, 39–46. [Google Scholar] [CrossRef]
- Schwartz, A.; Dressel, M.; Grüner, G.; Vescoli, V.; Degiorgi, L. On-chain electrodynamics of metallic (TMTSF)2X salts: Observation of Tomonaga-Luttinger liquid response. Phys. Rev. B 1998, 58, 1261–1271. [Google Scholar] [CrossRef] [Green Version]
- Bourbonnais, C.; Jérome, D. Electronic confinement in organic metals. Science 1998, 281, 1155–1156. [Google Scholar] [CrossRef]
- Dumm, M.; Loidl, A.; Fravel, B.; Starkey, K.; Montgomery, L.; Dressel, M. Electron spin resonance studies on the organic linear-chain compounds (TMTCF)2X (C = S, Se; X = PF6, AsF6, ClO4, Br). Phys. Rev. B 2000, 61, 511–521. [Google Scholar] [CrossRef]
- Wilhelm, H.; Jaccard, D.; Duprat, R.; Bourbonnais, C.; Jérome, D.; Moser, J.; Carcel, C.; Fabre, J.M. The case for universality of the phase diagram of the Fabre and Bechgaard salts. Eur. Phys. J. B 2001, 21, 175–183. [Google Scholar] [CrossRef]
- Lorenz, T.; Hofmann, M.; Grüninger, M.; Freimuth, A.; Uhrig, G.S.; Dumm, M.; Dressel, M. Evidence for spin-charge separation in quasi-one-dimensional organic conductors. Nature 2002, 418, 614–617. [Google Scholar] [CrossRef]
- Jérome, D.; Schulz, H.J. Organic conductors and superconductors. Adv. Phys. 2002, 51, 293–479. [Google Scholar] [CrossRef]
- Vuletić, T.; Auban-Senzier, P.; Pasquier, C.; Tomić, S.; Jérome, D.; Héritier, M.; Bechgaard, K. Coexistence of superconductivity and spin density wave orderings in the organic superconductor (TMTSF)2PF6. Eur. Phys. J. B 2002, 25, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Jérome, D. Organic conductors: From charge density wave TTF-TCNQ to superconducting (TMTSF)2PF6. Chem. Rev. 2004, 104, 5565–5591. [Google Scholar] [CrossRef] [PubMed]
- Joo, N.; Auban-Senzier, P.; Pasquier, C.R.; Jérome, D.; Bechgaard, K. Impurity-controlled superconductivity/spin density wave interplay in the organic superconductor: (TMTSF)2ClO4. Europhys. Lett. 2005, 72, 645–651. [Google Scholar] [CrossRef]
- Sakata, M.; Yoshida, Y.; Maesato, M.; Saito, G.; Matsumoto, K.; Hagiwara, R. Preparation of superconducting (TMTSF)2NbF6 by electrooxidation of TMTSF using ionic liquid as electrolyte. Mol. Cryst. Liq. Cryst. 2006, 452, 103–112. [Google Scholar] [CrossRef]
- Shinagawa, J.; Kurosaki, Y.; Zhang, F.; Parker, C.; Brown, S.E.; Jérome, D.; Christensen, J.B.; Bechgaard, K. Superconducting state of the organic conductor (TMTSF)2ClO4. Phys. Rev. Lett. 2007, 98, 147002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonezawa, S.; Kusaba, S.; Maeno, Y.; Auban-Senzier, P.; Pasquier, C.; Bechgaard, K.; Jérome, D. Anomalous in-plane anisotropy of the onset of superconductivity in (TMTSF)2ClO4. Phys. Rev. Lett. 2008, 100, 117002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, B.J. A phenomenological model of the superconducting state of the Bechgaard salts. J. Phys. Cond. Mat. 2008, 20, 345234. [Google Scholar] [CrossRef]
- Doiron-Leyraud, N.; Auban-Senzier, P.; de Cotret, R.S.; Bourbonnais, C.; Jérome, D.; Bechgaard, K.; Taillefer, L. Correlation between linear resistivity and Tc in the Bechgaard salts and the pnictide superconductor Ba (Fe1−x Cox)2As2. Phys. Rev. B 2009, 80, 214531. [Google Scholar] [CrossRef] [Green Version]
- Pouget, J.-P. The Peierls instability and charge density wave in one-dimensional electronic conductors. Comp. Rend. Phys. 2016, 17, 332–356. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, M.; Garito, A.F.; Cava, M.P. ‘Organic metals’: Alkylthio substitution effects in tetrathiafulvalene- tetracyanoquinodimethane charge-transfer complexes. J. Chem. Soc. Chem. Commun. 1978, 18–19. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Engler, E.M.; Schumaker, R.R.; Lagier, R.; Lee, V.Y.; Scott, J.C.; Greene, R.L. Superconductivity in a new family of organic conductors. Phys. Rev. Lett. 1983, 50, 270–273. [Google Scholar] [CrossRef]
- Engler, E.M.; Lee, Y.V.; Schumaker, R.R.; Parkin, S.S.P.; Greene, R.L.; Scott, J.C. Synthesis of biethylenedithiolylene-tetrathiafulvalene donors (BEDT-TTF) and electrochemical preparation of their charge transfer complexes. Mol. Cryst. Liq. Cryst. 1984, 107, 19–31. [Google Scholar] [CrossRef]
- Yagubskii, É.B.; Shchegolev, I.F.; Laukhin, V.N.; Kononovich, P.A.; Karatsovnik, M.V.; Zvarykina, A.V.; Buravov, L.I. Normal-pressure superconductivity in an organic metal (BEDT-TTF)2I3 [bis (ethylene dithio) tetrathiofulvalene triiodide. JETP Lett. 1984, 39, 12–16. [Google Scholar]
- Yagubskii, É.B.; Shchegolev, I.F.; Laukhin, V.N.; Shibaeva, R.P.; Kostyuchenko, E.É.; Khomenko, A.G.; Sushko, Y.V.; Zvarykina, A.V. Superconducting transition in the dielectric α phase of iodine-doped (BEDT-TTF)2I3 compound. JETP Lett. 1984, 40, 1201–1204. [Google Scholar]
- Williams, J.M.; Wang, H.H.; Beno, M.A.; Emge, T.J.; Sowa, L.M.; Copps, P.T.; Behroozi, F.; Hall, L.N.; Douglas Carlson, K.; Crabtree, G.W. Ambient-pressure superconductivity at 2.7 K and higher temperatures in derivatives of (BEDT-TTF)2IBr2: Synthesis, structure, and detection of superconductivity. Inorg. Chem. 1984, 23, 3839–3841. [Google Scholar] [CrossRef]
- Laukhin, V.N.; Kostyuchenko, E.É.; Sushko, Y.V.; Shchegolev, I.F.; Yagubskii, É.B. Effect of pressure on the superconductivity of β-(BEDT-TTF)2I3 compound. JETP Lett. 1985, 41, 81–84. [Google Scholar]
- Murata, K.; Tokumoto, M.; Anzai, H.; Bando, H.; Saito, G.; Kajimura, K.; Ishiguro, T. Superconductivity with the onset at 8 K in the organic conductor β-(BEDT-TTF)2I3 under pressure. J. Phys. Soc. Jpn. 1985, 54, 1236–1239. [Google Scholar] [CrossRef]
- Murata, K.; Tokumoto, M.; Anzai, H.; Bando, H.; Kajimxjra, K.; Ishiguro, T. Pressure phase diagram of the organic superconductor β-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 1985, 54, 2084–2087. [Google Scholar] [CrossRef]
- Wang, H.H.; Beno, M.A.; Geiser, U.; Firestone, M.A.; Webb, K.S.; Nuiiez, L.; Crabtree, G.W.; Carlson, K.D.; Williams, J.M.; Azevedo, L.J.; et al. Ambient-pressure superconductivity at the highest temperature (5 K) observed in an organic system: β-(BEDT-TTF)2AuI2. Inorg. Chem. 1985, 24, 2465–2466. [Google Scholar] [CrossRef]
- Lyubovskaya, R.N.; Lyubovskii, R.B.; Shibaeva, R.P.; Aldoshina, M.Z.; Gol’denberg, L.M.; Rozenberg, L.P.; Khidekel, M.L.; Shul’pyakov, Y.F. Superconduictivity in a BEDT-TTF organic conductor with a chloromercurate anion. JETP Lett. 1985, 42, 468–472. [Google Scholar]
- Shibaeva, R.P.; Kaminskii, V.P.; Yagubskii, E.B. Crystal structures of organic metals and superconductors of (BEDT-TTP)-I system. Mol. Cryst. Liq. Cryst. 1985, 119, 361–373. [Google Scholar] [CrossRef]
- Baram, G.O.; Buravov, L.I.; Degtyarev, L.S.; Kozlov, M.E.; Laukhin, V.N.; Laukhina, E.E.; Onishchenko, V.G.; Pokhodnya, K.I.; Sheinkman, M.K.; Shibaeva, R.P.; et al. Transformation of the α-phase (BEDT-TTF)2I3 to the superconducting β phase with Tc = 6–7 K. JETP Lett. 1986, 44, 376–378. [Google Scholar]
- Kobayashi, H.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. A new molecular superconductor, (BEDT-TTF)2(I3)1−x(AuI2)x(x < 0.02). Chem. Lett. 1986, 15, 789–792. [Google Scholar] [CrossRef]
- Varma, K.S.; Bury, A.; Harris, N.J.; Underhill, A.E. Improved synthesis of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): π-Donor for Synthetic Metals. Synthesis 1987, 1987, 837–838. [Google Scholar] [CrossRef]
- Schweitzer, D.; Bele, P.; Brunner, H.; Gogu, E.; Haeberlen, U.; Hennig, I.; Klutz, I.; Świetlik, R.; Keller, H.J. A stable superconducting state at 8 K and ambient pressure in αt-(BEDT-TTF)2I3. Z. Phys. B Condens. Matter. 1987, 67, 489–495. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kato, R.; Kobayashi, H.; Moriyama, S.; Nishio, Y.; Kajita, K.; Sasaki, W. Crystal and electronic structures of a new molecular superconductor, κ-(BEDT-TTF)2I3. Chem. Lett. 1987, 16, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Kato, R.; Kobayashi, H.; Kobayashi, A.; Moriyama, S.; Nishio, Y.; Kajita, K.; Sasaki, W. A new ambient-pressure superconductor, κ-(BEDT-TTF)2I3. Chem. Lett. 1987, 16, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Inokuchi, H. Superconductivity in (BEDT-TTF)3Cl22H2O. Solid State Commun. 1987, 64, 335–337. [Google Scholar] [CrossRef]
- Lyubovskaya, R.N.; Zhilyaeva, E.A.; Zvarykina, A.V.; Laukhin, V.N.; Lyubovskii, R.B.; Pesotskii, S.I. Is the organic metal (ET)4Hg3Br8 a quasi-2D superconductor? JETP Lett. 1987, 45, 530–533. [Google Scholar]
- Lyubovskaya, R.N.; Zhilyaeva, E.I.; Pesotskii, S.I.; Lyubovskii, R.B.; Atovmyan, L.O.; D’yachenko, O.A.; Takhirov, T.G. Superconductivity of (ET)4Hg2.89Br8 at atmospheric pressure and Tc = 4.3 K and the critical-field anisotropy. JETP Lett. 1987, 46, 188–191. [Google Scholar]
- Urayama, H.; Yamochi, H.; Saito, G.; Nozawa, K.; Sugano, T.; Kinoshita, M.; Sato, S.; Oshima, K.; Kawamoto, A.; Tanaka, J. A new ambient pressure organic superconductor based on BEDT-TTF with TC higher than 10 K (TC = 10.4 K). Chem. Lett. 1988, 17, 55–58. [Google Scholar] [CrossRef]
- Schirber, J.E.; Overmyer, D.L.; Venturini, E.L.; Wang, H.H.; Carlson, K.D.; Kwok, W.K.; Kleinjan, S.; Williams, J.M. Anomalous pressure dependence of the superconducting transition temperature of (ET)4Hg2.89Br8. Phys. C 1989, 161, 412–414. [Google Scholar] [CrossRef]
- June, D.; Evein, M.; Novoa, J.J.; Whangbc, M.-H.; Beno, M.A.; Kini, A.M.; Schultz, A.J.; Williams, J.M.; Nigrey, P.J. Similarities and differences in the structural and electronic properties of κ-Phase Organic Conducting and Superconducting Salts. Inorg. Chem. 1989, 28, 4516–4522. [Google Scholar] [CrossRef]
- Larsen, J.; Lenoir, C. Synthesis of Bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF). Synthesis 1989, 1989, 134. [Google Scholar] [CrossRef]
- Reed, P.E.; Braam, J.M.; Sowa, L.M.; Barkhau, R.A.; Blackman, G.S.; Cox, D.D.; Ball, G.A.; Wang, H.H.; Williams, J.M. Synthesis of 5,5′,6,6′-tetrahydro-2,2′-Bi-1,3-dithiolo[4,5-b][1,4]dithiinylidene (BEDT-TTF). In Inorganic Syntheses; Wiley: New York, NY, USA, 1989; pp. 386–390. [Google Scholar]
- Wang, H.H.; Carlson, K.D.; Geiser, U.; Kwok, W.K.; Vashon, M.D.; Thompson, J.E.; Larsen, N.F.; McCabe, G.D.; Hulscher, R.S.; Williams, J.M. A new ambient-pressure organic superconductor: (BEDT-TTF)2(NH4)Hg(SCN)4. Physica C 1990, 166, 57–61. [Google Scholar] [CrossRef]
- Mori, H.; Tanaka, S.; Oshima, M.; Saito, G.; Mori, T.; Maruyama, Y.; Inokuchi, H. Crystal and electronic structures of (BEDT-TTF)2[MHg(SCN)4] (M = K and NH4). Bull. Chem. Soc. Jpn. 1990, 63, 2183–2190. [Google Scholar] [CrossRef] [Green Version]
- Kini, A.M.; Geiser, U.; Wang, H.H.; Carlson, K.D.; Williams, J.M.; Kwok, W.K.; Vandervoort, K.G.; Thompson, J.E.; Stupka, D.L.; Jung, D.; et al. A new ambient-pressure organic superconductor, κ-(ET)2Cu[N(CN)2]Br, with the highest transition temperature yet observed (inductive onset Tc = 11.6 K, resistive onset = 12.5 K). Inorg. Chem. 1990, 29, 2555–2557. [Google Scholar] [CrossRef]
- Williams, J.M.; Kini, A.M.; Wang, H.H.; Carlson, K.D.; Geiser, U.; Montgomery, L.K.; Pyrka, G.J.; Watkins, D.M.; Kommers, J.M.; Boryschuk, S.J.; et al. From semiconductor-semiconductor transition (42 K) to the highest-Tc organic superconductor, κ-(ET)2Cu[N(CN)2]Cl (Tc = 12.5 K). Inorg. Chem. 1990, 29, 3272–3274. [Google Scholar] [CrossRef]
- Mori, H.; Hirabayashi, I.; Tanaka, S.; Mori, T.; Inokuchi, H. A new ambient-pressure organic superonductor, κ-(BEDT-TTF)2Ag(CN)2H2O (TC = 5.0 K). Solid State Commun. 1990, 76, 35–37. [Google Scholar] [CrossRef]
- Geiser, U.; Wang, H.H.; Carlson, K.D.; Williams, J.M.; Charlier, H.A., Jr.; Heindl, J.E.; Yaconi, G.A.; Love, B.J.; Lathrop, M.W.; Schirber, J.E.; et al. Superconductivity at 2.8 K and 1.5 kbar in α-(BEDT-TTF)2Cu2(CN)3: The first organic superconductor containing a polymeric copper cyanide anion. Inorg. Chem. 1991, 30, 2586–2588. [Google Scholar] [CrossRef]
- Komatsu, T.; Nakamura, T.; Matsukawa, N.; Yamochi, H.; Saito, G.; Ito, H.; Ishiguro, T.; Kusunoki, M.; Sakaguchi, K.-I. New ambient-pressure organic superconductors based on BEDT-TTF, Cu, N(CN)2 and CN with Tc = 10.7 K and 3.8 K. Solid State Commun. 1991, 80, 843–847. [Google Scholar] [CrossRef]
- Mori, H.; Hirabayashi, I.; Tanaka, S.; Mori, T.; Maruyama, Y.; Inokuchi, H. Superconductivity in (BEDT-TTF)4Pt(CN)4H2O. Solid State Commun. 1991, 80, 411–415. [Google Scholar] [CrossRef]
- Singleton, J.; Pratt, F.L.; Doporto, M.; Janssen, T.J.B.M.; Kurmoo, M.; Perenboom, J.A.A.J.; Hayes, W.; Day, P. Far-infrared cyclotron resonance study of electron dynamics in (BEDT-TTF)2KHg(SCN)4. Phys. Rev. Lett. 1992, 68, 2500–2503. [Google Scholar] [CrossRef] [Green Version]
- Pratt, F.L.; Singleton, J.; Doporto, M.; Fisher, A.J.; Janssen, T.J.B.M.; Perenboom, J.A.A.J.; Kurmoo, M.; Hayes, W.; Day, P. Magnetotransport and Fermi-surface topology of [bis(ethylenedithio)tetrathiafulvalene]2KHg(SCN)4. Phys. Rev. B 1992, 45, 13904–13912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, J.S.; Agosta, C.C.; Klepper, S.J.; Tokumoto, M.; Kinoshita, N.; Anzai, H.; Uji, S.; Aoki, H.; Perel, A.S.; Athas, G.J.; et al. Novel interplay of Fermi-surface behavior and magnetism in a low-dimensional organic conductor. Phys. Rev. Lett. 1992, 69, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Kato, K.; Maruyama, Y.; Inokuchi, H.; Mori, H.; Hirabayashi, I.; Tanaka, S. Structural and physical properties of a new organic superconductor, (BEDT-TTF)4Pd(CN)4H2O. Solid State Commun. 1992, 82, 177–181. [Google Scholar] [CrossRef]
- Yamochi, H.; Nakamura, T.; Komastu, T.; Matsukawa, N.; Inoue, T.; Saito, G.; Mori, T. Crystal and electronic structures of the organic superconductors, κ-(BEDT-TTF)2Cu(CN)[N(CN)2] and κ′-(BEDT-TTF)2Cu2(CN)3. Solid State Commun. 1992, 82, 101–105. [Google Scholar] [CrossRef]
- Yamochi, H.; Komatsu, T.; Matsukawa, N.; Saito, G.; Mori, T.; Kusunoki, M.; Sakaguchi, K.-I. Structural aspects of the ambient-pressure BEDT-TTF superconductors. J. Am. Chem. Soc. 1993, 115, 11319–11327. [Google Scholar] [CrossRef]
- Kushch, N.D.; Buravov, L.I.; Khomenko, A.G.; Yagubskii, E.B.; Rosenberg, L.P.; Shibaeva, R.P. Novel organic superconductor κ-(ET)2Cu[N(CN)2]Cl0.5Br0.5 with TC ~ 11.3 K. Synth. Met. 1993, 53, 155–160. [Google Scholar] [CrossRef]
- Achkir, D.; Poirier, M.; Bourbonnais, C.; Quirion, G.; Lenoir, C.; Batail, P.; Jérome, D. Microwave surface impedance of κ-(BEDT-TTF)2Cu(NCS)2, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene: Evidence for unconventional superconductivity. Phys. Rev. B 1993, 47, 11595–11598. [Google Scholar] [CrossRef]
- Ito, H.; Kaneko, H.; Ishiguro, T.; Ishimoto, H.; Kono, K.; Horiuchi, S.; Komatsu, T.; Saito, G. On superconductivity of the organic conductor α-(BEDT-TTF)2KHg(SCN)4. Solid State Commun. 1993, 85, 1005–1009. [Google Scholar] [CrossRef]
- Klepper, S.J.; Brooks, J.S.; Chen, X.; Bradaric, I.; Tokumoto, M.; Kinoshita, N.; Tanaka, Y.; Agosta, C.C. Pressure-induced nesting in the low-dimensional organic superconductor α-(BEDT-TTF)2NH4Hg(SCN)4. Phys. Rev. B 1993, 48, 9913–9916. [Google Scholar] [CrossRef]
- Kahlich, S.; Schweitzer, D.; Rovira, C.; Paradis, J.A.; Whangbo, M.-H.; Heinen, I.; Keller, H.J.; Nuber, B.; Bele, P.; Brunner, H.; et al. Characterisation of the Fermi surface and phase transitions of (BEDO-TTF)2ReO4·(H2O) by physical property measurements and electronic band structure calculations. Z. Phys. B 1994, 94, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Schlueter, J.A.; Geiser, U.; Williams, J.M.; Wang, H.H.; Kwok, W.-K.; Fendrich, J.A.; Carlson, K.D.; Achenbach, C.A.; Dudek, J.D.; Naumann, D.; et al. The first organic cation-radical salt superconductor (Tc = 4 K) with an organometallic anion: Superconductivity, synthesis and structure of κL-(BEDT-TTF)2Cu(CF3)4·TCE. J. Chem. Soc. Chem. Commun. 1994, 1599–1600. [Google Scholar] [CrossRef]
- Schlueter, J.A.; Carlson, K.D.; Williams, J.M.; Geiser, U.; Wang, H.H.; Welp, U.; Kwok, W.-K.; Fendrich, J.A.; Dudek, J.D.; Achenbach, C.A.; et al. A new 9 K superconducting organic salt composed of the bis (ethylenedithio) tetrathiafulvalene (ET) electron-donor molecule and the tetrakis (trifluoromethyl) cuprate (III) anion, [Cu(CF3)4]−. Phys. C 1994, 230, 378–384. [Google Scholar] [CrossRef]
- Schlueter, J.A.; Carlson, K.D.; Geiser, U.; Wang, H.H.; Williams, J.M.; Kwok, W.-K.; Fendrich, J.A.; Welp, U.; Keane, P.M.; Dudek, J.D.; et al. Superconductivity up to 11.1 K in three solvated salts composed of [Ag(CF3)4]− and the organic electron-donor molecule bis (ethylenedithio) tetrathiafulvalene (ET). Phys. C 1994, 233, 379–386. [Google Scholar] [CrossRef]
- Caulfield, J.; Lubczynski, W.; Pratt, F.L.; Singleton, J.; Ko, D.Y.K.; Hayes, W.; Kurmoo, M.; Day, P. Magnetotransport studies of the organic superconductor kappa -(BEDT-TTF)2Cu(NCS)2 under pressure: The relationship between carrier effective mass and critical temperature. J. Phys. Cond. Mat. 1994, 6, 2911–2924. [Google Scholar] [CrossRef]
- Dressel, M.; Klein, O.; Grüner, G.; Carlson, K.D.; Wang, H.H.; Williams, J.M. Electrodynamics of the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1994, 50, 13603–13615. [Google Scholar] [CrossRef]
- Pratt, F.L.; Sasaki, T.; Toyota, N.; Nagamine, K. Zero field muon spin relaxation study of the low temperature state in α-(BEDT-TTF)2KHg(SCN)4. Phys. Rev. Lett. 1995, 74, 3892–3895. [Google Scholar] [CrossRef]
- Brooks, J.S.; Chen, X.; Klepper, S.J.; Valfells, S.; Athas, G.J.; Tanaka, Y.; Kinoshita, T.; Kinoshita, N.; Tokumoto, M.; Anzai, H.; et al. Pressure effects on the electronic structure and low-temperature states in the α-(BEDT-TTF)2MHg(SCN)4 organic-conductor family (M = K, Rb, Tl, NH4). Phys. Rev. B 1995, 52, 14457. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, J.A.; Williams, J.M.; Geiser, U.; Dudek, J.D.; Sirchio, S.A.; Kelly, M.E.; Gregar, J.S.; Kwok, W.H.; Fendrich, J.A.; Schirber, J.E.; et al. Synthesis and characterization of two new organic superconductors, κL- and κH-[bis(ethylenedisulfanyl)tetrathiafulvalene]2Au(CF3)4·(1,1,2- trichloroethane) via microelectrocrystallization. J. Chem. Soc. Chem. Commun. 1995, 1311–1312. [Google Scholar] [CrossRef]
- Kurmoo, M.; Graham, A.W.; Day, P.; Coles, S.J.; Hursthouse, M.B.; Caulfield, J.L.; Singleton, J.; Pratt, F.L.; Hayes, W.; Ducasse, L.; et al. Superconducting and semiconducting magnetic charge transfer salts: (BEDT-TTF)4AFe(C2O4)3·C6H5CN (A = H2O, K, NH4). J. Am. Chem. Soc. 1995, 117, 12209–12217. [Google Scholar] [CrossRef]
- Campos, C.E.; Brooks, J.S.; van Bentum, P.J.M.; Perenboom, J.A.A.J.; Klepper, S.J.; Sandhu, P.S.; Valfells, S.; Tanaka, Y.; Kinoshita, T.; Kinoshita, N.; et al. Uniaxial-stress-induced superconductivity in organic conductors. Phys. Rev. B 1995, 52, R7014–R7017. [Google Scholar] [CrossRef] [Green Version]
- Schlueter, J.A.; Williams, J.M.; Geiser, U.; Dtulek, J.D.; Kelly, M.E.; Sirchio, S.A.; Carlson, K.D.; Naumann, D.D.; Roy, T.; Campana, C.F. Seven new organic superconductors in the system (ET)2M(CF3)4(solvent) (M = Cu, Ag): Effect of solvent replacement. Adv. Mater. 1995, 7, 634–639. [Google Scholar] [CrossRef]
- Schlueter, J.A.; Geiser, U.; Wang, H.H.; Kelly, M.E.; Dudek, J.D.; Williams, J.M.; Naumann, D.; Roy, T. Synthesis and physical properties of a novel, highly tunable family of organic superconductors: (ET)2M(CF3)4(1,1,2-trihaloethane) (M = Cu, Ag, Au). Mol. Cryst. Liq. Cryst. 1996, 284, 195–202. [Google Scholar] [CrossRef]
- Schlueter, J.A.; Williams, J.M.; Geiser, U.; Wang, H.H.; Kini, A.M.; Kelly, M.E.; Dudek, J.D.; Naumann, D.; Roy, T. New organic superconductors in the system (ET)2M(CF3)4(solvent) (M = Cu, Ag, Au): Dramatic effects of organometallic anion and solvent replacement. Mol. Cryst. Liq. Cryst. 1996, 285, 43–50. [Google Scholar] [CrossRef]
- Geiser, U.; Schlueter, J.A.; Hau Wang, H.; Kini, A.M.; Williams, J.M.; Sche, P.P.; Zakowicz, H.I.; VanZile, M.L.; Dudek, J.D.; Nixon, P.G.; et al. Superconductivity at 5.2 K in an electron donor radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) with the novel polyfluorinated organic anion SF5CH2CF2SO3−. J. Am. Chem. Soc. 1996, 118, 9996–9997. [Google Scholar] [CrossRef]
- Meline, R.L.; Elsenbaumer, R.L. A high yield conversion of tetrathiafulvalene into bis(ethylenedithio)tetrathiafulvalene and derivatives. J. Chem. Soc. Perkin Trans. 1997, 1, 3575–3576. [Google Scholar] [CrossRef]
- Guionneau, P.; Kepert, C.J.; Bravic, G.; Chasseau, D.; Truter, M.R.; Kurmoo, M.; Day, P. Determining the charge distribution in BEDT-TTF salts. Synth. Met. 1997, 86, 1973–1974. [Google Scholar] [CrossRef]
- Martin, L.; Turner, S.S.; Day, P.; Mabbs, F.E.; McInnes, E.J.L. New molecular superconductor containing paramagnetic chromium(III) ions. Chem. Commun. 1997, 1367–1368. [Google Scholar] [CrossRef]
- Lee, S.L.; Pratt, F.L.; Blundell, S.J.; Aegerter, C.M.; Pattenden, P.A.; Chow, K.H.; Forgan, E.M.; Sasaki, T.; Hayes, W.; Keller, H. Investigation of vortex behavior in the organic superconductor κ-(BEDT-TTF)2Cu(SCN)2 using muon spin rotation. Phys. Rev. Lett. 1997, 79, 1563–1566. [Google Scholar] [CrossRef]
- Mori, T. Structural genealogy of BEDT-TTF-based organic conductors I. Parallel molecules: β and β″ phases. Bull. Chem. Soc. Jpn. 1998, 71, 2509–2526. [Google Scholar] [CrossRef]
- Mori, T.; Mori, H.; Tanaka, S. Structural genealogy of BEDT-TTF-based organic conductors II. Inclined molecules: θ, α, and κ phases. Bull. Chem. Soc. Jpn. 1999, 72, 179–197. [Google Scholar] [CrossRef]
- Mori, T. Structural genealogy of BEDT-TTF-based organic conductors III. Twisted molecules: δ and α′ phases. Bull. Chem. Soc. Jpn. 1999, 72, 2011–2027. [Google Scholar] [CrossRef]
- Carrington, A.; Bonalde, I.J.; Prozorov, R.; Giannetta, R.W.; Kini, A.M.; Schlueter, J.; Wang, H.H.; Geiser, U.; Williams, J.M. Low-temperature penetration depth of κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 1999, 83, 4172–4175. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, S.; Wzietek, P.; Brown, S.; Bourbonnais, C.; Jérome, D.; Mézière, C.; Fourmigué, M.; Batail, P. Mott transition, antiferromagnetism, and unconventional superconductivity in layered organic superconductors. Phys. Rev. Lett. 2000, 85, 5420–5423. [Google Scholar] [CrossRef] [Green Version]
- Kushch, N.D.; Tanatar, M.A.; Yagubskii, E.B.; Ishiguro, T. Supercondcutivity of κ-(ET)2Cu[N(CN)2]I under pressure. JETP Lett. 2001, 73, 429–431. [Google Scholar] [CrossRef]
- Rashid, S.; Turner, S.S.; Day, P.; Howard, J.A.K.; Guionneau, P.; McInnes, E.J.L.; Mabbs, F.E.; Clark, R.J.H.; Firth, S.; Biggs, T. New superconducting charge-transfer salts (BEDT-TTF)4[A·M(C2O4)3]·C6H5NO2 (A = H3O or NH4, M = Cr or Fe, BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). J. Mater. Chem. 2001, 11, 2096–2102. [Google Scholar] [CrossRef]
- Singleton, J.; Mielke, C. Quasi-two-dimensional organic superconductors: A review. Contemp. Phys. 2002, 43, 63–96. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Lang, M.; Steglich, F.; Schlueter, J.A.; Kini, A.M.; Sasaki, T. Evidence for structural and electronic instabilities at intermediate temperatures in κ-(BEDT-TTF)2X for X = Cu[N(CN)2]Cl, Cu[N(CN)2]Br and Cu(NCS)2: Implications for the phase diagram of these quasi-two-dimensional organic superconductors. Phys. Rev. B 2002, 65, 144521. [Google Scholar] [CrossRef] [Green Version]
- Singleton, J.; Goddard, P.A.; Ardavan, A.; Harrison, N.; Blundell, S.J.; Schlueter, J.A.; Kini, A.M. Test for interlayer coherence in a quasi-two-dimensional superconductor. Phys. Rev. Lett. 2002, 88, 037001. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, H.; Akutsu-Sato, A.; Turner, S.S.; Le Pevelen, D.; Day, P.; Laukhin, V.; Klehe, A.-K.; Singleton, J.; Tocher, D.A.; Probert, M.R.; et al. Effect of included guest molecules on the normal state conductivity and superconductivity of β″-(ET)4 [(H3O)Ga(C2O4)3]·G (G = pyridine, nitrobenzene). J. Am. Chem. Soc. 2002, 124, 12430–12431. [Google Scholar] [CrossRef] [Green Version]
- Tajima, N.; Ebina-Tajima, A.; Tamura, M.; Nishio, Y.; Kajita, K. Effects of uniaxial strain on transport properties of organic conductor α-(BEDT-TTF)2I3 and discovery of superconductivity. J. Phys. Soc. Jpn. 2002, 71, 1832–1835. [Google Scholar] [CrossRef]
- Dressel, M.; Drichko, N.; Schlueter, J.; Merino, J. Proximity of the layered organic conductors α-(BEDT-TTF)2MHg(SCN)4 (M = K, NH4), to a charge-ordering transition. Phys. Rev. Lett. 2003, 90, 167002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, H.; Miyashita, M.; Uchiyama, K.; Satoh, K.; Môri, N.; Okamoto, H.; Miyagawa, K.; Kanoda, K.; Hedo, M.; Uwatoko, Y. Superconductivity at 14.2 K in layered organics under extreme pressure. J. Phys. Soc. Jpn. 2003, 72, 468–471. [Google Scholar] [CrossRef]
- Shibaeva, R.P.; Yagubskii, E.B. Molecular conductors and superconductors based on trihalides of BEDT-TTF and some of its analogues. Chem. Rev. 2004, 104, 5347–5378. [Google Scholar] [CrossRef]
- Yamada, J.; Sugimoto, T. (Eds.) TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene; Springer: Berlin, Germany, 2004. [Google Scholar]
- Uchiyama, K.; Miyashita, M.; Taniguchi, H.; Satoh, K.; Môri, N.; Miyagawa, K.; Kanoda, K.; Hedo, M.; Uwatoko, Y. Characterization of transport and magnetic properties of a Mott insulator, β′-(BEDT-TTF)2lBrCl. J. Phys. IV 2004, 114, 387–389. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.; Müller, J. Organic superconductors. In The Physics of Superconductors; Bennemann, K.H., Ketterson, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar] [CrossRef] [Green Version]
- Geiser, U.; Schlueter, J.A. Conducting organic radical cation salts with organic and organometallic anions. Chem. Rev. 2004, 104, 5203–5241. [Google Scholar] [CrossRef]
- Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Gómez-García, C.J. A novel paramagnetic molecular superconductor formed by bis(ethylenedithio)tetrathiafulvalene, tris(oxalato)ferrate(III) anions and bromobenzene as guest molecule: ET4[(H3O)Fe(C2O4)3]·C6H5Br. J. Mater. Chem. 2005, 15, 1429–1436. [Google Scholar] [CrossRef]
- Coronado, E.; Curreli, S.; Giménez-Saiz, C.; Gómez-García, C.J. New magnetic conductors and superconductors based on BEDT-TTF and BEDS-TTF. Synth. Met. 2005, 154, 245–248. [Google Scholar] [CrossRef]
- Mori, H. Materials viewpoint of organic superconductors. J. Phys. Soc. Jpn. 2006, 75, 051003. [Google Scholar] [CrossRef]
- Saito, G.; Yoshida, Y. Development of conductive organic molecular assemblies: Organic metals, superconductors, and exotic functional materials. Bull. Chem. Soc. Jpn. 2007, 80, 1–137. [Google Scholar] [CrossRef]
- Mori, T.; Kawamoto, T. Organic conductors—From fundamentals to nonlinear conductivity. Annu. Rep. Prog. Chem. Sect. C Phys. Chem. 2007, 103, 134–172. [Google Scholar] [CrossRef]
- Wosnitza, J. Quasi-two-dimensional organic supercondcutors. J. Low Temp. Phys. 2007, 146, 641–667. [Google Scholar] [CrossRef]
- Monthoux, P.; Pines, D.; Lonzarich, G.G. Superconductivity without phonons. Nature 2007, 450, 1177–1183. [Google Scholar] [CrossRef]
- Wolter, A.U.B.; Feyerherm, R.; Dudzik, E.; Süllow, S.; Strack, C.; Lang, M.; Schweitzer, D. Determining ethylene group disorder levels in κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 2007, 75, 104512. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.; Müller, J. Organic superconductors. In Superconductivity; Bennemann, K.H., Ketterson, J.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1155–1223. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Yamada, Y.; Inabe, T.; Toda, Y. Carrier dynamics in κ-type organic superconductors: Time-resolved observation. J. Phys. Soc. Jpn. 2008, 77, 064709. [Google Scholar] [CrossRef]
- Naito, T.; Inabe, T.; Toda, Y. Carrier dynamics in organic superconductors. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 1–36. [Google Scholar]
- Kawamoto, T.; Mori, T.; Yamaguchi, T.; Uji, S.; Graf, D.; Brooks, J.S.; Shirahata, T.; Kibune, M.; Yoshino, H.; Imakubo, T. Fermi surface and in-plane anisotropy of the layered organic superconductor κL-(DMEDO-TSeF)2[Au(CN)4](THF) with domain structures. Phys. Rev. B 2011, 83, 012505. [Google Scholar] [CrossRef] [Green Version]
- Ardavan, A.; Brown, S.; Kagoshima, S.; Kanoda, K.; Kuroki, K.; Mori, H.; Ogata, M.; Uji, S.; Wosnitza, J. Recent topics of organic superconductors. J. Phys. Soc. Jpn. 2012, 81, 011004. [Google Scholar] [CrossRef]
- Saito, G.; Yoshida, Y. Frontiers of organic conductors and superconductors. Top. Curr. Chem. 2012, 312, 67–126. [Google Scholar] [CrossRef] [PubMed]
- Mori, T. Electronic Properties of Organic Conductors; Springer: Tokyo, Japan, 2016. [Google Scholar] [CrossRef]
- Hebard, A.F.; Rosseinsky, M.J.; Haddon, R.C.; Murphy, D.W.; Glarum, S.H.; Palstra, T.T.M.; Ramirez, A.P.; Kortan, A.R. Superconductivity at 18 K in potassium-doped C60. Nature 1991, 350, 600–601. [Google Scholar] [CrossRef]
- Zhou, O.; Fischer, J.E.; Coustel, N.; Kycia, S.; Zhu, Q.; McGhie, A.R.; Romanow, W.J.; McCauley, J.P., Jr.; Smith, A.B., III; Cox, D.E. Structure and bonding in alkali-metal-doped C60. Nature 1991, 351, 462–464. [Google Scholar] [CrossRef]
- Tanigaki, K.; Ebbesen, T.W.; Saito, S.; Mizuki, J.; Tsai, J.S.; Kubo, Y.; Kuroshima, S. Superconductivity at 33 K in CsxRbyC60. Nature 1991, 352, 222–223. [Google Scholar] [CrossRef]
- Kelty, S.P.; Chen, C.-C.; Lieber, C.M. Superconductivity at 30 K in caesium-doped C60. Nature 1991, 352, 223–225. [Google Scholar] [CrossRef]
- Uemura, Y.J.; Keren, A.; Le, L.P.; Luke, G.M.; Sternlieb, B.J.; Wu, W.D.; Brewer, J.H.; Whetten, R.L.; Huang, S.M.; Lin, S.; et al. Magnetic-field penetration depth in K3C60 measured by muon spin relaxation. Nature 1991, 352, 605–607. [Google Scholar] [CrossRef]
- Stephens, P.W.; Mihaly, L.; Lee, P.L.; Whetten, R.L.; Huang, S.-M.; Kaner, R.; Deiderich, F.; Holczer, K. Structure of single-phase superconducting K3C60. Nature 1991, 352, 632–634. [Google Scholar] [CrossRef]
- Fleming, R.M.; Ramirez, A.P.; Rosseinsky, M.J.; Murphy, D.W.; Haddon, R.C.; Zahurak, S.M.; Makhija, A.V. Relation of structure and superconducting transition temperatures in A3C60. Nature 1991, 352, 787–788. [Google Scholar] [CrossRef]
- Wang, H.H.; Kini, A.M.; Savall, B.M.; Carlson, K.D.; Williams, J.M.; Lykke, K.R.; Wurz, P.; Parker, D.H.; Pellin, M.J. First easily reproduced solution-phase synthesis and confirmation of superconductivity in the fullerene KxC60 (Tc = 18.0 ± 0.1 K). Inorg. Chem. 1991, 30, 2838–2839. [Google Scholar] [CrossRef]
- Schirber, J.E.; Overmyer, D.L.; Wang, H.H.; Williams, J.M.; Carlson, K.D.; Kini, A.M.; Welp, U.; Kwok, W.-K. Pressure dependence of the superconducting transition temperature of potassium fullerene, KxC60. Phys. C 1991, 178, 137–139. [Google Scholar] [CrossRef]
- Wang, H.H.; Kini, A.M.; Carlson, K.D.; Williams, J.M.; Pellin, M.J.; Schirber, J.E.; Savall, B.M.; Lathrop, M.W.; Lykke, K.R.; Parker, D.H.; et al. Superconductivity at 28.6 K in a rubidium-C60 fullerene compound, RbxC60, synthesized by a solution-phase technique. Inorg. Chem. 1991, 30, 2962–2963. [Google Scholar] [CrossRef]
- Holczer, K.; Klein, O.; Huang, S.-M.; Kaner, R.B.; Fu, K.-J.; Whetten, R.L.; Diederich, F. Alkali-fulleride superconductors: Synthesis, composition, and diamagnetic shielding. Science 1991, 252, 1154–1157. [Google Scholar] [CrossRef]
- Sparn, G.; Thompson, J.D.; Huang, S.-M.; Kaner, R.B.; Diederich, F.; Whetten, R.L.; Grüner, G.; Holczer, K. Pressure dependence of superconductivity in single-phase K3C60. Science 1991, 252, 1829–1831. [Google Scholar] [CrossRef]
- Rosseinsky, M.J.; Ramirez, A.P.; Glarum, S.H.; Murphy, D.W.; Haddon, R.C.; Hebard, A.F.; Palstra, T.T.M.; Kortan, A.R.; Zahurak, S.M.; Makhija, A.V. Superconductivity at 28 K in RbxC60. Phys. Rev. Lett. 1991, 66, 2830–2832. [Google Scholar] [CrossRef] [Green Version]
- McCauley, J.P., Jr.; Zhu, Q.; Coustel, N.; Zhou, O.; Vaughan, G.; Idziak, S.H.J.; Fischer, J.E.; Tozer, S.W.; Groski, D.M.; Bykovetz, N.; et al. Synthesis, structure, and superconducting properties of single-phase Rb3C60. A new, convenient method for the preparation of M3C60 superconductors. J. Am. Chem. Soc. 1991, 113, 8537–8538. [Google Scholar] [CrossRef]
- Sugimoto, T.; Awaji, H.; Misaki, Y.; Yoshida, Z.-I.; Kai, Y.; Nakagawa, H.; Kasai, N. Tetrakis(1,3-dithiol-2-ylidene)cyclobutane: A novel and promising electron donor for organic metals. J. Am. Chem. Soc. 1985, 107, 5792–5793. [Google Scholar] [CrossRef]
- Kikuchi, K.; Kikuchi, M.; Namiki, T.; Saito, K.; Ikemoto, I.; Murata, K.; Ishiguro, T.; Kobayashi, K. New organic superconductor, (DMET)2Au(CN)2. Chem. Lett. 1987, 16, 931–932. [Google Scholar] [CrossRef]
- Kikuchi, K.; Honda, Y.; Namiki, T.; Saito, K.; Ikemoto, I.; Murata, K.; Anzai, H.; Ishiguro, T.; Kobayashi, K. Superconductivity in (DMET)2AuCl2 and (DMET)2AuI2. J. Phys. Soc. Jpn. 1987, 56, 4241–4244. [Google Scholar] [CrossRef]
- Kikuchi, K.; Honda, Y.; Namiki, T.; Saito, K.; Ikemoto, I.; Ishiguro, T.; Murata, K.; Kobayashi, K. Superconductivity and the possibility of semiconductor-metal transition in (DMET)2AuBr2. J. Phys. Soc. Jpn. 1987, 56, 2627–2628. [Google Scholar] [CrossRef]
- Kikuchi, K.; Honda, Y.; Namiki, T.; Saito, K.; Ikemoto, I.; Murata, K.; Ishiguro, T.; Kobayashi, K. On ambient-pressure superconductivity in organic conductors: Electrical properties of (DMET)2I3, (DMET)2I2Br and (DMET)2IBr2. J. Phys. Soc. Jpn. 1987, 56, 3436–3439. [Google Scholar] [CrossRef]
- Kikuchi, K.; Murata, K.; Klkuchi, M.; Honda, Y.; Takahashi, T.; Oyama, T.; Ikemoto, I.; Ishiguro, T.; Kobayashi, K. Superconductivity and Surrounding Phase of Organic Conductor, (DMET)2Au(CN)2. Jap. J. Appl. Phys. 1987, 26, 1369–1370. [Google Scholar] [CrossRef]
- Kikuchi, K.; Honda, Y.; Ishikawa, Y.; Saito, K.; Ikemoto, I.; Murata, K.; Anzai, H.; Ishiguro, T. Polymorphism and electrical conductivity of the organic superconductor (DMET)2AuBr2. Solid State Commun. 1988, 66, 405–408. [Google Scholar] [CrossRef]
- Papavassiliou, G.C.; Mousdis, G.A.; Zambounis, J.S.; Terzis, A.; Hountas, A.; Hilti, B.; Mayer, C.W.; Pfeiffer, J. Low temperature measurements of the electrical conductivities of some charge transfer salts with the asymmetric donors MDT-TTF, EDT-TTF and EDT-DSDTF. (MDT-TTF)2AuI2, a new superconductor (Tc = 3.5 K at ambient pressure). Synth. Met. 1988, 27, 379–383. [Google Scholar] [CrossRef]
- Sugimoto, T.; Awaji, H.; Sugimoto, I.; Misaki, Y.; Kawase, T.; Yoneda, S.; Yoshida, Z.-I.; Anzai, H. Ethylene analogs of tetrathiafulvalene and tetraselenafulvalene: New donors for organic metals. Chem. Mater. 1989, 535–537. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamochi, H.; Srdanov, G.; Hinkelmann, K.; Wudl, F. Bis(ethylenedioxy)tetrathiafulvalene: The first oxygen substituted tetrathiafulvalene. J. Am. Chem. Soc. 1989, 111, 3108–3109. [Google Scholar] [CrossRef]
- Wudl, F.; Yamochi, H.; Suzuki, T.; lsotalo, H.; Fite, C.; Kasmai, H.; Liou, K.; Srdanov, G.; Coppens, P.; Maly, K.; et al. (BEDO)2.4I3: The First Robust Organic Metal of BEDO-TTF. J. Am. Chem. Soc. 1990, 112, 2461–2462. [Google Scholar] [CrossRef]
- Beno, M.A.; Wang, H.H.; Kini, A.M.; Carlson, K.D.; Geiser, U.; Kwok, W.K.; Thompson, J.E.; Williams, J.M.; Ren, J.; Whangbo, M.-H. The first ambient pressure organic superconductor containing oxygen in the donor molecule, βm-(BEDO-TTF)3Cu2(NCS)3, TC = 1.06 K. Inorg. Chem. 1990, 29, 1599–1601. [Google Scholar] [CrossRef]
- Kahlich, S.; Schweitzer, D.; Heinen, I.; En Lan, S.; Nuber, B.; Keller, H.J.; Winzer, K.; Helberg, H.W. (BEDO-TTF)2ReO4·(H2O): A new organic superconductor. Soliod State Comun. 1991, 80, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Miyamoto, A.; Kobayashi, H.; Kato, R.; Kobayashi, A. Structure and electrical properties of θ- and κ-type BEDT-TSeF salts with bromomercurate anions. Chem. Lett. 1991, 20, 1945–1948. [Google Scholar] [CrossRef]
- Kobayashi, H.; Bun, K.; Miyamoto, A.; Naito, T.; Kato, R.; Kobayashi, A.; Williams, J.A. Superconducting transition of a grease-coated crystal of κ-(BEDT-TFT)2Cu[N(CN)2]Cl. Chem. Lett. 1991, 20, 1997–2000. [Google Scholar] [CrossRef]
- Zambounis, J.S.; Mayer, C.W.; Hauenstein, K.; Hilti, B.; Hofherr, W.; Pfeiffer, J.; Bürkle, M.; Rihs, G. Crystal structure and electrical properties of κ-((S,S)-DMBEDT–TTF)2ClO4. Adv. Mater. 1992, 4, 33–35. [Google Scholar] [CrossRef]
- Misaki, Y.; Nishikawa, H.; Kawakami, K.; Uehara, T.; Yamabe, T. Bis(2-methylidene-1,3-dithiolo[4,5-d])tetrathiafulvalene (BDT-TTF): A tetrathiafulvalene condensed with 1,3-dithiol-2-ylidene moieties. Tetrahedron Lett. 1992, 33, 4321–4324. [Google Scholar] [CrossRef]
- Misaki, Y.; Nishikawa, H.; Fujiwara, H.; Kawakami, K.; Yamabe, T.; Yamochi, H.; Saito, G. (2-Methylidene-1,3-dithiolo[4,5-d])tetrathiafulvalene (DT-TTF): New unsymmetrical TTFs condensed with 1,3-dithiol-2-ylidene moieties. J. Chem. Soc. Chem. Commun. 1992, 1408–1409. [Google Scholar] [CrossRef]
- Naito, T.; Miyamoto, A.; Kobayashi, H.; Kato, R.; Kobayashi, A. Superconducting transition temperature of the organic alloy system: κ-[(BEDT-TTF)1−x(BEDT-STF)x]2Cu[N(CN)2]Br. Chem. Lett. 1992, 21, 119–122. [Google Scholar] [CrossRef]
- Kato, R.; Aonuma, S.; Okano, Y.; Sawa, H.; Tamura, M.; Kinoshita, M.; Oshima, K.; Kobayashi, A.; Bun, K.; Kobayashi, H. Metallic and superconducting salts based on an unsymmetrical π-donor dimethyl(ethylenedithio)tetraselenafulvalene (DMET-TSeF). Synth. Met. 1993, 61, 199–206. [Google Scholar] [CrossRef]
- Sallé, M.; Jubault, M.; Gorgues, A.; Boubekeur, K.; Fourmigué, M.; Batail, P.; Canadell, E. Bis- and Tetrakis(1,4-dithiafulven-6-yl)-Substituted Tetrathiafulvalenes and Dihydrotetrathiafulvalenes: A novel class of planar donor molecules with multiple redox functionalities and the demonstration of a novel type of two-dimensional association in the solid state. Chem. Mater. 1993, 5, 1196–1198. [Google Scholar] [CrossRef]
- Fourmigué, M.; Johannsen, I.; Boubekeur, K.; Nelson, C.; Batail, P. Tetrathiafulvalene- and dithiafulvene-substituted Mesitylenes, new π-Donor molecules with 3-fold symmetry and the formation of an unprecedented new class of electroactive polymers. J. Am. Chem. Soc. 1993, 115, 3752–3759. [Google Scholar] [CrossRef]
- Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J.M. Supercondcutivity and magnetic field induced spin density waves in the (TMTTF)2X family. J. Phys. I 1994, 4, 1539–1550. [Google Scholar] [CrossRef]
- Naito, T.; Tateno, A.; Udagawa, T.; Kobayashi, H.; Kato, R.; Kobayashi, A.; Nogami, T. Synthesis, structures and electrical properties of the charge-transfer salts of 4,5-ethylenedithio-4′,5′-(2-oxatrimethylenedithio) diselenadithiafulvalene (EOST) with linear anions [I3−, IBr2−, ICI3−, I2Br−, AuBr2−, Au(CN)2−]. J. Chem. Soc. Faraday Trans. 1994, 90, 763–771. [Google Scholar] [CrossRef]
- Tateno, A.; Udagawa, T.; Naito, T.; Kobayashi, H.; Kobayashi, A.; Nogami, T. Crystal structures and electrical properties of the radical salts of the unsymmetrical donor EOTT [4,5-ethylenedithio-4′,5′-(2- oxatrimethylenedithio)tetrathiafulvalene]. J. Mater. Chem. 1994, 4, 1559–1569. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tomita, H.; Naito, T.; Tanaka, H.; Kobayashi, A.; Saito, T. A new organic superconductor, λ-BETS2GaBrCl3 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Chem. Soc. Chem. Commun. 1995, 1225–1226. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kawano, K.; Naito, T.; Kobayashi, A. Electronic band structure and superconducting transition of κ-(BEDT-TTF)2I3. J. Mater. Chem. 1995, 5, 1681–1687. [Google Scholar] [CrossRef]
- Inokuchi, M.; Tajima, H.; Kobayashi, A.; Ohta, T.; Kuroda, H.; Kato, R.; Naito, T.; Kobayashi, H. Electrical and optical properties of α-(BETS)2I3 and α-(BEDT-STF)2I3. Bull. Chem. Soc. Jpn. 1995, 68, 547–553. [Google Scholar] [CrossRef]
- Misaki, Y.; Ohta, T.; Higuchi, N.; Fujiwara, H.; Yamabe, T.; Mori, T.; Mori, H.; Tanaka, S. A vinylogue of bis-fused tetrathiafulvalene: Novel π-electron framework for two-dimensional organic metals. J. Mater. Chem. 1995, 5, 1571–1579. [Google Scholar] [CrossRef]
- Misaki, Y.; Higuchi, N.; Fujiwara, H.; Yamabe, T.; Mori, T.; Mori, H.; Tanaka, S. (DTEDT)[Au(CN)2]0.4: An organic superconductor based on the novel π-electron framework of vinylogous bis-fused tetrathiafulvalene. Angew. Chem. Int. Ed. Engl. 1995, 34, 1222–1225. [Google Scholar] [CrossRef]
- Oshima, K.; Okuno, H.; Kato, K.; Maruyama, R.; Kato, R.; Kobayashi, A.; Kobayashi, H. Superconductivity and field induced states in DMET-TSeF family. Synth. Met. 1995, 70, 861–862. [Google Scholar] [CrossRef]
- Naito, T.; Kobayashi, H.; Kobayashi, A.; Underhill, A.E. New synthetic metals based on a thiadiazole network. Chem. Commun. 1996, 521–522. [Google Scholar] [CrossRef]
- Horiuchi, S.; Yamochi, H.; Saito, G.; Sakaguchi, K.-I.; Kusunoki, M. Nature and origin of stable metallic state in organic charge-transfer complexes of bis(ethylenedioxy)tetrathiafulvalene. J. Am. Chem. Soc. 1996, 118, 8604–8622. [Google Scholar] [CrossRef]
- Naito, T.; Kobayashi, H.; Kobayashi, A. The Electrical Behavior of Charge-Transfer Salts Based on an Unsymmetrical Donor Bis(ethylenedithio)diselenadithiafulvalene (STF): Disorder Effect on the Transport Properties. Bull. Chem. Soc. Jpn. 1997, 70, 107–114. [Google Scholar] [CrossRef]
- Mori, T.; Kawamoto, T.; Yamaura, J.; Enoki, T.; Misaki, Y.; Yamabe, T.; Mori, H.; Tanaka, S. Metal-insulator transition in the organic metal (TTM-TTP)I3 with a one-dimensional half-filled band. Phys. Rev. Lett. 1997, 79, 1702–1705. [Google Scholar] [CrossRef]
- Kato, R.; Yamamoio, K.; Okano, Y.; Tajima, H.; Sawa, H. A new ambient-pressure organic superconductor (TMET-STF)2BF4 [TMET-STF = trimethylene(ethylenedithio)diselenadithiafulvalene]. Chem. Commun. 1997, 947–948. [Google Scholar] [CrossRef]
- Sakata, J.-I.; Sato, H.; Miyazaki, A.; Enoki, T.; Okano, Y.; Kato, R. Superconductivity in new organic conductor κ-(BEDSe-TTF)2CuN(CN)2Br. Solid State Commun. 1998, 108, 377–381. [Google Scholar] [CrossRef]
- Kawamoto, T.; Aragaki, M.; Mori, T.; Misaki, Y.; Yamabe, T. Crystal structure and physical properties of (TTM-TTP)AuI2. J. Mater. Chem. 1998, 8, 285–288. [Google Scholar] [CrossRef]
- Heuzé, K.; Fourmigué, M. The crystal chemistry of amide-functionalized ethylenedithiotetrathiafulvalenes: EDT-TTF-CONRR′ (R,R′ = H, Me). J. Mater. Chem. 1999, 9, 2373–2379. [Google Scholar] [CrossRef]
- Kondo, R.; Hasegawa, T.; Mochida, T.; Kagoshima, S.; Iwasa, Y. Donor-acceptor type superconductor, (BETS)2(Cl2TCNQ). Chem. Lett. 1999, 28, 333–334. [Google Scholar] [CrossRef]
- Okano, Y.; Iso, M.; Kashimura, Y.; Yamaura, J.; Kato, R. New synthesis of Se-containing TTF derivatives. Synth. Met. 1999, 102, 1703–1704. [Google Scholar] [CrossRef]
- Adachi, T.; Ojima, E.; Kato, K.; Kobayashi, H.; Miyazaki, T.; Tokumoto, M.; Kobayashi, A. Superconducting transition of (TMTTF)2PF6 above 50 kbar [TMTTF = Tetramethyltetrathiafulvalene]. J. Am. Chem. Soc. 2000, 122, 3238–3239. [Google Scholar] [CrossRef]
- Drozdova, O.; Yamochi, H.; Yakushi, K.; Uruichi, M.; Horiuchi, S.; Saito, G. Determination of the charge on BEDO-TTF in its complexes by Raman spectroscopy. J. Am. Chem. Soc. 2000, 122, 4436–4442. [Google Scholar] [CrossRef]
- Dehnet, A.; Batail, P.; Misaki, Y.; Auban-Senzier, P.; Canadell, E. Donor slab robustness and band filling variations in BDT-TTP-based molecular conductors: β-(BDT-TTP)6[Re6S6Cl8]·(CH2Cl-CH2Cl2)2 and β-(BDT-TTP)6[Mo6Cl14]·(CH2Cl-CHCl2)2. Adv. Mater. 2000, 12, 436–439. [Google Scholar] [CrossRef]
- Tanaka, H.; Ojima, E.; Fujiwara, H.; Nakazawa, Y.; Kobayashi, H.; Kobayashi, A. A new κ-type organic superconductor based on BETS molecules, κ-(BETS)2GaBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Mater. Chem. 2000, 10, 245–247. [Google Scholar] [CrossRef]
- Jaccard, D.; Wilhelm, H.; Jérome, D.; Moser, J.; Carcel, C.; Fabre, J.M. From spin-Peierls to superconductivity: (TMTTF)2PF6 under high pressure. J. Phys. Condens. Matter. 2001, 13, L89–L95. [Google Scholar] [CrossRef] [Green Version]
- Yamada, J.-I.; Watanabe, M.; Akutsu, H.; Nakasuji, S.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K. New organic superconductors β-(BDA-TTP)2X [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene; X− = SbF6−, AsF6−, and PF6−]. J. Am. Chem. Soc. 2001, 123, 4174–4180. [Google Scholar] [CrossRef]
- Mielke, C.; Singleton, J.; Nam, M.-S.; Harrison, N.; Agosta, C.C.; Fravel, B.; Montgomery, L.K. Superconducting properties and Fermi-surface topology of the quasi-two-dimensional organic superconductor λ-(BETS)2GaCl4 (BETS ≡ bis(ethylene-dithio)tetraselenafulvalene). J. Phys. Cond. Mat. 2001, 13, 8325–8345. [Google Scholar] [CrossRef]
- Gritsenko, V.; Tanaka, H.; Kobayashi, H.; Kobayashi, A. A new molecular superconductor, κ-(BETS)2TlCl4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Mater. Chem. 2001, 11, 2410–2411. [Google Scholar] [CrossRef]
- Takimiya, K.; Kataoka, Y.; Aso, Y.; Otsubo, T.; Fukuoka, H.; Yamanaka, S. Quasi one-dimensional organic superconductor MDT-TSF·AuI2 with Tc = 4.5 K at ambient pressure. Angew. Chem. Int. Ed. Engl. 2001, 40, 1122–1125. [Google Scholar] [CrossRef]
- Ota, A.; Yamochi, H.; Saito, G. A novel metal-insulator phase transition observed in (EDO-TTF)2PF6. J. Mater. Chem. 2002, 12, 2600–2602. [Google Scholar] [CrossRef]
- Kawamoto, T.; Mori, T.; Takimiya, K.; Kataoka, Y.; Aso, Y.; Otsubo, T. Organic superconductor with an incommensurate anion structure: (MDT-TSF)(AuI2)0.44. Phys. Rev. B 2002, 65, 140508. [Google Scholar] [CrossRef] [Green Version]
- Imakubo, T.; Tajima, N.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K. A supramolecular superconductor θ-(DIETS)2[Au(CN)4]. J. Mater. Chem. 2002, 12, 159–161. [Google Scholar] [CrossRef]
- Nishikawa, H.; Morimoto, T.; Kodama, T.; Ikemoto, I.; Kikuchi, K.; Yamada, J.-I.; Yoshino, H.; Murata, K. New organic superconductors consisting of an unprecedented π-electron donor. J. Am. Chem Soc. 2002, 124, 730–731. [Google Scholar] [CrossRef]
- Shimojo, Y.; Ishiguro, T.; Toita, T.; Yamada, J.-I. Superconductivity of layered organic compound β-(BDA-TTP)2SbF6, where BDA-TTP is 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene. J. Phys. Soc. Jpn. 2002, 71, 717–720. [Google Scholar] [CrossRef]
- Kodani, M.; Takamori, A.; Takimiya, K.; Aso, Y.; Otsubo, T. Novel conductive radical cation salts based on methylenediselenotetraselenafulvalene (MDSe-TSF): A sign of superconductivity in κ-(MDSe-TSF)2Br below 4 K. J. Solid State Chem. 2002, 168, 582–589. [Google Scholar] [CrossRef]
- Takimiya, K.; Takamori, A.; Aso, Y.; Otsubo, T.; Kawamoto, T.; Mori, T. Organic superconductors based on a new electron donor, methylenedithio-diselenadithafulvalene (MDT-ST). Chem. Mater. 2003, 15, 1225–1227. [Google Scholar] [CrossRef]
- Takimiya, K.; Kodani, M.; Kataoka, Y.; Aso, Y.; Otsubo, T.; Kawamoto, T.; Mori, T. New organic superconductors with an incommensurate anion. Lattice consisting of polyhalide chains (MDT-TSF)Xy (MDT-TSF = methylenedithiotetraselenafulvalene; X = halogen; y = 1.27–1.29). Chem. Mater. 2003, 15, 3250–3255. [Google Scholar] [CrossRef]
- Auban-Senzier, P.; Pasquier, C.; Jérome, D.; Carcel, C.; Fabre, J.M. From Mott insulator to superconductivity in (TMTTF)2BF4: High pressure transport measurements. Synth. Met. 2003, 133–134, 11–14. [Google Scholar] [CrossRef]
- Nishikawa, H.; Machida, A.; Morimoto, T.; Kikuchi, K.; Kodama, T.; Ikemoto, I.; Yamada, J.-I.; Yoshino, H.; Murata, K. A new organic superconductor, (DODHT)2BF4·H2O. Chem. Commun. 2003, 3, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Yamada, J.-I.; Toita, T.; Akutsu, H.; Nakasuji, S.; Nishikawa, H.; Ikemoto, I.; Kikuchi, K.; Choi, E.S.; Graf, D.; Brooks, J.S. A new organic superconductor, β-(BDA-TTP)2GaCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene]. Chem. Commun. 2003, 3, 2230–2231. [Google Scholar] [CrossRef]
- Choi, E.S.; Graf, D.; Brooks, J.S.; Yamada, J.; Akutsu, H.; Kikuchi, K.; Tokumoto, M. Pressure-dependent ground states and fermiology in β-(BDA-TTP)2MCl4 (M = Fe,Ga). Phys. Rev. B 2004, 70, 024517. [Google Scholar] [CrossRef]
- Zhilyaeva, E.I.; Torunova, S.A.; Lyubovskaya, R.N.; Mousdis, G.A.; Papavassiliou, G.C.; Perenboom, J.A.A.J.; Pesotskii, S.I.; Lyubovskii, R.B. New ambient pressure organic superconductor with Tc = 8.1 K based on unsymmetrical donor molecule, ethylenedithiotetrathiafulvalene: (EDT-TTF)4Hg3-δI8, δ ~ 0.1–0.2. Synth. Met. 2004, 140, 151–154. [Google Scholar] [CrossRef]
- Drozdova, O.; Yakushi, K.; Yamamoto, K.; Ota, A.; Yamochi, H.; Saito, G.; Tashiro, H.; Tanner, D.B. Optical characterization of 2kF bond-charge-density wave in quasi-one-dimeesional 3/4-filled (EDO-TTF)2X (X = PF6 and AsF6). Phys. Rev. B 2004, 70, 075107. [Google Scholar] [CrossRef]
- Mori, T. Organic conductors with unusual band fillings. Chem. Rev. 2004, 104, 4947–4969. [Google Scholar] [CrossRef]
- Kimura, S.; Maejima, T.; Suzuki, H.; Chiba, R.; Mori, H.; Kawamoto, T.; Mori, T.; Moriyama, H.; Nishio, Y.; Kajita, K. A new organic superconductor β-(meso-DMBEDT-TTF)2PF6. Chem. Commun. 2004, 2454–2455. [Google Scholar] [CrossRef]
- Takimiya, K.; Kodani, M.; Niihara, N.; Aso, Y.; Otsubo, T.; Bando, Y.; Kawamoto, T.; Mori, T. Pressure-induced superconductivity in (MDT-TS)(AuI2)0.441 [MDT-TS = 5H-2-(1,3-diselenol-2-ylidene)-1,3,4,6-tetrathiapentalene]: A new organic superconductor possessing an incommensurate anion lattice. Chem. Mater. 2004, 16, 5120–5123. [Google Scholar] [CrossRef]
- Nishikawa, H.; Sato, Y.; Kikuchi, K.; Kodama, T.; Ikemoto, I.; Yamada, J.-I.; Oshio, H.; Kondo, R.; Kagoshima, S. Charge ordering and pressure-induced superconductivity in β”-(DODHT)2PF6. Phys. Rev. B 2005, 72, 052510. [Google Scholar] [CrossRef]
- Ito, H.; Suzuki, D.; Yokochi, Y.; Kuroda, S.; Umemiya, M.; Miyasaka, H.; Sugiura, K.I.; Yamashita, M.; Tajima, H. Quasi-one-dimensional electronic structure of (DMET)2CuCl2. Phys. Rev. B 2005, 71, 212503. [Google Scholar] [CrossRef]
- Shirahata, T.; Kibune, M.; Maesato, M.; Kawashima, T.; Saito, G.; Imakubo, T. New organic conductors based on dibromo- and diiodo-TSeFs with magnetic and non-magnetic MX4 counter anions (M = Fe, Ga; X = Cl, Br). J. Mater. Chem. 2006, 16, 3381–3390. [Google Scholar] [CrossRef]
- Yamada, J.-I.; Fujimoto, K.; Akutsu, H.; Nakatsuji, S.; Miyazaki, A.; Aimatsu, M.; Kudo, S.; Enoki, T.; Kikuchi, K. Pressure effect on the electrical conductivity and superconductivity of β-(BDA-TTP)2I3. Chem. Commun. 2006, 1331–1333. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, T.; Kibune, M.; Imakubo, T. New ambient pressure organic superconductors κH- and κL-(DMEDO-TSeF)2[Au(CN)4](THF). Chem. Commun. 2006, 1592–1594. [Google Scholar] [CrossRef]
- Itoi, M.; Kano, M.; Kurita, N.; Hedo, M.; Uwatoko, Y.; Nakamura, T. Pressure-induced superconductivity in the quasi-one-dimensional organic conductor (TMTTF)2AsF6. J. Phys. Soc. Jpn. 2007, 76, 053703. [Google Scholar] [CrossRef]
- Araki, C.; Itoi, M.; Hedo, M.; Uwatoko, Y.; Mori, H. Electrical resistivity of (TMTTF)2PF6 under high pressure. J. Phys. Soc. Jpn. 2007, 76 (Suppl. A), 198–199. [Google Scholar] [CrossRef] [Green Version]
- Itoi, M.; Araki, C.; Hedo, M.; Uwatoko, Y.; Nakamura, T. Anomalously wide superconducting phase of one-dimensional organic conductor (TMTTF)2SbF6. J. Phys. Soc. Jpn. 2008, 77, 023701. [Google Scholar] [CrossRef]
- Misaki, Y. Tetrathiapentalene-based organic conductors. Sci. Tech. Adv. Mat. 2009, 10, 024301. [Google Scholar] [CrossRef] [PubMed]
- Lorcy, D.; Bellec, N.; Fourmigué, M.; Avarvari, N. Tetrathiafulvalene-based group XV ligands: Synthesis, coordination chemistry and radical cation salts. Coord. Chem. Rev. 2009, 253, 1398–1438. [Google Scholar] [CrossRef]
- Shikama, T.; Shimokawa, T.; Lee, S.; Isono, T.; Ueda, A.; Takahashi, K.; Nakao, A.; Kumai, R.; Nakao, H.; Kobayashi, K.; et al. Magnetism and pressure-induced superconductivity of checkerboard-type charge-ordered molecular conductor β-(meso-DMBEDT-TTF)2X (X = PF6 and AsF6). Crystals 2012, 2, 1502–1513. [Google Scholar] [CrossRef] [Green Version]
- Steimecke, G.; Sieler, H.-J.; Kirmse, R.; Hoyer, E. 1,3-Dithiol-2-thion-4,5-dithiolat aus Schwefelkohlenstoff und Alkalimetall. Phosphorus Sulfur 1979, 7, 49–55. [Google Scholar] [CrossRef]
- Kirmse, R.; Stach, J.; Dietzsch, W.; Steimecke, G.; Hoyer, E. Single-Crystal EPR Studies on Nickel(III), Palladium(III), and Platinum(III) Dithiolene Chelates Containing the Ligands Isotrithionedithiolate, o-Xylenedithiolate, and Maleonitriledithiolate. Inorg. Chem. 1980, 19, 2679–2685. [Google Scholar] [CrossRef]
- Alvarez, S.; Vicente, R.; Hoffmann, R. Dimerization and Stacking in Transition-Metal Bisdithiolenes and Tetrathiolates. J. Am. Chem. Soc. 1985, 107, 6253–6277. [Google Scholar] [CrossRef]
- Valade, L.; Legros, J.; Bousseau, M.; Cassoux, P.; Garbauskas, M.; Interrante, L.V. Molecular structure and solid-state properties of the two-dimensional conducting mixed-valence complex [NBu4]0.29[Ni(dmit)2] and the neutral [Ni(dmit)2] (H2dmit = 4,5-dimercapto-1,3-dithiole-2-thione); members of an electron-transfer series. J. Chem. Soc. Dalton Trans. 1985, 783–794. [Google Scholar] [CrossRef]
- Brossard, L.; Ribault, M.; Bousseau, M.; Valade, L.; Cassoux, P. A new type of molecular superconductor: TTF[Ni(dmit)2]2. C. R. Acad. Sci. Paris Ser. II 1986, 302, 205–210. [Google Scholar]
- Bousseau, M.; Valade, L.; Legros, J.-P.; Cassoux, P.; Garbauskas, M.; Interrante, L.V. Highly Conducting Charge-Transfer Compounds of Tetrathiafulvalene and Transition Metal–“dmit” Complexes. J. Am. Chem. Soc. 1986, 108, 1908–1916. [Google Scholar] [CrossRef]
- Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. The first 3D molecular superconductor under pressure?: TTF [Ni(dmit)2]2. Phys. B+C 1986, 143, 378–380. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kim, H.; Sasaki, Y.; Kato, R.; Kobayashi, H.; Moriyama, S.; Nishio, Y.; Kajita, K.; Sasaki, W. The first molecular conductors based on π-acceptor molecules and closed-shell cations, [(CH3)4N][Ni(dmit)2]2, low-temperature X-ray studies and superconducting transition. Chem. Lett. 1987, 16, 1819–1822. [Google Scholar] [CrossRef]
- Kajita, K.; Nishio, Y.; Moriyama, S.; Kato, R.; Kobayashi, H.; Sasaki, W.; Kobayashi, A.; Kim, H.; Sasaki, Y. Transport properties of ((CH3)4N) (Ni(dmit)2)2: A new organic superconductor. Solid State Commun. 1988, 65, 361–363. [Google Scholar] [CrossRef]
- Brossard, L.; Hurdequint, H.; Ribault, M.; Valade, L.; Legros, J.P.; Cassoux, P. Pressure-temperature phase diagram of α′-TTF [Pd(Dmit)2]2. Synth. Met. 1988, 27, 157–162. [Google Scholar] [CrossRef]
- Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. Pressure induced superconductivity in molecular TTF(Pd(dmit)2)2. J. Phys. Fr. 1989, 50, 1521–1534. [Google Scholar] [CrossRef] [Green Version]
- Kato, R.; Kobayashi, H.; Kobayashi, A.; Naito, T.; Tamura, M.; Tajima, H.; Kuroda, H. New molecular conductors, α- and β-(EDT-TTF)[Ni(dmit)2] metal with anomalous resistivity maximum vs. semiconductor with mixed stacks. Chem. Lett. 1989, 18, 1839–1842. [Google Scholar] [CrossRef]
- Brossard, L.; Ribault, M.; Valade, L.; Cassoux, P. Simultaneous competition and coexistence between charge-density waves and reentrant superconductivity in the pressure-temperature phase diagram of the molecular conductor TTF[Ni(dmit)2]2 (TTF is tetrathiafulvalene and dmit is the 1,3-dithia-2-thione-4,5-dithiolato group). Phys. Rev. B 1990, 42, 3935–3943. [Google Scholar] [CrossRef]
- Canadell, E.; Ravy, S.; Pouget, J.P.; Brossard, L. Concerning the band structure of D(M(dmit)2)2 (D = TTF,Cs,NMe4); M = Ni,Pd) molecular conductors and superconductors: Role of the M(dmit)2 Homo and Lumo. Solid State Commun. 1990, 75, 633–638. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kim, H.; Sasaki, Y.; Murata, K.; Kato, R.; Kobayashi, H. Crystal and electronic structures of new molecular conductors tetramethylammonium and tetramethylarsonium complexes of Pd(dmit)2. J. Chem. Soc. Faraday Trans. 1990, 86, 361–369. [Google Scholar] [CrossRef]
- Cassoux, P.; Valade, L.; Kobayashi, H.; Kobayashi, A.; Clark, R.A.; Underhill, A.E. Molecular metals and superconductors derived from metal complexes of 1,3-dithiol-2-thione-4,5-dithiolate (dmit). Coord. Chem. Rev. 1991, 110, 115–160. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kobayashi, H.; Miyamoto, A.; Kato, R.; Clark, R.A.; Unerhill, A.E. New molecular superconductor, β-[(CH3)4N][Pd(dmit)2]2. Chem. Lett. 1991, 20, 2163–2166. [Google Scholar] [CrossRef]
- Underhill, A.E.; Clark, R.A.; Marsden, I.; Allan, M.; Friend, R.H.; Tajima, H.; Naito, T.; Tamura, M.; Kuroda, H.; Kobayashi, A.; et al. Structural and electronic properties of Cs(Pd(dmit)2)2. J. Phys. Cond. Mat. 1991, 3, 933–954. [Google Scholar] [CrossRef]
- Tajima, H.; Naito, T.; Tamura, M.; Kobayashi, A.; Kuroda, H.; Kato, R.; Kobayashi, H.; Clark, R.A.; Underhill, A.E. Energy level inversion in strongly dimerized [Pd(dmit)2] salts. Solid State Commun. 1991, 79, 337–341. [Google Scholar] [CrossRef]
- Kobayashi, H.; Bun, K.; Naito, T.; Kato, R.; Kobayashi, A. New molecular superconductor, [Me2Et2N][Pd(dmit)2]2. Chem. Lett. 1992, 21, 1909–1912. [Google Scholar] [CrossRef]
- Olk, R.-M.; Olk, B.; Dietzsch, W.; Kirmse, R.; Hoyer, E. The chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit). Coord. Chem. Rev. 1992, 117, 99–131. [Google Scholar] [CrossRef]
- Tajima, H.; Inokuchi, M.; Kobayashi, A.; Ohta, T.; Kato, R.; Kobayashi, H.; Kuroda, H. First ambient-pressure superconductor based on Ni(dmit)2, α-EDT-TTF[Ni(dmit)2]. Chem. Lett. 1993, 22, 1235–1238. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kato, R.; Clark, R.A.; Underhill, A.E.; Miyamoto, A.; Bun, K.; Naito, T.; Kobayashi, H. New molecular superconductors, β-[(CH3)4N][PD(dmit)2]2 and [(CH3)2(C2H5)2N][Pd(dmit)2]2. Synth. Met. 1993, 56, 2927–2932. [Google Scholar] [CrossRef]
- Kobayashi, A.; Naito, T.; Kobayashi, H. Crystal and electronic structures of the two-dimensional transition-metal-complex molecule -[(CH3)2(C2H5)2N] [Ni(dmit)2]2 (dmit = 1,3-dithiol-2-thione-4,5-dithiolate). Phys. Rev. B 1995, 51, 3198–3201. [Google Scholar] [CrossRef]
- Naito, T.; Sato, A.; Kawano, K.; Tateno, A.; Kobayashi, H.; Kobayashi, A. The new synthetic metals of M(dmise)2:[Me3HN] [Ni(dmise)2]2 and (EDT-TTF)[Ni(dmise)2]. J. Chem. Soc. Chem. Commun. 1995, 351–352. [Google Scholar] [CrossRef]
- Kobayashi, A.; Sato, A.; Kawano, K.; Naito, T.; Kobayashi, H.; Watanabe, T. Origin of the resistivity anomalies of (EDT-TTF)[M(dmit)2] (M = Ni, Pd). J. Mater. Chem. 1995, 5, 1671–1679. [Google Scholar] [CrossRef]
- Svenstrup, N.; Becher, J. The organic chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (DMIT). Synthesis 1995, 215–235. [Google Scholar] [CrossRef]
- Inokuchi, M.; Tajima, H.; Ohta, T.; Kuroda, H.; Kobayashi, A.; Sato, A.; Naito, T.; Kobayashi, H. Electrical Resistivity under High Pressure and Upper Critical Magnetic Field of the Molecular Superconductor α-(EDT-TTF)[Ni(dmit)2]. J. Phys. Soc. Jpn. 1996, 65, 538–544. [Google Scholar] [CrossRef]
- Canadell, E. Electronic structure of two-band molecular conductors. New J. Chem. 1997, 21, 1147–1159. [Google Scholar]
- Kato, R.; Liu, Y.-L.; Hosokoshi, Y.; Aonuma, S.; Sawa, H. Se-substitution and cation effects on the high-pressure molecular superconductor, β-Me4N[Pd(dmit)2]2–A unique two-band system. Mol. Cryst. Liq. Cryst. 1997, 296, 217–244. [Google Scholar] [CrossRef]
- Sato, A.; Kobayashi, H.; Naito, T.; Sakai, F.; Kobayashi, A. Enhancement of the Dimensionality of Molecular π Conductors by the selone substitution of M(dmit)2 (M = Ni, Pd) systems: Newly synthesized dmise compounds [MexH4−xN][Ni(dmise)2]2 (x = 1–3) and Cs[Pd(dmise)2]2 (dmise = 4,5-Dimercapto-1,3-dithiole-2-selone). Inorg. Chem. 1997, 36, 5262–5269. [Google Scholar] [CrossRef]
- Kato, R.; Kashimura, Y.; Aonuma, S.; Hanasaki, N.; Tajima, H. A new molecular superconductor β′-Et2Me2P[Pd(dmit)2]2 (dmit = 2-thioxo-1,3-dithiole-4,5-dithiolate). Solid State Commun. 1998, 105, 561–565. [Google Scholar] [CrossRef]
- Pullen, A.E.; Olk, R.-M. The coordination chemistry of 1,3-dithiole-2-thione-4,5-dithiolate (dmit) and isologs. Coord. Chem. Rev. 1999, 188, 211–262. [Google Scholar] [CrossRef]
- Akutagawa, T.; Nakamura, T. [Ni(dmit)2] salts with supramolecular cation structure. Coord. Chem. Rev. 2000, 198, 297–311. [Google Scholar] [CrossRef]
- Naito, T.; Inabe, T.; Kobayashi, H.; Kobayashi, A. A new molecular metal based on Pd(dmit)2: Synthesis, structure and electrical properties of (C7H13NH)[Pd(dmit)2]2(dmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolate). J. Mater. Chem. 2001, 11, 2200–2205. [Google Scholar] [CrossRef]
- Kato, R.; Tajima, N.; Tamura, M.; Yamaura, J.-I. Uniaxial strain effect in a strongly correlated two-dimensional system β′-(CH3)4As[Pd (dmit)2]2. Phys. Rev. B 2002, 66, 020508. [Google Scholar] [CrossRef]
- Robertson, N.; Cronin, L. Metal bis-1,2-dithiolene complexes in conducting or magnetic crystalline assemblies. Coord. Chem. Rev. 2002, 227, 93–127. [Google Scholar] [CrossRef]
- Ribas, X.; Dias, J.C.; Morgado, J.; Wurst, K.; Molins, E.; Ruiz, E.; Almeida, M.; Veciana, J.; Rovira, C. Novel CuIII Bis-1,2-dichalcogenene complexes with tunable 3D framework through alkaline cation coordination: A structural and theoretical study. Chem. Eur. J. 2004, 10, 1691–1704. [Google Scholar] [CrossRef]
- Kato, R. Conducting metal dithiolene complexes: Structural and electronic properties. Chem. Rev. 2004, 104, 5319–5346. [Google Scholar] [CrossRef] [PubMed]
- Tajima, A.; Nakao, A.; Kato, R. Uniaxial strain effects in the conducting Pd(dmit)2 system (dmit = 1,3-dithiol-2-thione-4,5-dithiolate). J. Phys. Soc. Jpn. 2005, 74, 412–416. [Google Scholar] [CrossRef]
- Sarangi, R.; George, S.D.; Rudd, D.J.; Szilagyi, R.K.; Ribas, X.; Rovira, C.; Almeida, M.; Hodgson, K.O.; Hedman, B.; Solomon, E.I. Sulfur K-edge X-ray absorption spectroscopy as a probe of ligand-metal bond covalency: Metal vs. ligand oxidation in copper and nickel dithiolene complexes. J. Am. Chem. Soc. 2007, 129, 2316–2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deplano, P.; Pilia, L.; Espa, D.; Mercuri, M.L.; Serpe, A. Square-planar d8 metal mixed-ligand dithiolene complexes as second order nonlinear optical chromophores: Structure/property relationship. Coord. Chem. Rev. 2010, 254, 1434–1447. [Google Scholar] [CrossRef]
- Kato, R. Development of π-electron systems based on [M(dmit)2] (M = Ni and Pd; dmit: 1,3-dithiole-2-thione-4,5-dithiolate) anion radicals. Bull. Chem. Soc. Jpn. 2014, 87, 355–374. [Google Scholar] [CrossRef] [Green Version]
- Aumüller, A.; Hünig, S. Multistep reversible redox systems, XLVI1) N,N′-Dicyanoquinonediimines—A new class of compounds, I: Synthesis and general properties. Liebigs Ann. Chem. 1986, 142–164. [Google Scholar] [CrossRef]
- Aumüller, A.; Erk, P.; Klebe, G.; Hünig, S.; von Schütz, J.U.; Werner, H.-P. A radical anion salt of 2,5-Dimethyl-N,N′-dicyanoquinonediimine with extremely high electrical conductivity. Angew. Chem. Int. Ed. Engl. 1986, 25, 740–741. [Google Scholar] [CrossRef]
- Mori, T.; Imaeda, K.; Kato, R.; Kobayashi, A.; Kobayashi, H.; Inokuchi, H. Pressure-induced one-dimensional instability in (DMDCNQI)2Cu. J. Phys. Soc. Jpn. 1987, 56, 3429–3431. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kato, R.; Kobayashi, H.; Mori, T.; Inokuchi, H. The organic π-electron metal system with interaction through mixed-valence metal cation: Electronic and structural properties of radical salts of dicyano-quinodiimine, (DMe-DCNQI)2Cu and (MeCl-DCNQI)2Cu. Solid State Commun. 1987, 64, 45–51. [Google Scholar] [CrossRef]
- Tomić, S.; Jérome, D.; Aumüller, A.; Erk, P.; Hünig, S.; von Schütz, J.U. Pressure-temperature phase diagram of the organic conductor (DM-DCNQI)2Cu. Synth. Met. 1988, 27, B281–B288. [Google Scholar] [CrossRef]
- Tomić, S.; Jérome, D.; Aumüller, A.; Erk, P.; Hünig, S.; von Schutz, J.U. The pressure-temperature phase diagram of the organic conductor (2,5 DM-DCNQI)2Cu. J. Phys. C Solid State Phys. 1988, 21, L203–L207. [Google Scholar] [CrossRef]
- Tomić, S.; Jérome, D.; Aumüller, A.; Erk, P.; Hünig, S.; von Schutz, J.U. Pressure-induced metal-to-insulator phase transitions in the organic conductor (2,5 DM-DCNQI)2Cu. EPL 1988, 5, 553–558. [Google Scholar] [CrossRef]
- Mori, T.; Inokuchi, H.; Kobayashi, A.; Kato, R.; Kobayashi, H. Electrical conductivity, thermoelectric power, and ESR of a new family of molecular conductors, dicyanoquinonediimine-metal [(DCNQI)2M] compounds. Phys. Rev. B 1988, 38, 5913–5923. [Google Scholar] [CrossRef]
- Kobayashi, H.; Kato, R.; Kobayashi, A.; Mori, T.; Inokuchi, H. The first molecular metals with ordered spin structures, R1,R2-DCNQI2Cu (R1, R2 = CH3, CH3O, Cl, Br)—Jahn-Teller distortion, CDW instability and antiferromagnetic spin ordering. Solid State Commun. 1988, 65, 1351–1354. [Google Scholar] [CrossRef]
- Werner, H.P.; von Schütz, J.U.; Wolf, H.C.; Kremer, R.; Gehrke, M.; Aumüller, A.; Erk, P.; Hünig, S. Radical anion salts of N,N′-dicyanoquinonediimine (DCNQI): Conductivity and magnetic properties. Solid State Commun. 1988, 65, 809–813. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kato, R.; Kobayashi, H. Reentrant behavior of the temperature dependence of resistivity of DCNQI-Cu alloy system, [(DMe)1−x(MeBr)x-DCNQI]2Cu. Chem. Lett. 1989, 18, 1843–1846. [Google Scholar] [CrossRef]
- Kobayashi, H.; Miyamoto, A.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. Reentrant behavior in the pressure-temperature dependence of the resistivity of (DMeO-DCNQI)2Cu. Solid State Commun. 1989, 72, 1–5. [Google Scholar] [CrossRef]
- Karutz, F.O.; von Schutz, J.U.; Wachtel, H.; Wolf, H.C. Optically reversed Peierls trasition in crystals of Cu(dicyanoquinonediimine)2. Phys. Rev. Lett. 1998, 81, 140–143. [Google Scholar] [CrossRef]
- Kato, R.; Kobayashi, H.; Kobayashi, A. Crystal and electronic structures of conductive anion-radical salts, (2,5-R1,R2-DCNQI)2Cu (DCNQI = N,N′-Dicyanoquinonediimine; R1, R2 = CH3, CH3O, Cl, Br). J. Am. Chem. Soc. 1989, 111, 5224–5232. [Google Scholar] [CrossRef]
- Erk, P.; Hünig, S.; Meixner, H.; Gross, H.-J.; Langohr, U.; Werner, H.-P.; von Schütz, J.U.; Wolf, H.C. Binary alloys of 2,5-disubstituted DCNQI radical anion salts of copper and their electrical conductivity. Angew. Chem. Int. Ed. Engl. 1989, 28, 1245–1246. [Google Scholar] [CrossRef]
- Koch, W. Extended-huckel energy band structures of organometallic compounds with one-dimensional crystal geometries. Computational results for bis(2,5-dimethyl-N,N′-dicyanoquinonediimine)copper, -silver, and -lithium. Z. Naturforsch. 1990, 45a, 148–156. [Google Scholar] [CrossRef]
- Yakushi, K.; Ugawa, A.; Ojima, G.; Ida, T.; Tajima, H.; Kuroda, H.; Kobayashi, A.; Kato, R.; Kobayashi, H. Polarized reflectance spectra of DCNQI salts. Mol. Cryst. Liq. Cryst. 1990, 181, 217–231. [Google Scholar] [CrossRef]
- Ermer, O. Sevenfold diamond structure and conductivity of copper dicyanoquinonediimines Cu(DCNQI)2. Adv. Mater. 1991, 3, 608–611. [Google Scholar] [CrossRef]
- Erk, P.; Meixner, H.; Metzenthin, T.; Hünig, S.; Langohr, U.; von Schütz, J.U.; Werner, H.-P.; Wolf, H.C.; Burkert, R.; Helberg, H.W.; et al. A guidance for stable metallic conductivity in copper salts of N,N′-dicyanobenzoquinonediimines (DCNQIs). Adv. Mater. 1991, 3, 311–315. [Google Scholar] [CrossRef]
- Hünig, S.; Erk, P. DCNQIs—new electron acceptors for charge-transfer complexes and highly conducting radical anion salts. Adv. Mater. 1991, 3, 225–236. [Google Scholar] [CrossRef]
- Lunardi, G.; Pecile, C. N,N′-dicyanoquinonediimines as a molecular constituent of organic conductors: Vibrational behavior and electron-molecular vibration coupling. J. Chem. Phys. 1991, 95, 6911–6923. [Google Scholar] [CrossRef]
- Kagoshima, S.; Sugimoto, N.; Osada, T.; Kobayashi, A.; Kato, R.; Kobayashi, H. Magnetic and structural properties of mixed-valence molecular conductors (DMeDCNQI)2Cu and (DMeODCNQI)2Cu. J. Phys. Soc. Jpn. 1991, 60, 4222–4229. [Google Scholar] [CrossRef]
- Miyamoto, A.; Kobayashi, H.; Kato, R.; Kobayashi, A.; Nishio, Y.; Kajita, K.; Sasaki, W. Metal instability of (DMe-DCNQI)2Cu induced by uniaxial stress and enhancement of electron mass. Chem. Lett. 1992, 21, 115–118. [Google Scholar] [CrossRef]
- Fukuyama, H. (DCNQI)2Cu: A Luttinger-Peierls system. J. Phys. Soc. Jpn. 1992, 61, 3452–3456. [Google Scholar] [CrossRef]
- Suzumura, Y.; Fukuyama, H. Mean-field theory of mixed-valence conductors (R1,R2-DCNQI)2Cu. J. Phys. Soc. Jpn. 1992, 61, 3322–3330. [Google Scholar] [CrossRef]
- Inoue, I.H.; Kakizaki, A.; Namatame, H.; Fujimori, A.; Kobayashi, A.; Kato, R.; Kobayashi, H. Copper valence fluctuation in the organic conductor (dimethyl-N,N′-dicyanoquinonediimine)2Cu studied by x-ray photoemission spectroscopy. Phys. Rev. B 1992, 45, 5828–5833. [Google Scholar] [CrossRef] [PubMed]
- Nishio, Y.; Kajita, K.; Sasaki, W.; Kato, R.; Kobayashi, A.; Kobayashi, H. Thermal and magnetic properties in organic metals (DMe-DCNQI)2Cu, (DMeO-DCNQI)2Cu and (DMe1−x-MeBrx-DCNQI)2Cu: Enhancement of density of states. Solid State Commun. 1992, 81, 473–476. [Google Scholar] [CrossRef]
- Kobayashi, H.; Miyamoto, A.; Kato, R.; Sakai, F.; Kobayashi, A.; Yamakita, Y.; Furukawa, Y.; Tasumi, M.; Watanabe, T. Mixed valency of Cu, electron-mass enhancement, and three-dimensional arrangement of magnetic sites in the organic conductors (R1,R2-N,N′-dicyanoquinonediimine)2Cu (where R1,R2 = CH3,CH3O,Cl,Br). Phys. Rev. B 1993, 47, 3500–3510. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Sawa, H.; Aonuma, S.; Kato, R. Evidence for reentrant structural-phase transition in DCNQI-copper system. J. Am. Chem. Soc. 1993, 115, 7870–7871. [Google Scholar] [CrossRef]
- Bauer, D.; von Schütz, J.U.; Wolf, H.C.; Hünig, S.; Sinzger, K.; Kremer, R.K. Alloyed deuterated copper-DCNQI salts: Phase transitions and reentry of conductivity, giant hysteresis effects, and coexistence of metallic and semiconducting modes. Adv. Mater. 1993, 5, 829–834. [Google Scholar] [CrossRef]
- Sinzger, K.; Hünig, S.; Jopp, M.; Bauer, D.; Bietsch, W.; von Schütz, J.U.; Wolf, H.C.; Kremer, R.K.; Metzenthin, T.; Bau, R.; et al. The organic metal (Me2-DCNQI)2Cu: Dramatic changes in solid-state properties and crystal structure due to secondary deuterium effects. J. Am. Chem. Soc. 1993, 115, 7696–7705. [Google Scholar] [CrossRef]
- Aonuma, S.; Sawa, H.; Kato, R.; Kobayashi, H. Giant metal-insulator-metal transition induced by selective deuteration of the molecular conductor, (DMe-DCNQI)2Cu (DMe-DCNQI = 2,5-dimethyl-N,N′-dicyanoquinonediimine). Chem. Lett. 1993, 22, 513–516. [Google Scholar] [CrossRef]
- Sawa, H.; Tamura, M.; Aonuma, S.; Kato, R.; Kinoshita, M.; Kobayashi, H. Novel electronic states of partially deuterated (DMe-DCNQI)2Cu. J. Phys. Soc. Jpn. 1993, 62, 2224–2228. [Google Scholar] [CrossRef]
- Tamura, M.; Sawa, H.; Aonuma, S.; Kato, R.; Kinoshita, M.; Kobayashi, H. Weak ferromagnetism and magnetic anisotropy in copper salt of fully deuterated DMe-DCNQI, (DMe-DCNQI-d8)2Cu. J. Phys. Soc. Jpn. 1993, 62, 1470–1473. [Google Scholar] [CrossRef]
- Kato, R.; Sawa, H.; Aonuma, S.; Tamura, M.; Kinoshita, M.; Kobayashi, H. Preparation and physical properties of an alloyed (DMe-DCNQI)2Cu with fully deuterated DMe-DCNQI (DMe-DCNQI = 2,5-dimethyl-N,N′-dicyanoquinonediimine). Solid State Commun. 1993, 85, 831–835. [Google Scholar] [CrossRef]
- Uji, S.; Terashima, T.; Aoki, H.; Brooks, J.S.; Kato, R.; Sawa, H.; Aonuma, S.; Tamura, M.; Kinoshita, M. Coexistence of one- and three-dimensional Fermi surfaces and heavy cyclotron mass in the molecular conductor (DMe-DCNQI)2Cu. Phys. Rev. B 1994, 50, 15597–15601. [Google Scholar] [CrossRef] [PubMed]
- Sawa, H.; Tamura, M.; Aonuma, S.; Kinoshita, M.; Kato, R. Charge-transfer-controlled phase transition in a molecular conductor, (DMe-DCNQI)2Cu—Doping effect. J. Phys. Soc. Jpn. 1994, 63, 4302–4305. [Google Scholar] [CrossRef]
- Yamakita, Y.; Furukawa, Y.; Kobayashi, A.; Tasumi, M.; Kato, R.; Kobayashi, H. Vibrational studies on electronic structures in metallic and insulating phases of the Cu complexes of substituted dicyanoquinonediimines (DCNQI). A comparison with the cases of the Li and Ba complexes. J. Chem. Phys. 1994, 100, 2449–2457. [Google Scholar] [CrossRef]
- Kashimura, Y.; Sawa, H.; Aonuma, S.; Kato, R.; Takahashi, H.; Mori, N. Anomalous pressure-temperature phase diagram of the molecular conductor, (DI-DCNQI)2Cu (DI-DCNQI = 2,5-diiodo-N,N′-dicyanoquinonediimine). Solid State Commun. 1995, 93, 675–679. [Google Scholar] [CrossRef]
- Uji, S.; Terashima, T.; Aoki, H.; Kato, R.; Sawa, H.; Aonuma, S.; Tamura, M.; Kinoshita, M. Fermi surface and absence of additional mass enhancement near the insulating phase in (DMe-DCNQI)2Cu. Solid State Commun. 1995, 93, 203–207. [Google Scholar] [CrossRef]
- Hünig, S. N,N′-dicyanoquinonediimines (DCNQIs): Unique acceptors for conducting materials. J. Mater. Chem. 1995, 5, 1469–1479. [Google Scholar] [CrossRef]
- Hiraki, K.; Kobayashi, Y.; Nakamura, T.; Takahashi, T.; Aonuma, S.; Sawa, H.; Kato, R.; Kobayashi, H. Magnetic structure in the antiferromagnetic state of the organic conductor, (DMe-DCNQI[3,3:1]d7)2Cu: 1H-NMR analysis. J. Phys. Soc. Jpn. 1995, 64, 2203–2211. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Terakura, K.; Morikawa, Y.; Yamasaki, T. First-principles theoretical study of metallic states of DCNQI-(Cu,Ag) systems: Simplicity and variety in complex systems. Phys. Rev. Lett. 1995, 74, 5104–5107. [Google Scholar] [CrossRef]
- Tamura, M.; Kashimura, Y.; Sawa, H.; Aonuma, S.; Kato, R.; Kinoshita, M. Enhanced magnetic susceptibility of (DI-DCNQI)2Cu. Solid State Commun. 1995, 93, 585–588. [Google Scholar] [CrossRef]
- Aonuma, S.; Sawa, H.; Kato, R. Chemical pressure effect by selective deuteration in the molecular-based conductor, 2,5-dimethyl-N,N′-dicyano-p-benzoquinone imine-copper salt, (DMe-DCNQI)2Cu. J. Chem. Soc. Perkin Trans. 1995, 2, 1541–1549. [Google Scholar] [CrossRef]
- Sekiyama, A.; Fujimori, A.; Aonuma, S.; Sawa, H.; Kato, R. Fermi-liquid versus Luttinger-liquid behavior and metal-insulator transition N,N′-dicyanoquinonediimine-Cu salt studied by photoemission. Phys. Rev. B 1995, 51, 13899–13902. [Google Scholar] [CrossRef]
- Takahashi, T.; Yokoya, T.; Chainani, A.; Kumigashira, H.; Akaki, O. Cooperative effects of electron correlation and charge ordering on the metal-insulator transition in quasi-one-dimensional deuterated (DMe-DCNQI)2Cu. Phys. Rev. B 1996, 53, 1790–1794. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; Terakura, K. First-principles theoretical study of metallic states of DCNQI-(Cu,Ag,Li) systems. Phys. Rev. B 1996, 54, 10452–10464. [Google Scholar] [CrossRef]
- Gómez, D.; von Schütz, J.U.; Wolf, C.H.; Hünig, S. Tunable phase transitions in conductive Cu(2,5-dimethyl-dicyanoquinonediimine)2 radical ion salts. J. Phys. I Fr. 1996, 6, 1655–1671. [Google Scholar] [CrossRef]
- Ogawa, T.; Suzumura, Y. Electronic properties of strongly correlated states in dicyanoquinonediimine-Cu organic conductors. Phys. Rev. B 1996, 53, 7085–7093. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Suzumura, Y. Effect of strong correlation on metal-insulator transition of DCNQI-Cu salts—Rigorous treatment of the local constraint–. J. Phys. Soc. Jpn. 1997, 66, 690–702. [Google Scholar] [CrossRef]
- Seo, H.; Fukuyama, H. Antiferromagnetic phases of one-dimensional quarter-filled organic conductors. J. Phys. Soc. Jpn. 1997, 66, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
- Yonemitsu, K. Renormalization-group approach to the metal-insulator transitions in (DCNQI)2M (DCNQI is N,N′-dicyanoquinonediimine and M = Ag, Cu). Phys. Rev. B 1997, 56, 7262–7276. [Google Scholar] [CrossRef] [Green Version]
- Nogami, Y.; Hayashi, S.; Date, T.; Oshima, K.; Hiraki, K.; Kanoda, K. High pressure structures of organic low dimensional conductor DCNQI compounds. Rev. High Pressure Sci. Technol. 1998, 7, 404–406. [Google Scholar] [CrossRef]
- Uwatoko, Y.; Hotta, T.; Matsuoka, E.; Mori, H.; Ohki, T.; Sarraot, J.L.; Thompson, J.D.; Möri, N.; Oomi, G. High pressure apparatus for magnetization measurements. Rev. High Pressure Sci. Technol. 1998, 7, 1508–1510. [Google Scholar] [CrossRef]
- Kawamoto, A.; Miyagawa, K.; Kanoda, K. 13C NMR study of the metal-insulator transition in (DMe-DCNQI)2Cu systems with partial deuteration. Phys. Rev. B 1998, 58, 1243–1251. [Google Scholar] [CrossRef]
- Hünig, S.; Kemmer, M.; Meixner, H.; Sinzger, K.; Wenner, H.; Bauer, T.; Tillmanns, E.; Lux, F.R.; Hollstein, M.; Groß, H.-G.; et al. Multistep reversible redox systems, LXVII 2,5-Disubstituted N,N′-dicyanobenzoquinonediimines (DCNQIs): Charge-transfer complexes and radical-anion salts and copper salts with ligand alloys: Syntheses, structures and conductivities. Eur. J. Inorg. Chem. 1999, 899–916. [Google Scholar] [CrossRef]
- Miyagawa, K.; Kawamoto, A.; Kanoda, K. π-d orbital hybridization in the metallic state of organic-inorganic complexes seen by 13C and 15N NMR at selective sites. Phys. Rev. B 1999, 60, 14847–14851. [Google Scholar] [CrossRef]
- Yamamoto, T.; Tajima, H.; Yamaura, J.-I.; Aonuma, S.; Kato, R. Reflectance spectra and electrical resistivity of (Me2-DCNQI)2Li1−xCux. J. Phys. Soc. Jpn. 1999, 68, 1384–1391. [Google Scholar] [CrossRef]
- Kato, R. Conductive Copper Salts of 2,5-Disubstituted-N,N′-dicyanoquinonediimines (DCNQIs): Structural and physical properties. Bull. Chem. Soc. Jpn. 2000, 73, 515–534. [Google Scholar] [CrossRef]
- Yonemitsu, K.; Kishine, J. Charge gap and dimensional crossovers in quasi-one-dimensional organic conductors. J. Phys. Chem. Solids 2000, 62, 99–104. [Google Scholar] [CrossRef]
- Nishio, Y.; Tamura, M.; Kajita, K.; Aonuma, S.; Sawa, H.; Kato, R.; Kobayashi, H. Thermodynamic study of (DMe-DCNQI)2Cu system—Mechanism of reentrant metal-insulator transition–. J. Phys. Soc. Jpn. 2000, 69, 1414–1422. [Google Scholar] [CrossRef] [Green Version]
- Pinterić, M.; Vuletić, T.; Tomić, S.; von Schütz, J.U. Complex low-frequency dielectric relaxation of the charge-density wave state in the (2,5(OCH3)2DCNQI)2Li. Eur. Phys. J. B 2001, 22, 335–341. [Google Scholar] [CrossRef]
- Hünig, S.; Herberth, E. N,N′-Dicyanoquinone Diimines (DCNQIs): Versatile acceptors for organic conductors. Chem. Rev. 2004, 104, 5535–5563. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogata, M. Effects of charge ordering on the spin degrees of freedom in one-dimensional extended Hubbard model. J. Phys. Soc. Jpn. 2005, 3283–3287. [Google Scholar] [CrossRef]
- Kanoda, K. Metal-insulator transition in κ-(ET)2X and (DCNQI)2M: Two contrasting manifestation of electron correlation. J. Phys. Soc. Jpn. 2006, 75, 051007. [Google Scholar] [CrossRef]
- Takahashi, T.; Nogami, Y.; Yakushi, K. Charge ordering in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051008. [Google Scholar] [CrossRef]
- Shinohara, Y.; Kazama, S.; Mizoguchi, K.; Hiraoka, M.; Sakamoto, H.; Masubuchi, S.; Kato, R.; Hiraki, K.; Takahashi, T. Spin density distribution and electronic states in (DMe-DCNQI)2M (M = Li,Ag,Cu) from high-resolution solid state NMR. Phys. Rev. B 2007, 76, 35128. [Google Scholar] [CrossRef]
- Miyasaka, T.; Watanabe, T.; Fujishima, A.; Honda, K. Light energy conversion with chlorophyll monolayer electrodes. In vitro electrochemical simulation of photosynthetic primary processes. J. Am. Chem. Soc. 1978, 100, 6657–6665. [Google Scholar] [CrossRef]
- Miyasaka, T.; Watanabe, T.; Fujishima, A.; Honda, K. Highly efficient quantum conversion at chlorophyll a-lecithin mixed monolayer coated electrodes. Nature 1979, 277, 638–640. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Wu, X.L.; Wang, X.H.; Yang, D.L.; Zhu, D.B. Conducting Langmuir-Blodgett films based on unsymmetrical alkylthiotetrathiafulvalene and alkylammonium-metal (dmit)2 complexes. Synth. Met. 1991, 42, 1529–1533. [Google Scholar] [CrossRef]
- Zhu, D.; Yang, C.; Liu, Y.; Xu, Y. Syntheses and Langmuir-Blodgett film formation of donor-acceptor molecules. Thin Solid Film 1992, 210–211, 205–207. [Google Scholar] [CrossRef]
- Miyasaka, T.; Koyama, K.; Itoh, I. Quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science 1992, 255, 342–344. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M. Conducting tin halides with a layered organic-based perovskite structure. Nature 1994, 369, 467–469. [Google Scholar] [CrossRef]
- Koyama, K.; Yamaguchi, N.; Miyasaka, T. Antibody-mediated bacteriorhodopsin orientation for molecular device architectures. Science 1994, 265, 762–765. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Zhu, D.; Wada, T.; Sasabe, H.; Liu, L.; Wang, W. Langmuir-Blodgett films of an asymmetrically substituted metal-free phthalocyanine and the second-order non-linear optical properties. Thin Solid Films 1994, 244, 943–946. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Wang, S.; Feild, C.A.; Chess, C.A.; Guloy, A.M. Conducting layered organic-inorganic halides containing <110>-oriented perovskite sheets. Science 1995, 267, 1473–1476. [Google Scholar] [CrossRef]
- Mitzi, D.B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 1996, 8, 791–800. [Google Scholar] [CrossRef]
- Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 1997, 276, 1395–1397. [Google Scholar] [CrossRef] [Green Version]
- Kagan, C.R.; Mitzi, D.B.; Dimitrakopoulos, C.D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 1999, 286, 945–947. [Google Scholar] [CrossRef]
- Otsubo, T.; Aso, Y.; Takimiya, K. Functional oligothiophenes as advanced molecular electronic materials. J. Mater. Chem. 2002, 12, 2565–2575. [Google Scholar] [CrossRef]
- Chen, J.; Law, C.C.W.; Lam, J.W.Y.; Dong, Y.; Lo, S.M.F.; Williams, I.D.; Zhu, D.; Tang, B.Z. Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-subsituted 2,3,4,5-tetraphenylsiloles. Chem. Mater. 2003, 15, 1535–1546. [Google Scholar] [CrossRef]
- Yu, G.; Yin, S.; Liu, Y.; Shuai, Z.; Zhu, D. Structures, electronic states, and electroluminescent properties of a Zinc(II) 2-(2-hydroxyphenyl)benzothiazolate complex. J. Am. Chem. Soc. 2003, 125, 14816–14824. [Google Scholar] [CrossRef] [PubMed]
- Rovira, C. Bis(ethylenedithio)tetrathiafulvalene (BET-TTF) and related dissymmetrical electron donors: From the molecule to functional molecular materials and devices (OFETs). Chem. Rev. 2004, 104, 5289–5317. [Google Scholar] [CrossRef]
- Mas-Torrent, M.; Hadley, P.; Bromly, S.T.; Ribas, X.; Tarrés, J.; Mas, M.; Molins, E.; Veciana, J.; Rovira, C. Correlation between crystal structure and mobility in organic filed-effect transistors based on single crystals of tetrathiafulvalene derivatives. J. Am. Chem. Soc. 2004, 126, 8546–8553. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Adachi, C. Development of highly efficient thermally activated delayed fluorescent porphyrins and its application to the polymer OLEDs. In Proceedings of the Frontiers in Optics 2005, Tuscon, AZ, USA, 16–21 October 2005; OSA Publishing: Washington, DC, USA, 2005. [Google Scholar]
- Sun, Y.; Liu, Y.; Zhu, D. Advances in organic filed-effect transistors. J. Mater. Chem. 2005, 15, 53–65. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hasegawa, J.; Abe, Y.; Tokura, Y.; Nishimura, K.; Saito, G. Tuning of electron injections for n-type organic transistor based on charge-transfer compounds. Appl. Phys. Lett. 2005, 86, 063504. [Google Scholar] [CrossRef]
- Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu, Y.; Zhu, D. Low threshold voltage transistors based on individual single-crystalline submicrometer-sized ribbons of copper phthalocyanine. Adv. Mater. 2006, 18, 65–68. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hasegawa, T.; Abe, Y.; Tokura, Y.; Saito, G. Organic metal electrodes for controlled p- and n-type carrier injections in organic field-effect transistors. Appl. Phys. Lett. 2006, 88, 073504. [Google Scholar] [CrossRef]
- Takahashi, Y.; Hasegawa, T.; Horiuchi, S.; Kumai, R.; Tokura, Y.; Saito, G. High mobility organic field-effect transistor based on hexamethylenetetrathiafulvalene with organic metal electrodes. Chem. Mater. 2007, 19, 6382–6384. [Google Scholar] [CrossRef]
- Takimiya, K.; Kunugi, Y.; Otsubo, T. Development of new semiconducting materials for durable high-performance air-stable organic field-effect transistors. Chem. Lett. 2007, 36, 578–583. [Google Scholar] [CrossRef]
- Torrent, M.-M.; Rovira, C. Novel small molecules for organic field-effect transistors: Towards processability and high performances. Chem. Soc. Rev. 2008, 37, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- Haas, S.; Takahashi, Y.; Takimiya, K.; Hasegawa, T. High-performance dinaphtho-thieno-thiophene single crystal field-effect transistors. Appl. Phys. Lett. 2009, 95, 022111. [Google Scholar] [CrossRef]
- Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light-emitting diodes—A novel mechanism for electroluminescence. Adv. Mater. 2009, 21, 4802–4806. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Zhu, D. Conjugated polymers for high-efficiency organic photovoltaics. Polym. Chem. 2010, 1, 409–419. [Google Scholar] [CrossRef]
- Takahashi, Y.; Obara, R.; Lin, Z.-Z.; Takahashi, Y.; Naito, T.; Inabe, T.; Ishibashi, S.; Terakura, K. Charge-transport in tin-iodide perovskite CH3NH3SnI3: Origin of high conductivity. Dalton Trans. 2011, 40, 5563–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mas-Torrent, M.; Rovira, C. Role of molecular order and solid-state structure in organic filed-effect transistors. Chem. Rev. 2011, 111, 4833–4856. [Google Scholar] [CrossRef]
- Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Thienoacene-based organic semiconductors. Adv. Mater. 2011, 23, 4347–4370. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 2011, 98, 083302. [Google Scholar] [CrossRef]
- Lee, M.M.; Teuscher, J.; Miyasaka, T.; Murakami, T.N.; Snaith, H.J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647. [Google Scholar] [CrossRef] [Green Version]
- Mas-Torrent, M.; Crivillers, N.; Rovira, C.; Veciana, J. Attaching persistent organic free radicals to surfaces: How and why. Chem. Rev. 2012, 112, 2506–2527. [Google Scholar] [CrossRef]
- Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef] [PubMed]
- Inatomi, Y.; Hojo, N.; Yamamoto, T.; Watanabe, S.-I.; Misaki, Y. Construction of rechargeable batteries using multifused tetrathiafulvalene systems as cathode materials. ChemPlusChem 2012, 77, 973–976. [Google Scholar] [CrossRef]
- Youn Lee, S.; Yasuda, T.; Nomura, H.; Adachi, C. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor-acceptor hybrid molecules. Appl. Phys. Lett. 2012, 101, 093306. [Google Scholar] [CrossRef]
- Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure. Chem. Commun. 2012, 48, 9580–9582. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 2012, 134, 14706–14709. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C. Efficient green thermally activated delayed fluorescence (TADF) from a phenoxazine–triphenyltriazine (PXZ–TRZ) derivative. Chem. Commun. 2012, 48, 11392–11394. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Hasegawa, H.; Takahashi, Y.; Inabe, T. Hall mobility in tin iodide perovskite CH3NH3SnI3: Evidence for a doped semiconductor. J. Solid State Chem. 2013, 205, 39–43. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Y.; Schuettfort, T.; Di, C.; Gao, X.; McNeil, C.R.; Thomsen, L.; Mannsfeld, S.C.B.; Yuan, W.; Sirringhaus, H.; et al. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2 V−1 s−1. J. Am. Chem. Soc. 2013, 135, 2338–2349. [Google Scholar] [CrossRef] [PubMed]
- Takimiya, K.; Nakano, M.; Kang, M.J.; Miyazaki, E.; Osaka, I. Thienannulation: Efficient synthesis of π-extended thienoacenes applicable to organic semiconductors. Eur. J. Org. Chem. 2013, 217–227. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nat. Photonics 2014, 8, 326–332. [Google Scholar] [CrossRef]
- Kato, M.; Senoo, K.-I.; Yao, M.; Misaki, Y. A pentakis-fused tetrathiafulvalene system extended by cyclohexene-1,4- diylidenes: A new positive electrode material for rechargeable batteries utilizing ten electron redox. J. Mater. Chem. A 2014, 2, 6747–6754. [Google Scholar] [CrossRef]
- Takimiya, K.; Osaka, I.; Nakano, M. π-building blocks for organic electronics: Revaluation of “inductive” and “resonance” effects of π-electron deficient units. Chem. Mater. 2014, 26, 587–593. [Google Scholar] [CrossRef]
- Saiki, T.; Mori, S.; Ohara, K.; Naito, T. Capacitor-like behavior of molecular crystal β-DiCC[Ni(dmit)2]. Chem. Lett. 2014, 43, 1119–1121. [Google Scholar] [CrossRef]
- Miyasaka, T. Perovskite photovoltaics: Rare functions of organo lead halide in solar cells and optoelectronic devices. Chem. Lett. 2015, 44, 720–729. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Sheng, P.; Tu, Z.; Zhang, F.; Wang, J.; Geng, H.; Zou, Y.; Di, C.-A.; Yi, Y.; Sun, Y.; et al. A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behavior. Nat. Commun. 2015, 6, 7408. [Google Scholar] [CrossRef] [Green Version]
- Osaka, I.; Takimiya, K. Backbone orientation in semiconducting polymers. Polymer 2015, 59, A1–A15. [Google Scholar] [CrossRef]
- Takimiya, K.; Nakano, M.; Sugino, H.; Osaka, I. Design and elaboration of organic molecules for high filed-effect-mobility semiconductors. Synth. Met. 2016, 217, 68–78. [Google Scholar] [CrossRef]
- Mori, T. Principles that govern electronic transport in organic conductors and transistors. Bull. Chem. Soc. Jpn. 2016, 89, 973–986. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.Y.; Zysman-Colman, E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv. Mater. 2017, 29, 1605444. [Google Scholar] [CrossRef] [Green Version]
- Correa-Baena, J.-P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science 2017, 358, 739–744. [Google Scholar] [CrossRef] [Green Version]
- Nakano, M.; Takimiya, K. Sodium-sulfide promoted thiophene-annulations: Powerful tools for elaborating organic semiconducting materials. Chem. Mater. 2017, 29, 256–264. [Google Scholar] [CrossRef]
- Osaka, I.; Takimiya, K. Naphthobischalcogenadiazole conjugated polymers: Emerging materials for organic electronics. Adv. Mat. 2017, 29, 1605218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tian, Q.-S.; Zhang, Y.-L.; Tang, X.; Liao, L.-S. High-efficiency organic light-emitting diodes with exciplex hosts. J. Mater. Chem. C 2019, 7, 11329–11360. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Zhang, H.; Liu, Z.; Zhao, B.; Li, W. The application of charge transfer host based exciplex and thermally activated delayed fluorescence materials in organic light-emitting diodes. Org. Elec. 2019, 66, 227–241. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Zhang, B.; Xie, Z.; Wong, W.-Y. Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives. Mater. Sci. Eng. R 2020, 140, 100547. [Google Scholar] [CrossRef]
- Kim, M.; Ryu, S.U.; Park, S.A.; Choi, K.; Kim, T.; Chung, D.; Park, T. Donor-acceptor-conjugated polymer for high-performance organic field-effect transistors: A progress report. Adv. Func. Mater. 2020, 30, 1904545. [Google Scholar] [CrossRef]
- Schmidbaur, H.; Raubenheimer, H.G. Excimer and exciplex formation in gold(I) complexes preconditioned by aurophilic interactions. Angew. Chem. Int. Ed. Engl. 2020, 59, 14748–14771. [Google Scholar] [CrossRef]
- Mallah, T.; Hollis, C.; Bott, S.; Kurmoo, M.; Day, P.; Allan, M.; Friend, R.H. Crystal structures and physical properties of bis(ethylenedithio)-tetrathiafulvalene charge-transfer salts with FeX4− (X = Cl or Br) anions. J. Chem. Soc. Dalton Trans. 1990, 859–865. [Google Scholar] [CrossRef]
- Day, P.; Kurmoo, M.; Mallah, T.; Marsden, I.R.; Friend, R.H.; Pratt, F.L.; Hayes, W.; Chasseau, D.; Gaultier, J.; Bravic, G.; et al. Structure and properties of tris[bis(ethylenedithio)tetrathiafulvalenium]tetrachlorocopper(II) hydrate, (BEDT-TTF)3CuCl4·H2O: First evidence for coexistence of localized and conduction electrons in a metallic charge-transfer salt. J. Am. Chem. Soc. 1992, 114, 10722–10729. [Google Scholar] [CrossRef]
- Gama, V.; Henriques, R.T.; Bonfait, G.; Almeida, M.; Meetsma, A.; van Smaalen, S.; de Boer, J.L. (Perylene)Co(mnt)2(CH2Cl2)0.5: A mixed molecular and polymeric conductor. J. Am. Chem. Soc. 1992, 114, 1986–1989. [Google Scholar] [CrossRef]
- Gama, V.; Henriques, R.; Bonfait, G.; Pereira, L.; Waerenborgh, J.C.; Santos, I.; Teresa Duarte, M.; Cabral, J.; Almeida, M. Low-dimensional molecular metals (Per)2M(mnt)2 (M = Fe and Co). Inorg. Chem. 1992, 31, 2598–2604. [Google Scholar] [CrossRef]
- Gómez-García, C.J.; Ouahab, L.; Giménez-Saiz, C.; Triki, S.; Coronado, E.; Delhaés, P. Coexistence of mobile and localized electrons in bis(ethylene)dithiotetrathiafulvalene (BEDT-TTF) radical salts with paramagnetic polyoxometalates: Synthesis and physical properties of (BEDT-TTF)8[CoW12O40]·5.5H2O. Angew. Chem. Int. Ed. Engl. 1994, 33, 223–226. [Google Scholar] [CrossRef]
- Graham, A.W.; Kurmoo, M.; Day, P. β″-(bedt-ttf)4[(H2O)Fe(C2O4)3]·PhCN: The first molecular superconductor containing paramagnetic metal ions. J. Chem. Soc. Chem. Commun. 1995, 2061–2062. [Google Scholar] [CrossRef]
- Galán-Mascarós, J.R.; Giménez-Saiz, C.; Triki, S.; Gómez-García, C.J.; Coronado, E.; Ouahab, L. A novel chainlike heteropolyanion formed by Keggin units: Synthesis and structure of (ET)8n[PMnW11O39]n·2nH2O. Angew. Chem. Int. Ed. Engl. 1995, 34, 1460–1462. [Google Scholar] [CrossRef]
- Ouahab, L. Organic/inorganic supramolecular assemblies and synergy between physical properties. Chem. Mater. 1997, 9, 1909–1926. [Google Scholar] [CrossRef]
- Ouahab, L. Coordination complexes in conducting and magnetic molecular materials. Coord. Chem. Rev. 1998, 178–180, 1501–1531. [Google Scholar] [CrossRef]
- Ribera, E.; Rovira, C.; Veciana, J.; Tarrés, J.; Canadell, E.; Rousseau, R.; Molins, E.; Mas, M.; Schoeffel, J.-P.; Pouget, J.-P.; et al. The [(DT-TTF)2M(mnt)2] family of radical ion salts: From a spin ladder to delocalised conduction electrons that interact with localised magnetic moments. Chem. Eur. J. 1999, 5, 2025–2039. [Google Scholar] [CrossRef]
- Coronado, E.; Gómez-García, C.J. Polyoxometalate-based molecular materials. Chem. Rev. 1998, 98, 273–296. [Google Scholar] [CrossRef]
- Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Laukhin, V. Coexistence of ferromagnetism and metallic conductivity in a molecule-based layered compound. Nature 2000, 408, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Inabe, T.; Takeda, K.; Awaga, K.; Akutagawa, T.; Hasegawa, T.; Nakamura, T.; Kakiuchi, T.; Sawa, H.; Yamamoto, T.; et al. β″-(ET)3(MnCl4)(1,1,2-C2H3Cl3) (ET = bis(ethylenedithio)tetrathiafulvalene); a pressure-sensitive new molecular conductor with localized spins. J. Mater. Chem. 2001, 11, 2221–2227. [Google Scholar] [CrossRef]
- Prokhorova, T.G.; Khasanov, S.S.; Zorina, L.V.; Burabov, L.I.; Tkacheva, V.A.; Baskakov, A.A.; Morgunov, R.B.; Gener, M.; Canadell, E.; Shibaeva, R.P.; et al. Molecular metals based on BEDT-TTF radical cation salts with magnetic metal oxalates as counterions: β″-(BEDT-TTF)4A[M(C2O4)3]·DMF (A = NH4+, K+; M = CrIII, FeIII). Adv. Func. Mater. 2003, 13, 403–411. [Google Scholar] [CrossRef]
- Naito, T.; Inabe, T. Molecular hexagonal perovskite: A new type of organic-inorganic hybrid conductor. J. Solid State Chem. 2003, 176, 243–249. [Google Scholar] [CrossRef]
- Coronado, E.; Galán-Mascarós, J.R.; Giménez-Saiz, C.; Gómez-García, C.J.; Martínez-Ferrero, E.; Almeida, M.; Lopes, E.B. Metallic conductivity in a polyoxovanadate radical salt of bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF): Synthesis, structure, and physical characterization of β″-(BEDT-TTF)5[H3V10O28]·4H2O. Adv. Mat. 2004, 16, 324–327. [Google Scholar] [CrossRef]
- Coronado, E.; Day, P. Magnetic molecular conductors. Chem. Rev. 2004, 104, 5419–5448. [Google Scholar] [CrossRef]
- Ouahab, L.; Enoki, T. Multiproperty molecular materials: TTF-based conducting and magnetic molecular materials. Eur. J. Inorg. Chem. 2004, 933–941. [Google Scholar] [CrossRef]
- Naito, T.; Inabe, T. Structural, electrical, and magnetic properties of α-(ET)7[MnCl4]2·(1,1,2-C2H3Cl3)2 (ET = bis(ethylenedithio) tetrathiafulvalene). Bull. Chem. Soc. Jpn. 2004, 77, 1987–1995. [Google Scholar] [CrossRef]
- Coronado, E.; Galán-Mascarós, J.R. Hybrid molecular conductors. J. Mater. Chem. 2005, 15, 66–74. [Google Scholar] [CrossRef]
- Fujiwara, H.; Wada, K.; Hiraoka, T.; Hayashi, T.; Sugimoto, T.; Nakazumi, H.; Yokogawa, K.; Teramura, M.; Yasuzuka, S.; Murata, K.; et al. Stable metallic behavior and antiferromagnetic ordering of Fe(III) d spins in (EDO-TTFVO)2·FeCl4. J. Am. Chem. Soc. 2005, 127, 14166–14167. [Google Scholar] [CrossRef]
- Kushch, N.D.; Kazakova, A.V.; Dubrovskii, A.D.; Shilov, G.V.; Buravov, L.I.; Morgunov, R.B.; Kurganova, E.V.; Tanimoto, Y.; Yagubskii, E.B. Molecular magnetism semiconductors formed by cationic and anionic networks: (ET)2Mn[N(CN)2]3 and (ET)2CuMn[N(CN)2]4. J. Mater. Chem. 2007, 17, 4407–4413. [Google Scholar] [CrossRef]
- Engler, E.M.; Patel, V.V. Anomalous reaction of selenium and carbon disulfide with sodium acetylide. Synthesis of selenium analogs of 1,3-Dithiole-2-thione. J. Org. Chem. 1975, 40, 387–389. [Google Scholar] [CrossRef]
- Engler, E.M.; Patel, V.V. Synthesis of cis- and trans-diselenadithiafulvalene and its highly conducting charge-transfer salt with tetracyano-p-quinodimethane. J. Chem. Soc. Chem. Commun. 1975, 671–672. [Google Scholar] [CrossRef]
- Engler, E.M.; Patel, V.V.; Schumaker, R.R. Triselenathiafulvalenes: A novel sulphur-selenium interchange on trimethyl phosphite coupling of substituted 1,3-diselenole-2-thiones. J. Chem. Soc. Chem. Commun. 1977, 835–836. [Google Scholar] [CrossRef]
- Schumaker, R.R.; Lee, Y.V.; Engler, E.M. New synthetic approaches to tetrathiafulvalene derivatives: Systematic modifications of BEDT-TTF and TMTTF donors. J. Phys. Colloques 1983, 44. [Google Scholar] [CrossRef]
- Lee, V.Y.; Engler, E.M.; Schumaker, R.R.; Parkin, S.S.P. Bis(ethylenediseleno)tetraselenafulvalene (BEDSe-TSeF). J. Chem. Soc. Chem. Commun. 1983, 235–236. [Google Scholar] [CrossRef]
- Bryce, M.R.; Moore, A.J.; Lorcy, D.; Dhindsa, A.S.; Robert, A. Unsymmetrical and highly-conjugated tetrathiafulvalene and selenatrithiafulvalene derivatives: Synthesis and reactions of novel heterocyclic Wittig-Horner reagents. J. Chem. Soc. Chem. Commun. 1983, 470–472. [Google Scholar] [CrossRef]
- Schumaker, R.R.; Lee, V.Y.; Engler, E.M. Noncoupling synthesis of tetrathiafulvalenes. J. Org. Chem. 1984, 49, 564–566. [Google Scholar] [CrossRef]
- Kato, R.; Kobayashi, H.; Kobayashi, A. Synthesis and properties of bis(ethylenedithio)tetraselenafulvalene (BEDT-TSeF) compounds. Synth. Met. 1991, 42, 2093–2096. [Google Scholar] [CrossRef]
- Moore, A.J.; Bryce, M.R. Highly conjugated π-electron donors for organic metals: Synthesis and redox chemistry of new 1,3-dithiole and 1,3-selenathiole derivatives. J. Chem. Soc. Perkin Trans. 1991, 157–168. [Google Scholar] [CrossRef]
- Moore, A.J.; Bryce, M.R.; Ando, D.J.; Hursthouse, M.B. New bis(ethylenedithio)tetrathiafulvalene derivatives with low oxidation potentials. J. Chem. Soc. Chem. Commun. 1991, 320–321. [Google Scholar] [CrossRef]
- Bryce, M.R.; Coffin, M.A.; Hursthouse, M.B.; Karaulov, A.I.; Müllen, K.; Scheich, H. Synthesis, x-ray crystal structure and multistage redox properties of a severely-distorted tetrathiafulvalene donor. Tetrahedron Lett. 1991, 32, 6029–6032. [Google Scholar] [CrossRef]
- Montgomery, L.K.; Burgin, T.; Husting, C.; Tilley, L.; Huffman, J.C.; Carlson, K.D.; Dudek, J.D.; Yaconi, G.A.; Geiser, U.; Williams, J.M. Synthesis and characterization of radical cation salts derived from tetraselenafulvalene and bis(ethylenedithio)tetraselenafulvalene. Mol. Cryst. Liq. Cryst. 1992, 211, 283–288. [Google Scholar] [CrossRef]
- Kobayashi, A.; Udagawa, T.; Tomita, H.; Naito, T.; Kobayashi, H. A New Organic Superconductor, λ-(BEDT-TSF)2GaCl4. Chem. Lett. 1993, 22, 1559–1562. [Google Scholar] [CrossRef]
- Kobayashi, H.; Udagawa, T.; Tomita, H.; Bun, K.; Naito, T.; Kobayashi, A. New organic metals based on BETS compounds with MX4− Anions (BETS = bis(ethylenedithio)tetraselenafulvalene; M = Ga, Fe, In; X = Cl, Br). Chem. Lett. 1993, 22, 2179–2182. [Google Scholar] [CrossRef]
- Goze, F.; Laukhin, V.N.; Brossard, L.; Audouard, A.; Ulmet, J.P.; Askenazy, S.; Naito, T.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; et al. Magnetotransport measurements on the λ-phase of the organic conductors (BETS)2MCl4 (M = Ga, Fe). Magnetic-field-restored highly conducting state in λ-(BETS)2FeCl4. EPL 1994, 28, 427–431. [Google Scholar] [CrossRef]
- Kobayashi, H.; Tomita, H.; Naito, T.; Kobayashi, A.; Sakai, F.; Watanabe, T.; Cassoux, P. New BETS superconductors with magnetic anions (BETS = bis(ethylenedithio)tetraselenafulvalene). J. Am. Chem. Soc. 1996, 118, 368–377. [Google Scholar] [CrossRef]
- Kobayashi, H.; Akutsu, H.; Arai, E.; Tanaka, H.; Kobayashi, A. Electric and magnetic properties and phase diagram of a series of organic superconductors λ-BETS2GaXzY4−z [BETS = bis(ethylenedithio)tetraselenafulvalene, X, Y = F, Cl, Br; 0 < z < 2]. Phys. Rev. B 1997, 56, R8526–R8529. [Google Scholar] [CrossRef]
- Courcet, T.; Malfant, I.; Pokhodnia, K.; Cassoux, P. Bis(ethylenedithio)tetraselenafulvalene: Short-cut synthesis, X-ray crystal structure and π-electron density distribution. New J. Chem. 1998, 22, 585–589. [Google Scholar] [CrossRef]
- Brossard, L.; Clerac, L.; Coulon, C.; Tokumoto, M.; Ziman, T.; Petrov, D.K.; Laukhin, D.N.; Naughton, M.J.; Audouard, A.; Goze, F.; et al. Interplay between chains of S = 5/2 localised spins and two-dimensional sheets of organic donors in the synthetically built magnetic multilayer λ-BETS2FeCl4. Eur. Phys. J. B 1998, 1, 439–452. [Google Scholar] [CrossRef]
- Sato, A.; Ojima, E.; Akutsu, H.; Kobayashi, H.; Kobayashi, A.; Cassoux, P. Temperature-composition phase diagram of the organic alloys, λ-BETS2(FexGa1−x)Cl4 with mixed magnetic and non-magnetic anions. Chem. Lett. 1998, 673–674. [Google Scholar] [CrossRef]
- Akutsu, H.; Kato, K.; Arai, E.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; Brossard, L.; Cassoux, P. A coupled metal-insulator and antiferromagnetic transition of λ-BETS2FeCl4 under high-pressure and magnetic field [BETS = bis(ethylenedithio)tetraselenafulvalene]. Solid State Commun. 1998, 105, 485–489. [Google Scholar] [CrossRef]
- Ojima, E.; Fujiwara, H.; Kato, K.; Kobayashi, H.; Tanaka, H.; Kobayashi, A.; Tokumoto, M.; Cassoux, P. Antiferromagnetic organic metal exhibiting superconducting transition, κ-BETS2FeBr4 [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 1999, 121, 5581–5582. [Google Scholar] [CrossRef]
- Tanaka, H.; Adachi, T.; Ojima, E.; Fujiwara, H.; Kato, K.; Kobayashi, H.; Kobayashi, A.; Cassoux, P. Pressure-induced superconducting transition of λ-BETS2FeCl4 with π-d coupled antiferromagnetic insulating ground state at ambient pressure [BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 1999, 121, 11243–11244. [Google Scholar] [CrossRef]
- Otsuka, T.; Kobayashi, A.; Miyamoto, Y.; Kiuchi, J.; Wada, N.; Ojima, E.; Fujiwara, H.; Kobayashi, H. Successive antiferromagnetic and superconducting transitions in an organic metal, κ-BETS2FeCl4. Chem. Lett. 2000, 732–733. [Google Scholar] [CrossRef]
- Balicas, L.; Brooks, J.S.; Storr, K.; Graf, D.; Uji, S.; Shinagawa, H.; Ojima, E.; Fujiwara, H.; Kobayashi, H.; Kobayashi, A.; et al. Schubnikov-de-Haas effect and Yamaji oscillations in the antiferromagnetically ordered organic superconductor κ-(BETS)2FeBr4: A fermiology study. Solid State Commun. 2000, 116, 557–562. [Google Scholar] [CrossRef]
- Mazumdar, S.; Clay, R.T.; Campbell, D.K. Bond-order and charge-density waves in the isotropic interacting two-dimensional quarter-filled and the insulating state proximate to organic superconductivity. Phys. Rev. B Cond. Matter Mater. Phys. 2000, 62, 13400–13425. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Kobayashi, A.; Cassoux, P. BETS as a source of molecular magnetic superconductors (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem. Soc. Rev. 2000, 29, 325–333. [Google Scholar] [CrossRef]
- Hotta, C.; Fukuyama, H. Effects of localized spins in quasi-two dimensional organic conductors. J. Phys. Soc. Jpn. 2000, 69, 2577–2596. [Google Scholar] [CrossRef]
- Otsuka, T.; Kobayashi, A.; Miyamoto, Y.; Kiuchi, J.; Nakamura, S.; Wada, N.; Fujiwara, E.; Fujiwara, H.; Kobayashi, H. Organic antiferromagnetic metals exhibiting superconducting transitions κ-(BETS)2FeX4 (X = Cl, Br): Drastic effect of halogen substitution on the successive phase transitions. J. Solid State Chem. 2001, 159, 407–412. [Google Scholar] [CrossRef]
- Fujiwara, H.; Fujiwara, E.; Nakazawa, Y.; Narymbetov, B.Z.; Kato, K.; Kobayashi, H.; Kobayashi, A.; Tokumoto, M.; Cassoux, P. A novel antiferromagnetic organic superconductor κ-BETS2FeBr4 [where BETS = bis(ethylenedithio)tetraselenafulvalene]. J. Am. Chem. Soc. 2001, 123, 306–314. [Google Scholar] [CrossRef]
- Uji, S.; Shinagawa, H.; Terashima, T.; Yakabae, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi, H. Magnetic-field-induced superconductivity in a two-dimensional organic conductor. Nature 2001, 410, 908–910. [Google Scholar] [CrossRef]
- Balicas, L.; Brooks, J.S.; Storr, K.; Uji, S.; Tokumoto, M.; Tanaka, H.; Kobayashi, H.; Kobayashi, A.; Barzykin, V.; Gor’kov, L.P. Superconductivity in an organic insulator at very high magnetic fields. Phys. Rev. Lett. 2001, 87, 670021–670024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uji, S.; Shinagawa, H.; Terakura, C.; Terashima, T.; Yakabe, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Tanaka, H.; Kobayashi, H. Fermi surface studies in the magnetic-field-induced superconductor λ-BETS2FeCl4. Phys. Rev. B 2001, 64, 024531. [Google Scholar] [CrossRef]
- Takimiya, K.; Jigami, T.; Kawashima, M.; Kodani, M.; Aso, Y.; Otsubo, T. Synthetic procedure for various selenium-containing electron donors of the bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) type. J. Org. Chem. 2002, 67, 4218–4227. [Google Scholar] [CrossRef] [PubMed]
- Uji, S.; Kobayashi, H.; Balicas, L.; Brooks, J.S. Superconductivity in an organic conductor stabilized by a high magnetic field. Adv. Mater. 2002, 14, 243–245. [Google Scholar] [CrossRef]
- Cépas, O.; McKenzie, R.H.; Merino, J. Magnetic-field-induced superconductivity in layered organic molecular crystals with localized magnetic moments. Phys. Rev. B 2002, 65, 100502(R). [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Katsuhara, M. Estimation of the πd-interactions in organic conductors including magnetic anions. J. Phys. Soc. Jpn. 2002, 71, 826–844. [Google Scholar] [CrossRef]
- Uji, S.; Terakura, C.; Terashima, T.; Yakabe, T.; Terai, Y.; Tokumoto, M.; Kobayashi, A.; Sakai, F.; Tanaka, H.; Kobayashi, H. Fermi surface and internal magnetic field of the organic conductors λ-BETS2FexGa1−xCl4. Phys. Rev. B Cond. Mat. Mat. Phys. 2002, 65, 113101. [Google Scholar] [CrossRef]
- Fujiwara, H.; Kobayashi, H.; Fujiwara, E.; Kobayashi, A. An indication of magnetic-field-induced superconductivity in a bifunctional layered organic conductor κ-BETS2FeBr4. J. Am. Chem. Soc. 2002, 124, 6816–6817. [Google Scholar] [CrossRef]
- Shimahara, H. Fulde-Ferrell-Larkin-Ovchinnikov state and field-induced superconductivity in an organic superconductor. J. Phys. Soc. Jpn. 2002, 71, 1644–1647. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tanaka, H.; Fujiwara, H.; Kobayashi, H.; Fujiwara, E.; Kobayashi, A. Dual-action molecular superconductors with magnetic anions. J. Am. Chem. Soc. 2002, 124, 9982–9983. [Google Scholar] [CrossRef]
- Houzet, M.; Buzdin, A.; Bulaevskii, L.; Maley, M. New superconducting phases in field-induced organic superconductor λ-BETS2FeCl4. Phys. Rev. Lett. 2002, 88, 227001. [Google Scholar] [CrossRef] [Green Version]
- Alberola, A.; Coronado, E.; Galán-Mascarós, J.R.; Giménez-Saiz, C.; Gómez-García, C.J. A molecular ferromagnet from the organic donor bis(ethylenedithio)tetraselenafulvalene and bimetallic oxalate complexes. J. Am. Chem. Soc. 2003, 125, 10774–10775. [Google Scholar] [CrossRef]
- Uji, S.; Terashima, T.; Terakura, C.; Yakabe, T.; Terai, Y.; Yasuzuka, S.; Imanaka, Y.; Tokumoto, M.; Kobayashi, A.; Sakai, F.; et al. Global phase diagram of the magnetic-field-induced superconductors λ-BETS2FexGa1−xCl4. J. Phys. Soc. Jpn. 2003, 72, 369–373. [Google Scholar] [CrossRef]
- Kobayashi, H.; Cui, H.; Kobayashi, A. Organic metals and superconductors based on BETS (BETS = bis(ethylenedithio)tetraselenafulvalene). Chem. Rev. 2004, 104, 5265–5288. [Google Scholar] [CrossRef] [PubMed]
- Pilia, L.; Malfant, I.; de Caro, D.; Senocq, F.; Zwick, A.; Valade, L. Conductive thin films of θ-BETS4[Fe(CN)5NO] on silicon electrodes—New perspectives on charge transfer salts. New J. Chem. 2004, 28, 52–55. [Google Scholar] [CrossRef]
- Konoike, T.; Uji, S.; Terashima, T.; Nishimura, M.; Yasuzuka, S.; Enomoto, K.; Fujiwara, H.; Zhang, B.; Kobayashi, H. Magnetic-field-induced superconductivity in the antiferromagnetic organic superconductor κ-(BETS)2FeBr4. Phys. Rev. B 2004, 70, 094514. [Google Scholar] [CrossRef]
- Fujiwara, H.; Kobayashi, H. Development of an antiferromagnetic organic superconductor κ-(BETS)2FeBr4. Bull. Chem. Soc. Jpn. 2005, 78, 1181–1196. [Google Scholar] [CrossRef]
- Powell, B.J.; McKenzie, R.H. Half-filled layers organic superconductors and the resonating-valence-bond theory of the Hubbard-Heisenberg model. Phys. Rev. Lett. 2005, 94, 047004. [Google Scholar] [CrossRef] [Green Version]
- Uji, S.; Brooks, J.S. Magnetic-field-induced superconductivity in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051014. [Google Scholar] [CrossRef]
- Uji, S.; Terashima, T.; Nishimura, M.; Takahide, Y.; Konoike, T.; Enomoto, K.; Cui, H.; Kobayashi, H.; Kobayashi, A.; Tanaka, H.; et al. Vortex dynamics and the Fulde-Ferrell-Larkin-Ovchinnikov state in a magnetic-field-induced organic superconductor. Phys. Rev. Lett. 2006, 97, 157001. [Google Scholar] [CrossRef]
- Powell, B.J.; McKenzie, R.H. Strong electronic correlations in superconducting organic charge transfer salts. J. Phys. Condens. Matter 2006, 18, R827–R866. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Zhang, Y.; Takahashi, K.; Okano, Y.; Cui, H.; Kobayashi, H.; Inoue, K.; Kurmoo, M.; Pratt, F.L.; et al. Hybrid organic-inorganic conductor with a magnetic chain anion: κ-BETS2[FeIII(C2O4)Cl2] [BETS = bis(ethyleneditho)tetraselenafulvalene]. Inorg. Chem. 2006, 45, 3275–3280. [Google Scholar] [CrossRef] [PubMed]
- Hiraki, K.-I.; Mayaffre, H.; Horvatić, M.; Berthier, C.; Uji, S.; Yamaguchi, T.; Tanaka, H.; Kobayashi, A.; Kobayashi, H.; Takahashi, T. 77Se NMR evidence for the Jaccarino-Peter mechanism in the field induced superconductor, λ-BETS2FeCl4. J. Phys. Soc. Jpn. 2007, 76, 124708. [Google Scholar] [CrossRef] [Green Version]
- Kushch, N.D.; Yagubskii, E.B.; Kartsovnik, M.V.; Buravov, N.I.; Dubrovskii, A.D.; Chekhlov, A.N.; Biberacher, W. π-donor BETS based bifunctional superconductorwith polymeric dicyanamidomanganate(II) anion layer:κ-BETS2Mn[N(CN)2]3. J. Am. Chem. Soc. 2008, 130, 7238–7240. [Google Scholar] [CrossRef] [PubMed]
- Coronado, E.; Curreli, S.; Gimenez-Saiz, C.; Gómez-García, C.J.; Alberola, A.; Canadell, E. Molecular conductors based on the mixed-valence polyoxometallates [SMo12O4O]n− (n = 3 and 4) and the organic donors bis(ethylenedithio)tetrathiafulvalene and bis(ethylenedithio)tetraselenafulvalene. Inorg. Chem. 2009, 48, 11314–11324. [Google Scholar] [CrossRef] [PubMed]
- Waerenborgh, J.C.; Rabaça, S.; Almeida, M.; Lopes, E.B.; Kobayashi, A.; Zhou, B.; Brooks, J.S. Mössbauer spectroscopy and magnetic transition of λ-BETS2FeCl4. Phys. Rev. B 2010, 81, 060413(R). [Google Scholar] [CrossRef] [Green Version]
- Zverev, V.N.; Kartsovnik, M.V.; Biberacher, W.; Khasanov, S.S.; Shibaeva, R.P.; Ouahab, L.; Toupet, L.; Kushch, N.D.; Yagubskii, E.B.; Canadell, E. Temperature-pressure phase diagram and electronic properties of the organic metal κ-BETS2Mn[N(CN)2]3. Phys. Rev. B 2010, 82, 155123. [Google Scholar] [CrossRef] [Green Version]
- Vyaselev, O.M.; Kartsovnik, M.V.; Biberacher, W.; Zorina, L.V.; Kushch, N.D.; Yagubskii, E.B. Magnetic transformations in the organic conductor κ-(BETS)2Mn[N(CN)2]3 at the metal-insulator transition. Phys. Rev. B 2011, 83, 094425. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Kobayashi, A.; Tajima, H. Studies on molecular conductors: From organic semiconductors to molecular metals and superconductors. Chem. Asian J. 2011, 6, 1688–1704. [Google Scholar] [CrossRef]
- Naito, T.; Matsuo, S.; Inabe, T.; Toda, Y. Carrier dynamics in a series of organic magnetic superconductors. J. Phys. Chem. C 2012, 116, 2588–2593. [Google Scholar] [CrossRef] [Green Version]
- Akiba, H.; Shimada, K.; Tajima, N.; Kajita, K.; Nishio, Y. Paramagnetic metal-antiferromagnetic insulator transition in π-d system λ-BETS2FeCl4, BETS = bis(ethylenedithio)tetraselenafulvalene. Crystals 2012, 2, 984–995. [Google Scholar] [CrossRef]
- Uji, S.; Kodama, K.; Sugii, K.; Terashima, T.; Takahide, Y.; Kurita, N.; Tsuchiya, S.; Kimata, M.; Kobayashi, A.; Zhou, B.; et al. Magnetic torque studies on FFLO phase in magnetic-field-induced superconductor λ-BETS2FeCl4. J. Phys. Soc. Jpn. 2012, 85, 174530. [Google Scholar] [CrossRef]
- Uji, S.; Kodama, K.; Sugii, K.; Terashima, T.; Yamaguchi, T.; Kurita, N.; Tsuchiya, S.; Kimata, M.; Konoike, T.; Kobayashi, A.; et al. Orbital effect on FFLO phase and energy dissipation due to vortex dynamics in magnetic-field-induced superconductor λ-BETS2FeCl4. J. Phys. Soc. Jpn. 2013, 82, 034715. [Google Scholar] [CrossRef]
- Lyubovskaya, R.; Zhilyaeva, E.; Shilov, G.; Audouard, A.; Vignolles, D.; Canadell, E.; Pesotskii, S.; Lyubovskii, R. Dual-layered quasi-two-dimensional organic conductors with presumable incoherent electron transport. Eur. J. Inorg. Chem. 2014, 3820–3836. [Google Scholar] [CrossRef]
- Kushch, N.D.; Buravov, L.I.; Kushch, P.P.; Shilov, G.V.; Yamochi, H.; Ishikawa, M.; Otsuka, A.; Shakin, A.A.; Maximova, O.V.; Volkova, O.S.; et al. Multifunctional compound combining conductivity and single-molecule magnetism in the same temperature range. Inorg. Chem. 2018, 57, 2386–2389. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, S.; Fukuchi, S.; Akutsu, H.; Kawamoto, A.; Nakazawa, Y. Magnetic and electronic properties of π-d interacting molecular magnetic superconductor κ-(BETS)2FeX4 (X = Cl, Br) studied by angle-resolved heat capacity measurements. Crystals 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Ramazashvili, R.; Grigoriev, P.D.; Helm, T.; Kollmannsberger, F.; Kunz, M.; Biberacher, W.; Kampert, E.; Fujiwara, H.; Erb, A.; Wosnitza, J.; et al. Experimental evidence for Zeeman spin-orbit coupling in layered antiferromagnetic conductors. Npj. Quantum Mater. 2021, 6, 11. [Google Scholar] [CrossRef]
- Naito, T.; Kakizaki, A.; Wakeshima, M.; Hinatsu, Y.; Inabe, T. Photochemical modification of magnetic properties in organic low-dimensional conductors. J. Solid State Chem. 2009, 182, 2733–2742. [Google Scholar] [CrossRef] [Green Version]
- Naito, T. Development of control method of conduction and magnetism in molecular crystals. Bull. Chem. Soc. Jpn. 2017, 90, 89–136. [Google Scholar] [CrossRef] [Green Version]
- Coniglio, W.A.; Winter, L.E.; Cho, K.; Agosta, C.C.; Fravel, B.; Montgomery, L.K. Superconducting phase diagram and FFLO signature in λ-BETS2GaCl4 from rf penetration depth measurements. Phys. Rev. B 2011, 83, 224507. [Google Scholar] [CrossRef] [Green Version]
- Agosta, C.C.; Jin, J.; Coniglio, W.A.; Smith, B.E.; Cho, K.; Stroe, I.; Martin, C.; Tozer, S.W.; Murphy, T.P.; Palm, E.C.; et al. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: Strong evidence of a FFLO state. Phys. Rev. B 2012, 85, 214514. [Google Scholar] [CrossRef] [Green Version]
- Koutroulakis, G.; Kühne, H.; Schlueter, J.A.; Wosnitza, J.; Brown, S.E. Microscopic study of the Fulde-Ferrell-Larkin-Ovchinnikov state in an all-organic superconductor. Phys. Rev. Lett. 2016, 116, 067003. [Google Scholar] [CrossRef] [PubMed]
- Uji, S.; Iida, Y.; Sugiura, S.; Isono, T.; Sugii, K.; Kikugawa, N.; Terashima, T.; Yasuzuka, S.; Akutsu, H.; Nakazawa, Y.; et al. Ferrell-Larkin-Ovchinnikov superconductivity in the layered organic superconductor β″-(BEDT-TTF)4[(H3O)Ga(C2O4)3]C6H5NO2. Phys. Rev. B 2018, 97, 144505. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, H.; Yamada, J.-I.; Nakasuji, S.; Turner, S.S. A novel BEDT-TTF-based purely organic magnetic conductor, α-(BEDT-TTF)2(TEMPO-N(CH3)COCH2SO3)·3H2O. Solid State Commun. 2006, 140, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, H.; Ohnishi, R.; Yamada, J.-I.; Nakasuji, S.; Turner, S.S. Novel bis(ethylenedithio)tetrathiafulvalene-based organic conductor with 1,1′-ferrocenedisulfonate. Inorg. Chem. 2007, 46, 8472–8474. [Google Scholar] [CrossRef]
- Akutsu, H.; Yamashita, S.; Yamada, J.-I.; Nakasuji, S.; Hosokoshi, Y.; Turner, S.S. A purely organic paramagnetic metal, κ-β″-(BEDT-TTF)2(PO-CONHC2H4SO3), where PO = 2,2,5,5-tetramethyl-3-pyrrolin-1-oxyl free radical. Chem. Mater. 2011, 23, 762–764. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, H.; Yamada, J.-I.; Nakasuji, S. New BEDT-TTF-based organic conductor including an organic anion derived from the TEMPO radical, α-(BEDT-TTF)3(TEMPO-NHCOCH2SO3)2·6H2O. Chem. Lett. 2003, 32, 1118–1119. [Google Scholar] [CrossRef]
- Blanchard, P.; Boubekeur, K.; Sallé, M.; Duguay, G.; Jubault, M.; Gorgues, A.; Martin, J.D.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; et al. A construction principle of the κ-phase based on the efficient (O–H)donor···Oanion structural functionality: The examples of κ-(EDT-TTF(CH2OH))2X (X = ClO4− and ReO4−). Adv. Mater. 1992, 4, 579–581. [Google Scholar] [CrossRef]
- Pénicaud, A.; Boubekeur, K.; Batail, P.; Canadell, E.; Auban-Senzier, P.; Jérome, D. Hydrogen-bond tuning of macroscopic transport properties from the neutral molecular component site along the series of metallic organic-inorganic solvates (BEDT-TTF)4Re6Se5Cl9[guest], [guest = DMF, THF, dioxane]. J. Am. Chem. Soc. 1993, 115, 4101–4112. [Google Scholar] [CrossRef]
- Imakubo, T.; Sawa, H.; Kato, R. Synthesis and crystal structure of the molecular metal based on iodine-bonded π-donor, (IEDT)[Pd(dmit)2]. J. Chem. Soc. Chem. Commun. 1995, 1097–1098. [Google Scholar] [CrossRef]
- Imakubo, T.; Sawa, H.; Kato, R. Novel molecular conductors, (DIETS)4M(CN)4 (M = Ni, Pd, Pt): Highly reticulated donor⋯anion contacts by –I⋯NC– interaction. J. Chem. Soc. Chem. Commun. 1995, 1667–1668. [Google Scholar] [CrossRef]
- Naito, T.; Kobayashi, N.; Inabe, T. Synthesis of new Ni-complexes with a chalcogen donor ligand and cyano groups. Chem. Lett. 1998, 27, 723–724. [Google Scholar] [CrossRef]
- Yamamoto, H.M.; Yamaura, J.-I.; Kato, R. Multicomponent molecular conductors with supramolecular assembly: Iodine-containing neutral molecules as building blocks. J. Am. Chem. Soc. 1998, 120, 5905–5913. [Google Scholar] [CrossRef]
- Heuzé, K.; Fourmigué, M.; Batail, P.; Canadell, E.; Auban-Senzier, P. Directing the structures and collective electronic properties of organic conductors: The interplay of π-overlap interactions and hydrogen bonds. Chem. Eur. J. 1999, 5, 2971–2976. [Google Scholar] [CrossRef]
- Dautel, O.J.; Fourmigué, M. Fluorinated tetrathiafulvalenes with preserved electron-donor properties and segregated fluorous bilayer structures based on F···F nonbonded interactions. J. Org. Chem. 2000, 65, 6479–6486. [Google Scholar] [CrossRef] [PubMed]
- Domercq, B.; Devic, T.; Fourmigué, M.; Auban-Senzier, P.; Canadell, E. Hal···Hal interactions in a series of three isostructural salts of halogenated tetrathiafulvalenes. Contribution of the halogen atoms to the HOMO-HOMO overlap interactions. J. Mater. Chem. 2001, 11, 1570–1575. [Google Scholar] [CrossRef]
- Fourmigué, M.; Batail, P. Activation of hydrogen- and halogen-bonding interactions in tetrathiafulvalene-based crystalline molecular conductors. Chem. Rev. 2004, 104, 5379–5418. [Google Scholar] [CrossRef]
- Imakubo, T.; Shirahata, T.; Hervé, K.; Ouahab, L. Supramolecular organic conductors based on diiodo-TTFs and spherical halide ion X− (X = Cl, Br). J. Mater. Chem. 2006, 16, 162–173. [Google Scholar] [CrossRef]
- Imakubo, T.; Shirahata, T.; Kibune, M.; Yoshino, H. Hybrid organic/inorganic supramolecular conductors D2[Au(CN)4] [D = diiodo(ethylenedichalcogeno)tetrachalcogenofulvalene], including a new ambient pressure superconductor. Eur. J. Inorg. Chem. 2007, 4727–4735. [Google Scholar] [CrossRef]
- Réthoré, C.; Madalan, A.; Fourmigué, M.; Canadell, E.; Lopes, E.B.; Almeida, M.; Clérac, R.; Avarvari, N. O⋯S vs. N⋯S intramolecular nonbonded interactions in neutral and radical cation salts of TTF-oxazoline derivatives: Synthesis, theoretical investigations, crystalline structures, and physical properties. New J. Chem. 2007, 31, 1468–1483. [Google Scholar] [CrossRef] [Green Version]
- Fourmigué, M. Halogen bonding in conducting or magnetic molecular materials. In Structure and Bonding; Metrangolo, P., Resnati, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 126, pp. 181–207. [Google Scholar] [CrossRef]
- Fourmigué, M. Halogen bonding: Recent advances. Curr. Opin. Solid State Mater. Sci. 2009, 13, 36–45. [Google Scholar] [CrossRef]
- Lieffrig, J.; Jeannin, O.; Frąckowiak, A.; Olejniczak, I.; Świetlik, R.; Dahaoui, S.; Aubert, E.; Espinosa, E.; Auban-Senzier, P.; Fourmigué, M. Charge-assisted halogen bonding: Donor-acceptor complexes with variable ionicity. Chem. Eur. J. 2013, 19, 14804–14813. [Google Scholar] [CrossRef] [PubMed]
- Brezgunova, M.E.; Lieffrig, J.; Aubert, E.; Dahaoui, S.; Fertey, P.; Lebègue, S.; Ángyán, J.G.; Fourmigué, M.; Espinosa, E. Chalcogen bonding: Experimental and theoretical determinations from electron density analysis. Geometrical preferences driven by electrophilic-nucleophilic interactions. Cryst. Growth Des. 2013, 13, 3283–3289. [Google Scholar] [CrossRef]
- Huynh, H.-T.; Jeannin, O.; Fourmigué, M. Organic selenocyanates as strong and directional chalcogen bond donors for crystal engineering. Chem. Commun. 2017, 53, 8467–8469. [Google Scholar] [CrossRef]
- Coronado, E.; Galán Mascarós, J.R.; Giménez-López, M.C.; Almeida, M.; Waerenborgh, J.C. Spin crossover FeII complexes as templates for bimetallic oxalate-based 3D magnets. Polyhedron 2007, 26, 1838–1844. [Google Scholar] [CrossRef]
- Zhang, G.; Jin, L.; Zhang, R.; Bai, Y.; Zhu, R.; Pang, H. Recent advances in the development of electronically and ionically conductive metal-organic frameworks. Coord. Chem. Rev. 2021, 439, 213915. [Google Scholar] [CrossRef]
- Nohr, R.S.; Kuznesof, P.M.; Kenney, M.E.; Siebenmanu, P.G.; Wynne, K.J. Highly conducting linear stacked polymers: Iodine-doped fluoroaluminum and fluorogallium phthalocyanines. J. Am. Chem. Soc. 1981, 103, 4371–4377. [Google Scholar] [CrossRef]
- Metz, J.; Hanack, M. Synthesis, characterization, and conductivity of (μ-Cyano)(phthalocyaninato)cobalt(III). J. Am. Chem. Soc. 1983, 105, 828–830. [Google Scholar] [CrossRef]
- Dirk, C.W.; Inabe, T.; Schoch, K.F.; Marks, T.J. Cofacial assembly of partially oxidized metallomacrocycles as an approach to controlling lattice architecture in low-dimensional molecular solids. chemical and architectural properties of the “face-to-face” polymers [M(phthalocyaninato)0], where M = Si, Ge, and Sn. J. Am. Chem. Soc. 1983, 105, 1539–1550. [Google Scholar] [CrossRef]
- Hanack, M.; Deger, S.; Lange, A. Bisaxially coordinated macrocyclic transition metal complexes. Coord. Chem. Rev. 1988, 83, 115–136. [Google Scholar] [CrossRef]
- Andre, J.-J.; Holczer, K.; Petit, P.; Riou, M.-T.; Clarisse, C.; Even, R.; Fourmigue, M.; Simon, J. Electrical and magnetic properties of thin films and single crystals of bis(phthalocyaninato)lutetium. Chem. Phys. Lett. 1985, 115, 463–466. [Google Scholar] [CrossRef]
- Kennedy, B.J.; Murray, K.S.; Zwack, P.R.; Homborg, H.; Kalz, W. Spin states in iron(III) phthalocyanines studied by Mössbauer, magnetic susceptibility, and ESR measurements. Inorg. Chem. 1986, 25, 2539–2545. [Google Scholar] [CrossRef]
- Yakushi, K.; Sakuda, M.; Hamada, I.; Kuroda, H.; Kawamoto, A.; Tanaka, J.; Sugano, T.; Kinoshita, M. Preparation, structure and properties of metallic (phthalocyanato)nickel salts. Synth. Met. 1987, 19, 769–774. [Google Scholar] [CrossRef]
- Ogawa, M.Y.; Martinsen, J.; Palmer, S.M.; Stanton, J.L.; Tanaka, J.; Greene, R.L.; Hoffman, B.M.; Ibers, J.A. Cu(pc)I: A molecular metal with a one-dimensional array of local moments embedded in a “Fermi Sea” of charge carriers. J. Am. Chem. Soc. 1987, 109, 1115–1121. [Google Scholar] [CrossRef]
- Inabe, T.; Maruyama, Y. Multi-dimensional stacking structures in phthalocyanine-based electrical conductors, K[Co(phthalocyaninato)(CN)2]2·5CH3CN and Co(phthalocyaninato)(CN)2·2H2O. Bull. Chem. Soc. Jpn. 1990, 63, 2273–2280. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, H.; Naito, T.; Inabe, T.; Akutagawa, T.; Nakamura, T. A highly conducting partially oxidized salt of axially substituted phthalocyanine. Structure and physical properties of TPP[Co(Pc)(CN)2]2 {TPP = tetraphenylphosphonium, [Co(Pc)(CN)2] = dicyano(phthalocyaninate)cobalt(III)}. J. Mater. Chem. 1998, 8, 1567–1570. [Google Scholar] [CrossRef]
- Matsuda, M.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H.; Otsuka, T.; Awaga, K.; Narymbetov, B.; Kobayashi, H. A one-dimensional macrocyclic π-ligand conductor carrying a magnetic center. Structure and electrical, optical and magnetic properties of TPP[Fe(Pc)(CN)2]2 {TPP = tetraphenylphosphonium and [Fe(Pc)(CN)2] = dicyano(phthalocyaninato)iron(III)}. J. Mater. Chem. 2000, 10, 631–636. [Google Scholar] [CrossRef]
- Hanasaki, N.; Tajima, H.; Matsuda, M.; Naito, T.; Inabe, T. Giant negative magnetoresistance in quasi-one-dimensional conductor TPP[Fe(Pc)(CN)2]2: Interplay between local moments and one-dimensional conduction electrons. Phys. Rev. B 2000, 62, 5839–5842. [Google Scholar] [CrossRef]
- Matsuda, M.; Naito, T.; Inabe, T.; Hanasaki, N.; Tajima, H. Structure and electrical and magnetic properties of (PTMA)x[M(Pc)(CN)2] y(solvent) (PTMA = phenyltrimethylammonium and [M(Pc)(CN)2] = dicyano(phthalocyaninato)MIII with M = Co and Fe). Partial oxidation by partial solvent occupation of the cationic site. J. Mater. Chem. 2001, 11, 2493–2497. [Google Scholar] [CrossRef]
- Tajima, H.; Hanasaki, N.; Matsuda, M.; Sakai, F.; Naito, T.; Inabe, T. Magnetoresistance study on TPP[M(Pc)(CN)2]2 (M = Fe, Co, Fe0.30Co0.70) salts. J. Solid State Chem. 2002, 168, 509–513. [Google Scholar] [CrossRef]
- Hanasaki, N.; Matsuda, M.; Tajima, H.; Naito, T.; Inabe, T. Contribution of degenerate molecular orbitals to molecular orbital angular momentum in molecular magnet Fe(Pc)(CN)2. J. Phys. Soc. Jpn. 2003, 72, 3226–3230. [Google Scholar] [CrossRef]
- Inabe, T.; Tajima, H. Phthalocyanines—Versatile components of molecular conductors. Chem. Rev. 2004, 104, 5503–5533. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; Hanasaki, N.; Tajima, H.; Naito, T.; Inabe, T. Anisotropic giant magnetoresistance originating from the π-d interaction in a molecule. J. Phys. Chem. Solids 2004, 65, 749–752. [Google Scholar] [CrossRef]
- Hotta, C.; Ogata, M.; Fukuyama, H. Interaction of the ground state of quarter-filled one-dimensional strongly correlated electronic system with localized spins. Phys. Rev. Lett. 2005, 95, 216402. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Matsuda, M.; Tajima, H.; Ohmichi, E.; Osada, T.; Naito, T.; Inabe, T. Giant negative magnetoresistance reflecting molecular symmetry in dicyano(phthalocyaninato)iron compounds. J. Phys. Soc. Jpn. 2006, 75, 033703. [Google Scholar] [CrossRef]
- Hanasaki, N.; Masuda, K.; Kodama, K.; Matsuda, M.; Tajima, H.; Yamazaki, J.; Takigawa, M.; Yamaura, J.; Ohmichi, E.; Osada, T.; et al. Charge disproportionation in highly one-dimensional molecular conductor TPP[Co(Pc)(CN)2]2]. J. Phys. Soc. Jpn. 2006, 75, 104713. [Google Scholar] [CrossRef]
- Tajima, H.; Yoshida, G.; Matsuda, M.; Nara, K.; Kajita, K.; Nihsio, Y.; Hanasaki, N.; Naito, T.; Inabe, T. Magnetic torque and heat capacity measurements on TPP[Fe(Pc)(CN)2]2. Phys. Rev. B Cond. Matter Mater. Phys. 2008, 78, 064424. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.E.C.; Matsuda, M.; Tajima, H.; Kikuchi, A.; Taketsugu, T.; Hanasaki, N.; Naito, T.; Inabe, T. Variable magnetotransport properties in the TPP[Fe(Pc)L2]2 system (TPP = tetraphenylphosphonium, Pc = phthalocyaninato, L = CN, Cl, and Br). J. Mater. Chem. 2009, 19, 718–723. [Google Scholar] [CrossRef]
- Tajima, H.; Yoshida, G.; Matsuda, M.; Yamaura, J.-I.Y.; Hanasaki, N.; Naito, T.; Inabe, T. Magnetic torque and ac and dc magnetic susceptibility measurements on PTMA0.5[Fe(Pc)(CN)2]CH3CN: Origin of spontaneous magnetization in [Fe(Pc)(CN)2] molecular conductors. Phys. Rev. B Cond. Matter Mater. Phys. 2009, 80, 024424. [Google Scholar] [CrossRef] [Green Version]
- Kimata, M.; Takahide, Y.; Harada, A.; Satsukawa, H.; Hazama, K.; Terashima, T.; Uji, S.; Naito, T.; Inabe, T. Interplay between magnetism and conductivity in the one-dimensional organic conductor TPP[Fe(Pc)(CN)2]2. Phys. Rev. B 2009, 80, 085110. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Yamashita, S.; Naito, T.; Matsuda, M.; Tajima, H.; Hanasaki, N.; Akutagawa, T.; Nakamura, T.; Inabe, T. Nonlinear transport phenomena in highly one-dimensional MIII(Pc)(CN)2 chains with π-d interaction (M = Co and Fe and Pc = phthalocyaninato). J. Phys. Soc. Jpn. 2009, 78, 104709. [Google Scholar] [CrossRef]
- Hotta, C. Interplay of strongly correlated electrons and localized Ising moments in one dimension. Phys. Rev. B 2010, 81, 245104. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, Y.; Seo, H.; Motome, Y. Charge ordering due to π-d coupling in one-dimensional system. Phys. B Cond. Mat. 2010, 405, S317–S320. [Google Scholar] [CrossRef]
- Ishikawa, M.; Asari, T.; Matsuda, M.; Tajima, H.; Hanasaki, N.; Naito, T.; Inabe, T. Giant magnetoresistance response by the π–d interaction in an axially ligated phthalocyanine conductor with two-dimensional π–π stacking structure. J. Mater. Chem. 2010, 20, 4432–4438. [Google Scholar] [CrossRef]
- Hanasaki, N.; Tateishi, T.; Tajima, H.; Kimata, M.; Tokunaga, M.; Matsuda, M.; Kanda, A.; Muralawa, H.; Naito, T.; Inabe, T. Metamagnetic transition and its related magnetocapacitance effect in phthalocyanine-molecular conductor exhibiting giant magnetoresistance. J. Phys. Soc. Jpn. 2013, 82, 094713. [Google Scholar] [CrossRef]
- Torizuka, K.; Tajima, H.; Inoue, M.; Hanasaki, N.; Matsuda, M.; Yu, D.E.C.; Naito, T.; Inabe, T. Magnetic torque experiments on TPP[Fe(Pc)L2]2 (L = Br and Cl): Antiferromagnetic short range ordering of d electrons, antiferromagnetic ordering of π electrons, and the anisotropy energy. J. Phys. Soc. Jpn. 2013, 82, 034719. [Google Scholar] [CrossRef]
- Peierls, R.E. Quantum Theory of Solids; Clarendon Press: Oxford, UK, 1955; pp. 101–114. [Google Scholar]
- Soos, Z.G.; Mazumdar, S. Neutral-ionic interface in organic charge-transfer salts. Phys. Rev. B 1978, 18, 1991–2003. [Google Scholar] [CrossRef]
- Soos, Z.G.; Bondeson, S.R.; Mazumdar, S. Magnetic analog of mott transition. Chem. Phys. Lett. 1979, 65, 331–334. [Google Scholar] [CrossRef]
- Torrance, J.B.; Vazquez, J.E.; Mayerle, J.J.; Lee, V.Y. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 1981, 46, 253–257. [Google Scholar] [CrossRef]
- Torrance, J.B.; Girlando, A.; Mayerle, J.J.; Crowley, J.I.; Lee, V.Y.; Batail, P.; LaPlaca, S.J. Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 1981, 47, 1747–1750. [Google Scholar] [CrossRef]
- Mazumdar, S.; Soos, Z.G. Valence-bond analysis of extended Hubbard models: Charge-transfer excitations of molecular conductors. Phys. Rev. B 1981, 23, 2810–2823. [Google Scholar] [CrossRef]
- Girlando, A.; Marzola, F.; Pecile, C.; Torrance, J.B. Vibrational spectroscopy of mixed stack organic semiconductors: Neutral and ionic phases of tetrathiafulvalene-chloranil (TTF-CA) charge transfer complex. J. Chem. Phys. 1983, 79, 1075–1085. [Google Scholar] [CrossRef]
- Mazumdar, S.; Dixit, S.N. Coulomb effects on one-dimensional Peierls instability: The Peierls-Hubbard model. Phys. Rev. Lett. 1983, 51, 292–295. [Google Scholar] [CrossRef]
- Mazumdar, S.; Bloch, A.N. Systematic trends in short-range coulomb effects among nearly one-dimensional organic conductors. Phys. Rev. Lett. 1983, 50, 207–211. [Google Scholar] [CrossRef]
- Mazumdar, S.; Dixit, S.N.; Bloch, A.N. Correlation effects on charge-density waves in narrow-band one-dimensional conductors. Phys. Rev. B 1984, 30, 4842–4845. [Google Scholar] [CrossRef]
- Dixit, S.N.; Mazumdar, S. Electron-electron interaction effects on Peierls dimerization in a half-filled band. Phys. Rev. B 1984, 29, 1824–1839. [Google Scholar] [CrossRef]
- Painelli, A.; Girlando, A. Electron-molecular vibration (e-mv) coupling in charge-transfer compounds and its consequences on the optical spectra: A theoretical framework. J. Chem. Phys. 1985, 84, 5655–5671. [Google Scholar] [CrossRef]
- Mazumdar, S.; Dixit, S.N. Unified theory of segregated-stack organic charge-transfer solids: Magnetic properties. Phys. Rev. B 1986, 34, 3683–3699. [Google Scholar] [CrossRef]
- Ung, K.C.; Mazumdar, S.; Toussaint, D. Metal-insulator and insulator-insulator transitions in the quarter-filled band organic conductors. Phys. Rev. Lett. 1994, 73, 2603–2606. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, S.; Ramasesha, S.; Clay, R.T.; Campbell, D.K. Theory of coexisting charge- and spin-density waves in (TMTTF)2Br, (TMTSF)2PF6 and α-(BEDT-TTF)2MHg(SCN)4. Phys. Rev. Lett. 1999, 82, 1522–1525. [Google Scholar] [CrossRef] [Green Version]
- Girlando, A.; Masino, M.; Visentini, G.; della Valle, R.G.; Brillante, A.; Venuti, E. Lattice dynamics and electron-phonon coupling in the β-(BEDT-TTF)2I3 organic superconductor. Phys. Rev. B 2000, 62, 14476–14486. [Google Scholar] [CrossRef] [Green Version]
- Moser, J.; Cooper, J.R.; Jérome, D.; Alavi, B.; Brown, S.E.; Bechgaard, K. Hall effect in the normal phase of the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett. 2000, 84, 2674–2677. [Google Scholar] [CrossRef]
- Chow, D.S.; Zamborszky, F.; Alavi, B.; Tantillo, D.J.; Baur, A.; Merlic, C.A.; Brown, S.E. Charge ordering in the TMTTF family of molecular conductors. Phys. Rev. Lett. 2000, 85, 1698–1701. [Google Scholar] [CrossRef] [Green Version]
- Girlando, A.; Masino, M.; Brillante, A.; Della Valle, R.G.; Venuti, E. BEDT-TTF organic superconductors: The role of phonons. Phys. Rev. B 2002, 66, 100507. [Google Scholar] [CrossRef] [Green Version]
- Zamborszky, F.; Yu, W.; Raas, W.; Brown, S.E.; Alavi, B.; Merlic, C.A.; Baur, A. Competition and coexistence of bond and charge orders in (TMTTF)2AsF6. Phys. Rev. B 2002, 66, 081103. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.J.; Brown, S.E.; Clark, W.G.; Strouse, M.J.; Naughton, M.J.; Kang, W.; Chaikin, P.M. Triplet superconductivity in an organic superconductor probed by NMR Knight shift. Phys. Rev. Lett. 2002, 88, 017004. [Google Scholar] [CrossRef] [PubMed]
- Clay, R.T.; Mazumdar, S.; Campbell, D.K. Pattern of charge ordering in quasi-one-dimensional organic charge-transfer solids. Phys. Rev. B 2003, 67, 115121. [Google Scholar] [CrossRef] [Green Version]
- Dressel, M.; Drichko, N. Optical properties of two-dimensional organic conductors: Signatures of charge ordering and correlation effects. Cherm. Rev. 2004, 104, 5689–5715. [Google Scholar] [CrossRef]
- Yu, W.; Zhang, F.; Zamborszky, F.; Alavi, B.; Baur, A.; Merlic, C.A.; Brown, S.E. Electron-lattice coupling and broken symmetries of the molecular salt (TMTTF)2SbF6. Phys. Rev. B 2004, 70, 121101. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Yakushi, K.; Shimizu, Y.; Saito, G. Infrared and Raman study of the charge-ordered state of θ-(ET)2Cu2CN[N(CN)2]2. J. Phys. Soc. Jpn. 2004, 73, 2326–2332. [Google Scholar] [CrossRef]
- Yamamoto, T.; Uruichi, M.; Yamamoto, K.; Yakushi, K.; Kawamoto, A.; Taniguchi, H. Examination of the charge-sensitive vibrational modes in bis(ethylenedithio)tetrathiafulvalene. J. Phys. Chem. B 2005, 109, 15226–15235. [Google Scholar] [CrossRef] [PubMed]
- Bangura, A.F.; Coldea, A.I.; Singleton, J.; Ardavan, A.; Akutsu-Sato, A.; Akutsu, H.; Turner, S.S.; Day, P.; Yamamoto, T.; Yakushi, K. Robust superconducting state in the low-quasiparticle-density organic metals β″-(BEDT-TTF)4[(H3O)M(C2O4)3]Y: Superconductivity due to proximity to a charge-ordered state. Phys. Rev. B 2005, 72, 014543. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.; Merino, J.; Yoshioka, H.; Ogata, M. Theoretical aspects of charge ordering in molecular conductors. J. Phys. Soc. Jpn. 2006, 75, 051009. [Google Scholar] [CrossRef] [Green Version]
- Drichko, N.; Dressel, M.; Kuntscher, C.A.; Pashkin, A.; Greco, A.; Merino, J.; Schlueter, J. Electronic properties of correlated metals in the vicinity of a charge-order transition: Optical spectroscopy of α-(BEDT-TTF)2MHg(SCN)4 (M = NH4, Rb, Tl). Phys. Rev. B 2006, 74, 235121. [Google Scholar] [CrossRef] [Green Version]
- Merino, J.; Greco, A.; Drichko, N.; Dressel, M. Non-Fermi liquid behavior in nearly charge ordered layered metals. Phys. Rev. Lett. 2006, 96, 216402. [Google Scholar] [CrossRef] [Green Version]
- Dressel, M. Ordering phenomena in quasi-one-dimensional organic conductors. Naturwissenschaften 2007, 94, 527–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, M.; Foury-Leylekian, P.; Moradpour, A.; Pouget, J.-P.; Lang, M. Evidence for lattice effects at the charge-ordering transition in (TMTTF)2X. Phys. Rev. Lett. 2008, 101, 216403. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Yamamoto, H.M.; Kato, R.; Uruichi, M.; Yakushi, K.; Akutsu, H.; Sato-Akutsu, A.; Kawamoto, A.; Turner, S.S.; Day, P. Inhomogeneous site charges at the boundary between the insulating, superconducting, and metallic phases of β″-type bis-ethylenedithio-tetrathiafulvalene molecular charge-transfer salts. Phys. Rev. B 2008, 77, 205120. [Google Scholar] [CrossRef] [Green Version]
- Drichko, N.; Kaiser, S.; Sun, Y.; Clauss, C.; Dressel, M.; Mori, H.; Schlueter, J.; Zhyliaeva, E.I.; Torunova, S.A.; Lyubovskaya, R.N. Evidence for charge order in organic superconductors obtained by vibrational spectroscopy. Phys. B Cond. Mat. 2009, 404, 490–493. [Google Scholar] [CrossRef]
- Sawa, H.; Kakiuchi, T. Study of the novel charge ordering state in molecular conducting using synchrotron radiation X-ray diffraction. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 117–134. [Google Scholar]
- Girlando, A. Charge sensitive vibrations and electron-molecular vibration coupling in bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF). J. Phys. Chem. C 2011, 115, 19371–19378. [Google Scholar] [CrossRef]
- Dayal, S.; Clay, R.T.; Li, H.; Mazumdar, S. Paired electron crystal: Order from frustration in the quarter-filled band. Phys. Rev. B 2011, 83, 245106. [Google Scholar] [CrossRef] [Green Version]
- Yoshimi, K.; Seo, H.; Ishibashi, S.; Brown, S.E. Tuning the magnetic dimensionality by charge ordering in the molecular TMTTF salts. Phys. Rev. Lett. 2012, 108, 096402. [Google Scholar] [CrossRef] [Green Version]
- Sedlmeier, K.; Elsässer, S.; Neubauer, D.; Beyer, R.; Wu, D.; Ivek, T.; Tomić, S.; Schlueter, J.A.; Dressel, M. Absence of charge order in the dimerized κ-phase BEDT-TTF salts. Phys. Rev. B 2012, 86, 245103. [Google Scholar] [CrossRef] [Green Version]
- Dressel, M.; Dumm, M.; Knoblauch, T.; Masino, M. Comprehensive optical investigations of charge order in organic chain compounds (TMTTF)2X. Crystals 2012, 2, 528–578. [Google Scholar] [CrossRef] [Green Version]
- Girlando, A.; Masino, M.; Schlueter, J.A.; Drichko, N.; Kaiser, S.; Dressel, M. Charge-order fluctuations and superconductivity in two-dimensional organic metals. Phys. Rev. B 2014, 89, 174503. [Google Scholar] [CrossRef] [Green Version]
- Drichko, N.; Beyer, R.; Rose, E.; Dressel, M.; Schlueter, J.A.; Turunova, S.A.; Zhilyaeva, E.I.; Lyubovskaya, R.N. Metallic state and charge-order metal-insulator transition in the quasi-two-dimensional conductor κ-(BEDT-TTF)2Hg(SCN)2Cl. Phys. Rev. B 2014, 89, 075133. [Google Scholar] [CrossRef]
- Mazumdar, S.; Clay, R.T. The chemical physics of unconventional superconductivity. Int. J. Quant. Chem. 2014, 114, 1053–1059. [Google Scholar] [CrossRef] [Green Version]
- Pustogow, A.; Peterseim, T.; Kolatschek, S.; Engel, L.; Dressel, M. Electronic correlations versus lattice interactions: Interplay of charge and anion orders in (TMTTF)2X. Phys. Rev. B 2016, 94, 195125. [Google Scholar] [CrossRef]
- Masino, M.; Castagnetti, N.; Girlando, A. Phenomenology of the neutral-ionic valence instability in mixed stack charge-transfer crystals. Crystals 2017, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Mazumdar, S. Valence transition model of the pseudogap, charge order, and superconductivity in electron-doped and hole-doped copper oxides. Phys. Rev. B 2018, 98, 205153. [Google Scholar] [CrossRef] [Green Version]
- Clay, R.T.; Mazumdar, S. From charge- and spin-ordering to superconductivity in the organic charge-transfer solids. Phys. Rep. 2019, 788, 1–89. [Google Scholar] [CrossRef] [Green Version]
- Kurmoo, M.; Rosseinsky, M.J.; Day, P.; Auban, P.; Kang, W.; Jérôme, D.; Batail, P. Competition between localisation and superconductivity in (BEDT-TTF)3Cl2.2H2O. Synth. Met. 1988, 27, A425–A431. [Google Scholar] [CrossRef]
- Lang, M.; Toyota, N.; Sasaki, T.; Sato, H. Magnetic penetration depth of κ-(BEDT-TTF)2Cu(NCS)2 strong evidence for conventional cooper pairing. Phys. Rev. Lett. 1992, 69, 1443–1446. [Google Scholar] [CrossRef]
- Lang, M.; Steglich, F.; Toyota, N.; Sasaki, T. Fluctuation effects and mixed-state properties of the layered organic superconductors κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BEDT-TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1994, 49, 15227–15234. [Google Scholar] [CrossRef] [PubMed]
- Pintschovius, L.; Rietschel, H.; Sasaki, T.; Mori, H.; Tanaka, S.; Toyota, N.; Lang, M.; Steglich, F. Observation of superconductivity-induced phonon frequency changes in the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Eur. Phys. Lett. 1997, 37, 627–632. [Google Scholar] [CrossRef]
- Chow, D.S.; Wzietek, P.; Fogliatti, D.; Alavi, B.; Tantillo, D.J.; Merlic, C.A.; Brown, S.E. Singular behavior in the pressure-tuned competition between Spin-Peierls and antiferromagnetic ground states of (TMTTF)2PF6. Phys. Rev. Lett. 1998, 81, 3984–3987. [Google Scholar] [CrossRef]
- Schmalian, J. Pairing due to spin fluctuations in layered organic superconductors. Phys. Rev. Lett. 1998, 81, 4232–4235. [Google Scholar] [CrossRef] [Green Version]
- Kondo, H.; Moriya, T. Spin fluctuation-induced superconductivity in organic compounds. J. Phys. Soc. Jpn. 1998, 67, 3695–3698. [Google Scholar] [CrossRef] [Green Version]
- Kino, H.; Kontani, H. Phase diagram of superconductivity on the anisotropic triangular lattice hubbard model: An effective model of κ-(BEDT-TTF) salts. J. Phys. Soc. Jpn. 1998, 67, 3691–3694. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.; Lang, M.; Steglich, F.; Schlueter, J.; Kini, A.; Geiser, U. Comparative thermal-expansion study of β″-(ET)2SF5CH2CF2SO3 and κ-(ET)2Cu(NCS)2: Uniaxial pressure coefficients of TC and upper critical fields. Phys. Rev. B 2000, 61, 11739–11744. [Google Scholar] [CrossRef]
- Merino, J.; McKenzie, R.H. Superconductivity mediated by charge fluctuations in layered molecular crystals. Phys. Rev. Lett. 2001, 87, 237002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanase, Y.; Jujo, T.; Nomura, T.; Ikeda, H.; Hotta, T.; Yamada, K. Theory of superconductivity in strongly correlated electron systems. Phys. Rep. 2003, 387, 1–149. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, K.; Kanoda, K.; Kawamoto, A. NMR studies on two-dimensional molecular conductors and superconductors: Mott transition in κ-(BEDT-TTF)2X. Chem. Rev. 2004, 104, 5635–5653. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.J.; Brown, S.E.; Yu, W.; Naughton, M.J.; Chaikin, P.M. Coexistence of superconductivity and antiferromagnetism probed by simultaneous nuclear magnetic resonance and electrical transport in (TMTSF)2PF6 system. Phys. Rev. Lett. 2005, 94, 197001. [Google Scholar] [CrossRef] [Green Version]
- Kuroki, K. Pairing symmetry competition in organic superconductors. J. Phys. Soc. Jpn. 2006, 75, 051013. [Google Scholar] [CrossRef] [Green Version]
- Nam, M.-S.; Ardavan, A.; Blundell, S.J.; Schlueter, J.A. Fluctuating superconductivity in organic molecular metals close to the Mott transition. Nature 2007, 449, 584–587. [Google Scholar] [CrossRef]
- Gantmakher, V.F.; Dolgopolov, V.T. Superconductor-insulator quantum phase transition. Phys. Uspekhi 2010, 53, 1–49. [Google Scholar] [CrossRef]
- Dressel, M. Quantum criticality in organic conductors? Fermi liquid versus non-Fermi-liquid behavior. J. Phys. Cond. Mat. 2011, 23, 293201. [Google Scholar] [CrossRef]
- Müller, J. Fluctuation spectroscopy: A new approach for studying low-dimensional molecular metals. ChemPhysChem 2011, 12, 1222–1245. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.A.; Green, E.; Kuhns, P.; Reyes, A.; Brooks, J.; Schlueter, J.; Kato, R.; Yamamoto, H.; Kobayashi, M.; Brown, S.E. Zeeman-driven phase transition within the superconducting state of κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. Lett. 2011, 107, 087002. [Google Scholar] [CrossRef]
- Agosta, C.C. Inhomogeneous superconductivity in organic and related superconductors. Crystals 2018, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Pustogow, A.; Saito, Y.; Rohwer, A.; Schlueter, J.A.; Dressel, M. Coexistence of charge order and superconductivity in β″-(BEDT-TTF)2SF5CH2CF2SO3. Phys. Rev. B 2019, 99, 140509. [Google Scholar] [CrossRef] [Green Version]
- Tomić, S.; Jérome, D. A hidden low-temperature phase in the organic conductor (TMTSF)2ReO4. J. Phys. Condens. Matter. 1989, 1, 4451–4456. [Google Scholar] [CrossRef]
- Kagawa, F.; Oike, H. Quenching of charge and spin degrees of freedom in condensed matter. Adv. Mater. 2017, 29, 1601979. [Google Scholar] [CrossRef]
- Mori, H.; Tanaka, S.; Mori, T. Systematic study of the electronic state in θ-type BEDT-TTF organic conductors by changing the electronic correlation. Phys. Rev. B 1998, 57, 12023–12029. [Google Scholar] [CrossRef]
- Yamada, J.-I.; Akutsu, H.; Nishikawa, H.; Kikuchi, K. New trends in the synthesis of π-electron donors for molecular conductors and superconductors. Chem. Rev. 2004, 104, 5057–5083. [Google Scholar] [CrossRef] [PubMed]
- Yamada, J.-I. New approach to the achievement of organic superconductivity. J. Mater. Chem. 2004, 14, 2951–2953. [Google Scholar] [CrossRef]
- Faltermeier, D.; Barz, J.; Dumm, M.; Dressel, M.; Drichko, N.; Petrov, B.; Semkin, V.; Vlasova, R.; Meźière, C.; Batail, P. Bandwidth-controlled Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of localized charge excitations. Phys. Rev. B 2007, 76, 165113. [Google Scholar] [CrossRef] [Green Version]
- Dumm, M.; Faltermeier, D.; Drichko, N.; Dressel, M.; Mézière, C.; Batail, P. Bandwidth-controlled Mott transition in κ-(BEDT-TTF)2Cu[N(CN)2]BrxCl1−x: Optical studies of correlated carriers. Phys. Rev. B 2009, 79, 195106. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, S.; Dressel, M.; Sun, Y.; Greco, A.; Schlueter, J.A.; Gard, G.L.; Drichko, N. Bandwidth tuning triggers interplay of charge order and superconductivity in two-dimensional organic materials. Phys. Rev. Lett. 2010, 105, 206402. [Google Scholar] [CrossRef] [Green Version]
- Yamada, J.-I.; Akutsu, H. Chemical modifications of BDH-TTP [2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene]: Control of electron correlation. Crystals 2012, 2, 812–844. [Google Scholar] [CrossRef]
- Chamberlin, R.V.; Naughton, M.J.; Yan, X.; Chiang, L.Y.; Hsu, S.-Y.; Chaikin, P.M. Extreme quantum limit in a quasi-two-dimensional organic conductor. Phys. Rev. Lett. 1988, 60, 1189–1192. [Google Scholar] [CrossRef]
- Cooper, J.R.; Kang, W.; Auban, P.; Montambaux, G.; Jérome, D.; Bechgaard, K. Quantized Hall effect and a new field-induced phase transition in the organic superconductor (TMTSF)2PF6. Phys. Rev. Lett. 1989, 63, 1984–1987. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Montambaux, G.; Cooper, J.R.; Jérome, D.; Batail, P.; Lenoir, C. Observation of giant magnetoresistance oscillations in the high-TC phase of the two-dimensional organic conductor β-(BEDT-TTF)2I3. Phys. Rev. Lett. 1989, 62, 2559–2562. [Google Scholar] [CrossRef] [PubMed]
- Kushch, N.D.; Buravov, L.I.; Kartsovnik, M.V.; Laukhin, V.N.; Pesotskii, S.I.; Shibaeva, R.P.; Rozenberg, L.P.; Yagubskii, E.B.; Zvarikina, A.V. Resistance and magnetoresistance anomaly in a new stable organic metal (ET)2TlHg(SCN)4. Synth. Met. 1992, 46, 271–276. [Google Scholar] [CrossRef]
- Dupuis, N.; Montambaux, G.; Sá de Melo, C.A.R. Quasi-one-dimensional superconductors in strong magnetic field. Phys. Rev. Lett. 1993, 70, 2613–2616. [Google Scholar] [CrossRef]
- Kovalev, A.E.; Kartsovnik, M.V.; Shibaeva, R.P.; Rozenberg, L.P.; Schegolev, I.F.; Kushch, N.D. Angular magnetoresistance oscillations in the organic conductor α-(ET)2KHg(SCN)4 above and below the phase transition. Solid State Commun. 1994, 89, 575–578. [Google Scholar] [CrossRef]
- Dupuis, N.; Montambaux, G. Superconductivity of quasi-one-dimensional conductors in a high magnetic field. Phys. Rev. B 1994, 49, 8993–9008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kartsovnik, M.V.; Logvenov, G.Y.; Ishiguro, T.; Biberacher, W.; Anzai, H.; Kushch, N.D. Direct Observation of the magnetic-breakdown induced quantum interference in the quasi-two-dimensional organic metal κ-(BEDT-TTF)2CU(NCS)2. Phys. Rev. Lett. 1996, 77, 2530–2533. [Google Scholar] [CrossRef]
- Kartsovnik, M.V.; Laukhin, V.N. Magnetotransport in quasi-two-dimensional organic conductors based on BEDT-TTF and its derivatives. J. Phys. I France 1996, 6, 1753–1786. [Google Scholar] [CrossRef]
- Herlach, F.; Agosta, C.C.; Bogaerts, R.; Boon, W.; Deckers, I.; de Keyser, A.; Harrison, N.; Lagutin, A.; Li, L.; Trappeniers, L.; et al. Experimental techniques for pulsed magnetic fields. Phys. B Cond. Mat. 1996, 216, 161–165. [Google Scholar] [CrossRef]
- Hill, S. Semiclassical description of cyclotron resonance in quasi-two-dimensional organic conductors: Theory and experiment. Phys. Rev. B 1997, 55, 4931–4940. [Google Scholar] [CrossRef]
- Kartsovnik, M.V.; Biberacher, W.; Steep, E.; Christ, P.; Andres, K.; Jansen, A.G.M.; Müller, H. High-field studies of the H-T phase diagram of α-(BEDT-TTF)2KHg(SCN)4. Synth. Met. 1997, 86, 1933–1936. [Google Scholar] [CrossRef]
- Chaikin, P.M.; Chashechkina, E.I.; Lee, I.J.; Naughton, M.J. Field-induced electronic phase transitions in high magnetic fields. J. Phys. Condens. Matter 1998, 10, 11301–11314. [Google Scholar] [CrossRef]
- Weiss, H.; Kartsovnik, M.V.; Biberacher, W.; Steep, E.; Balthes, E.; Jansen, A.G.M.; Andres, K.; Kushch, N.D. Magnetotransport studies of the Fermi surface in the organic superconductor κ-(BEDT–TTF)2Cu[N(CN)2]Br. Phys. Rev. B 1999, 59, 12370–12378. [Google Scholar] [CrossRef]
- Singleton, J. Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields. Rep. Prog. Phys. 2000, 63, 1111–1207. [Google Scholar] [CrossRef]
- Christ, P.; Biberacher, W.; Kartsovnik, M.V.; Steep, E.; Balthes, E.; Weiss, H.; Müller, H. Magnetic field-temperature phase diagram of the organic conductor α-(BEDT-TTF)2KHg(SCN)4. JETP Lett. 2000, 71, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Mola, M.; Hill, S.; Goy, P.; Gross, M. Instrumentation for millimeter-wave magnetoelectrodynamic investigations of low-dimensional conductors and superconductors. Rev. Sci. Instrum. 2000, 71, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Andres, D.; Kartsovnik, M.V.; Biberacher, W.; Weiss, H.; Balthes, E.; Müller, H.; Kushch, N. Orbital effect of a magnetic field on the low-temperature state in the organic metal α-(BEDT-TTF)2KHg(SCN)4. Phys. Rev. B 2001, 64, 161104. [Google Scholar] [CrossRef] [Green Version]
- Kartsovnik, M.V.; Grigoriev, P.D.; Biberacher, W.; Kushch, N.D.; Wyder, P. Slow Oscillations of magnetoresistance in quasi-two-dimensional metals. Phys. Rev. Lett. 2002, 89, 126802. [Google Scholar] [CrossRef] [Green Version]
- Andres, D.; Kartsovnik, M.V.; Grigoriev, P.D.; Biberacher, W.; Müller, H. Orbital quantization in the high-magnetic-field state of a charge-density-wave system. Phys. Rev. B 2003, 68, 201101(R). [Google Scholar] [CrossRef] [Green Version]
- Maki, K.; Dóra, B.; Kartsovnik, M.; Virosztek, A.; Korin-Hamzić, B.; Basletić, M. Unconventional charge-density wave in the organic conductor α-(BEDT-TTF)2KHg(SCN)4. Phys. Rev. Lett. 2003, 90, 256402. [Google Scholar] [CrossRef] [Green Version]
- Graf, D.; Choi, E.S.; Brooks, J.S.; Matos, M.; Henriques, R.T.; Almeida, M. High magnetic field induced charge density wave state in a quasi-one-dimensional organic conductor. Phys. Rev. Lett. 2004, 93, 076406. [Google Scholar] [CrossRef] [Green Version]
- Graf, D.; Brooks, J.S.; Choi, E.S.; Uji, S.; Dias, J.C.; Almeida, M.; Matos, M. Suppression of a charge-density-wave ground state in high magnetic fields: Spin and orbital mechanisms. Phys. Rev. B 2004, 69, 125113. [Google Scholar] [CrossRef] [Green Version]
- Kartsovnik, M.V. High magnetic fields: A tool for studying electronic properties of layered organic metals. Chem. Rev. 2004, 104, 5737–5781. [Google Scholar] [CrossRef]
- Takahashi, S.; Hill, S. Rotating cavity for high-field angle-dependent microwave spectroscopy of low-dimensional conductors and magnets. Rev. Sci. Instrum. 2005, 76, 023114. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; Smith, B.E.; Coniglio, W.A.; Winter, L.E.; Agosta, C.C.; Schlueter, J.A. Upper critical field in the organic superconductor β″-(ET)2SF5CH2CF2SO3: Possibility of Fulde-Ferrell-Larkin-Ovchinnikov state. Phys. Rev. B 2009, 79, 220507(R). [Google Scholar] [CrossRef] [Green Version]
- Agosta, C.C.; Fortune, N.A.; Hannahs, S.T.; Gu, S.; Liang, L.; Park, J.-H.; Schleuter, J.A. Calorimetric Measurements of magnetic-field-induced inhomogeneous superconductivity above the paramagnetic limit. Phys. Rev. Lett. 2017, 118, 267001. [Google Scholar] [CrossRef] [Green Version]
- Koshihara, S.; Tokura, Y.; Mitani, T.; Saito, G.; Koda, T. Photoinduced valence instability in the organic molecular compound tetrathiafulvalene-p-chloranil (TTF-CA). Phys. Rev. B 1990, 42, 6853–6856. [Google Scholar] [CrossRef] [PubMed]
- Koshihara, S.-Y.; Takahashi, Y.; Sakai, H.; Tokura, Y.; Luty, T. Photoinduced cooperative charge transfer in low-dimensional organic crystals. J. Phys. Chem. B 1999, 103, 2592–2600. [Google Scholar] [CrossRef]
- Chollet, M.; Guerin, L.; Uchida, N.; Fukaya, S.; Shimoda, H.; Ishikawa, T.; Matsuda, K.; Hasegawa, T.; Ota, A.; Yamochi, H.; et al. Gigantic photoresponse in 1/4-filled-band organic salt (EDO-TTF)2PF6. Science 2005, 307, 86–89. [Google Scholar] [CrossRef]
- Tajima, N.; Fujisawa, J.-I.; Nakay, N.; Ishihara, T.; Kato, R.; Nishio, Y.; Kajita, K. Photo-induced insulator-metal transition in an organic conductor α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2005, 74, 511–514. [Google Scholar] [CrossRef]
- Tajima, N.; Sugawara, S.; Tamura, M.; Nishio, Y.; Kajita, K. Electronic phases in an organic conductor α-(BEDT-TTF)2I3: Ultra narrow gap semiconductor, superconductor, metal, and charge-ordered insulator. J. Phys. Soc. Jpn. 2006, 75, 051010. [Google Scholar] [CrossRef] [Green Version]
- Iwai, S.; Okamoto, H. Ultrafast phase control in one-dimensional correlated electron systems. J. Phys. Soc. Jpn. 2006, 75, 011007. [Google Scholar] [CrossRef]
- Okamoto, H.; Matsuzaki, H.; Wakabayashi, T.; Takahashi, Y.; Hasegawa, T. Photoinduced metallic state mediated by spin-charge separation in a one-dimensional organic mott insulator. Phys. Rev. Lett. 2007, 98, 037401. [Google Scholar] [CrossRef]
- Iwai, S.; Yamamoto, K.; Kashiwazaki, A.; Hiramatsu, F.; Nakaya, H.; Kawakami, Y.; Yakushi, K.; Okamoto, H.; Mori, H.; Nishio, Y. Photoinduced melting of a stripe-type charge-order and metallic domain formation in a layered BEDT-TTF-based organic salt. Phys. Rev. Lett. 2007, 98, 097402. [Google Scholar] [CrossRef] [PubMed]
- Iimori, T.; Ohta, N.; Naito, T. Molecular-based light-activated thyristor. Appl. Phys. Lett. 2007, 90, 262103. [Google Scholar] [CrossRef] [Green Version]
- Iimori, T.; Naito, T.; Ohta, N. Photoinduced phase transition in the organic conductor α-(BEDT-TTF)2I3 at temperatures near the metal-insulator phase transition. Chem. Lett. 2007, 36, 536–537. [Google Scholar] [CrossRef]
- Iimori, T.; Naito, T.; Ohta, N. A memory effect controlled by a pulsed voltage in photoinduced conductivity switching in an organic charge-transfer salt. J. Am. Chem. Soc. 2007, 129, 3486–3487. [Google Scholar] [CrossRef]
- Onda, K.; Ogihara, S.; Yonemitsu, K.; Maeshima, N.; Ishikawa, T.; Okimoto, Y.; Shao, X.; Nakano, Y.; Yamochi, H.; Saito, G.; et al. Photoinduced change in the charge order pattern in the quarter-filled organic conductor (EDO-TTF)2PF6 with a strong electron-phonon interaction. Phys. Rev. Lett. 2008, 101, 067403. [Google Scholar] [CrossRef]
- Yonemitsu, K.; Nasu, K. Theory of photoinduced phase transitions in itinerant electron systems. Phys. Rep. 2008, 465, 1–60. [Google Scholar] [CrossRef]
- Iwai, S.; Nakaya, H.; Kawakami, Y. Ultrafast photo-induced insulator to metal transition in layered BEDT-TTF based salts. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 37–58. [Google Scholar]
- Okamoto, H. Ultrafast photoinduced phase transitions in one-dimensional organic correlated electron systems. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 37–58. [Google Scholar]
- Tajima, N.; Fujisawa, J.-I.; Kato, R. Photoswitching between charge-ordered insulator and metal phases in an organic conductor α-(BEDT-TTF)2I3. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 155–165. [Google Scholar]
- Iimori, T.; Naito, T.; Ohta, N. Synergy effects of photoirradiation and applied voltage on electrical conductivity of α-(BEDT-TTF)2I3. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 167–184. [Google Scholar]
- Yonemitsu, K. Theory of photoinduced phase transitions in quasi-one-dimensional organic conductors. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 305–320. [Google Scholar]
- Iimori, T.; Naito, T.; Ohta, N. Unprecedented optoelectronic function in organic conductor: Memory effect of photoswitching controlled by voltage pulse width. J. Phys. Chem. C 2009, 113, 4654–4661. [Google Scholar] [CrossRef]
- Iimori, T.; Naito, T.; Ohta, N. Time-resolved measurement of the photoinduced change in the electrical conductivity of the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. J. Phys. Chem. C 2010, 114, 9070–9075. [Google Scholar] [CrossRef]
- Iimori, T.; Sabeth, F.; Naito, T.; Ohta, N. Time-resolved photoresponse measurements of the electrical conductivity of the quasi-two-dimensional organic superconductor β-(BEDT-TTF)2I3 using a nanosecond laser pulse. J. Phys. Chem. C 2011, 115, 23998–24003. [Google Scholar] [CrossRef] [Green Version]
- Toda, Y.; Mertelj, T.; Naito, T.; Mihailovic, D. Femtosecond carrier relaxation dynamics and photoinduced phase separation in κ-(BEDT-TTF)2Cu[N(CN)2]X (X = Br, Cl). Phys. Rev. Lett. 2011, 107, 227002. [Google Scholar] [CrossRef] [PubMed]
- Yonemitsu, K. Theory of photoinduced phase transitions in molecular conductors: Interplay between correlated electrons, lattice phonons and molecular vibrations. Crystals 2012, 2, 56–77. [Google Scholar] [CrossRef]
- Iwai, S. Photoinduced phase transitions in α-, θ-, and κ-type ET salts: Ultrafast melting of the electronic ordering. Crystals 2012, 2, 590–617. [Google Scholar] [CrossRef] [Green Version]
- Kakinuma, T.; Kojima, H.; Kawamoto, T.; Mori, T. Giant phototransistor response in dithienyltetrathiafulvalene derivatives. J. Mater. Chem. C 2013, 1, 2900–2905. [Google Scholar] [CrossRef]
- Ishikawa, T.; Hayes, S.A.; Keskin, S.; Corthey, G.; Hada, M.; Pichugin, K.; Marx, A.; Hirscht, J.; Shionuma, K.; Onda, K.; et al. Direct observation of collective modes coupled to molecular orbital-driven charge transfer. Science 2015, 350, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, T.; Miyamoto, T.; Okamoto, H. Ultrafast electron and molecular dynamics in photoinduced and electric-field-induced neutral-ionic transitions. Crystals 2017, 7, 132. [Google Scholar] [CrossRef] [Green Version]
- Smit, B.; Hüwe, F.; Payne, N.; Olaoye, O.; Bauer, I.; Pflaum, J.; Schwoerer, M.; Schwoerer, H. Ultrafast pathways of the photoinduced insulator-metal transition in a low-dimensional organic conductor. Adv. Mater. 2019, 31, 1900652. [Google Scholar] [CrossRef]
- Bai, C.; Dai, C.; Zhu, C.; Chen, Z.; Huang, G.; Wu, X.; Zhu, D. Scanning tunneling microscopy of silver containing salt of bis(ethylenedithio)tetrathiafulvalene. J. Vac. Sci. Tech. 1990, 8, 484–487. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.H.; Ferraro, J.R.; Williams, J.M.; Geiser, U.; Schlueter, J.A. Rapid Raman spectroscopic determination of the stoichiometry of microscopic quantities of BEDT-TTF-based organic conductors and superconductors. J. Chem. Soc. Chem. Commun. 1994, 1893–1894. [Google Scholar] [CrossRef]
- Shigekawa, H.; Miyake, K.; Miyauchi, A.; Ishida, M.; Oigawa, H.; Nannichi, Y.; Yoshizaki, R.; Mori, T. Surface superstructures of quasi-one-dimensional organic conductor β-(BEDT-TTF)2PF6 crystal studied by scanning tunneling microscopy. Phys. Rev. B 1995, 52, 16361–16364. [Google Scholar] [CrossRef] [Green Version]
- Shigekawa, H.; Miyake, K.; Oigawa, H.; Nannichi, Y.; Mori, T.; Saito, Y. Molecular structure of a crystal phase coexisting with κ-(BEDT-TTF)2Cu(NCS)2 studied by scanning tunneling microscopy. Phys. Rev. B 1995, 50, 15427–15430. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Ichimura, K.; Nomura, K.; Takasaki, S.; Yamada, J.; Nakatsuji, S.; Anzai, H. Tunneling spectroscopy on the organic superconductor κ-(BEDT-TTF)2Cu(NCS)2 using STM. Phys. Rev. B 2001, 63, 104518. [Google Scholar] [CrossRef] [Green Version]
- Taylor, O.J.; Carrington, A.; Schlueter, J.A. Specific-heat measurements of the gap structure of the organic superconductors κ-(ET)2Cu[N(CN)2]Br and κ-(ET)2Cu(NCS)2. Phys. Rev. Lett. 2007, 99, 057001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claessen, R.; Schäfer, J.; Sing, M. Photoemission on quasi-one-dimensional solids: Peierls, Luttinger & Co. In Very High Resolution Photoelectron Spectroscopy. Lecture Notes in Physics; Hüfner, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 715, pp. 115–146. [Google Scholar] [CrossRef]
- Sasaki, T. Infrared imaging in the strongly correlated molecular conductors. In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 99–116. [Google Scholar]
- Mori, E.; Usui, H.; Sakamoto, H.; Mizoguchi, K.; Naito, T. Charge distribution in the surface BEDT-TTF layer of α-(BEDT-TTF)2I3 at room temperature with scanning tunneling microscopy. J. Phys. Soc. Jpn. 2012, 81, 014707. [Google Scholar] [CrossRef]
- Sakamoto, H.; Mori, E.; Arimoto, H.; Namai, K.; Tahara, H.; Naito, T.; Hiramatsu, T.; Yamochi, H.; Mizoguchi, K. Wavefunction Analysis of STM Image: Surface Reconstruction of Organic Charge Transfer Salts. In Microscopy and Analysis; Stanciu, S.G., Ed.; IntechOpen: London, UK, 2016; Chapter 14. [Google Scholar] [CrossRef] [Green Version]
- Pustogow, A.; McLeod, A.S.; Saito, Y.; Basov, D.N.; Dressel, M. Internal strain tunes electronic correlations on the nanoscale. Sci. Adv. 2018, 4, eaau9123. [Google Scholar] [CrossRef] [Green Version]
- Maesato, M.; Kaga, Y.; Kondo, R.; Kagoshima, S. Uniaxial strain method for soft crystals: Application to the control of the electronic properties of organic conductors. Rev. Sci. Instrum. 2000, 71, 176–181. [Google Scholar] [CrossRef]
- Adachi, T.; Tanaka, H.; Kobayashi, H.; Miyazaki, T. Electrical resistivity measurements on fragile organic single crystals in the diamond anvil cell. Rev. Sci. Instrum. 2001, 72, 2358–2360. [Google Scholar] [CrossRef]
- Müller, J.; Lang, M.; Helfrich, R.; Steglich, F.; Sasaki, T. High-resolution ac-calorimetry studies of the quasi-two-dimensional organic superconductor κ-(BEDT-TTF)2Cu(NCS)2. Phys. Rev. B 2002, 65, 14509. [Google Scholar] [CrossRef] [Green Version]
- Kagoshima, S.; Kondo, R. Control of electronic properties of molecular conductors by uniaxial strain. Chem. Rev. 2004, 104, 5593–5608. [Google Scholar] [CrossRef]
- Murata, K.; Kagoshima, S.; Yasuzuka, S.; Yoshino, H.; Kondo, R. High-pressure research in organic conductors. J. Phys. Soc. Jpn. 2006, 75, 051015. [Google Scholar] [CrossRef]
- Boldyreva, E.V. High-pressure diffraction studies of molecular organic solids. A personal view. Acta Cryst. 2008, 64, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Iwase, F.; Miyagawa, K.; Kanoda, K. High-frequency nuclear quadrupole resonance apparatus for use in pressure cell. Rev. Sci. Instrum. 2012, 83, 064704. [Google Scholar] [CrossRef]
- Cui, H.; Kobayashi, H.; Ishibashi, S.; Sasa, M.; Iwase, F.; Kato, R.; Kobayashi, A. A single-component molecular superconductor. J. Am. Chem. Soc. 2014, 136, 7619–7622. [Google Scholar] [CrossRef]
- Shen, G.; Mao, H.K. High-pressure studies with x-rays using diamond anvil cells. Rep. Prog. Phys. 2017, 80, 016101. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Imajo, S.; Matsumura, Y.; Yamashita, S.; Akutsu, H. Thermodynamic picture of dimer-Mott organic superconductors revealed by heat capacity measurements with external and chemical pressure control. Crystals 2018, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Mott, N.F. Metal-insulator transition. Rev. Mod. Phys. 1968, 40, 677–683. [Google Scholar] [CrossRef]
- Kanoda, K. Recent progress in NMR studies on organic conductors. Hyperfine Interact. 1997, 104, 235–249. [Google Scholar] [CrossRef]
- Sasaki, T.; Yoneyama, N.; Matsuyama, A.; Kobayashi, N. Magnetic and electronic phase diagram and superconductivity in the organic superconductors κ-(ET)2X. Phys. Rev. B 2002, 65, 060505. [Google Scholar] [CrossRef] [Green Version]
- Limelette, P.; Georges, A.; Jérome, D.; Wzietek, P.; Metcalf, P.; Honig, J.M. Universality and critical behavior at the Mott transition. Science 2003, 302, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limelette, P.; Wzietek, P.; Florens, S.; Georges, A.; Costi, T.A.; Pasquier, C.; Jérome, D.; Mézière, C.; Batail, P. Mott transition and transport crossovers in the organic compound κ-(BEDT-TTF)2Cu[N(CN)2]Cl. Phys. Rev. Lett. 2003, 91, 016401. [Google Scholar] [CrossRef] [Green Version]
- Fournier, D.; Poirier, M.; Castonguay, M.; Truong, K.D. Mott transition, compressibility divergence, and the P-T phase diagram of layered organic superconductors: An ultrasonic investigation. Phys. Rev. Lett. 2003, 90, 127002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuzé, K.; Fourmigué, M.; Batail, P.; Couion, C.; Clérac, R.; Canadell, E.; Auban-Senzier, P.; Ravy, S.; Jérome, D. A genuine quarter-filled band mott insulator, (EDT-TTF-CONMe2)2AsF6: Where the chemistry and physics of weak intermolecular interactions act in unison. Adv. Mat. 2003, 15, 1251–1254. [Google Scholar] [CrossRef]
- Kagawa, F.; Miyagawa, K.; Kanoda, K. Unconventional critical behaviour in a quasi-two-dimensional organic conductor. Nature 2005, 436, 534–537. [Google Scholar] [CrossRef]
- Scheffler, M.; Dressel, M.; Jourdan, M.; Adrian, H. Extremely slow Drude relaxation of correlated electrons. Nature 2005, 438, 1135–1137. [Google Scholar] [CrossRef]
- Sasaki, T.; Yoneyama, N.; Suzuki, A.; Kobayashi, N.; Ikemoto, Y.; Kimura, H. Real space imaging of the metal-insulator phase separation in the band width controlled organic Mott system κ-(BEDT-TTF)2Cu[N(CN)2]Br. J. Phys. Soc. Jpn. 2005, 74, 2351–2360. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Yoneyama, N.; Suzuki, A.; Ito, I.; Kobayashi, N.; Ikemoto, Y.; Kimura, H.; Hanasaki, N.; Tajima, H. Electrical inhomogeneity at the Mott transition in the band width controlled κ-(BEDT-TTF)2Cu[N(CN)2Br. J. Low Temp. Phys. 2006, 142, 377–382. [Google Scholar] [CrossRef]
- De Souza, M.; Brühl, A.; Strack, C.; Wolf, B.; Schweitzer, D.; Lang, M. Anomalous lattice response at the Mott transition in a quasi-2D organic conductor. Phys. Rev. Lett. 2007, 99, 037003. [Google Scholar] [CrossRef] [Green Version]
- Merino, J.; Dumm, M.; Drichko, N.; Dressel, M.; McKenzie, R.H. Quasiparticles at the verge of localization near the mott metal-insulator transition in a two-dimensional material. Phys. Rev. Lett. 2008, 100, 086404. [Google Scholar] [CrossRef] [Green Version]
- Zorina, L.; Simonov, S.; Mézière, C.; Canadell, E.; Suh, S.; Brown, S.E.; Foury-Leylekian, P.; Fertey, P.; Pouget, J.-P.; Batail, P. Charge ordering, symmetry and electronic structure issues and Wigner crystal structure of the quarter-filled band Mott insulators and high pressure metals δ-(EDT-TTF-CONMe2)2X, X = Br and AsF6. J. Mater. Chem. 2009, 19, 6980–6994. [Google Scholar] [CrossRef] [Green Version]
- Basov, D.N.; Averitt, R.D.; van Der Marel, D.; Dressel, M.; Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 2011, 83, 471–541. [Google Scholar] [CrossRef]
- Wall, S.; Brida, D.; Clark, S.R.; Ehrke, H.P.; Jaksch, D.; Ardavan, A.; Bonora, S.; Uemura, H.; Takahashi, Y.; Hasegawa, T.; et al. Quantum interference between charge excitation paths in a solid-state Mott insulator. Nat. Phys. 2011, 7, 114–118. [Google Scholar] [CrossRef]
- Sasaki, T. Mott-Anderson transition in molecular conductors: Influence of randomness on strongly correlated electrons in the κ-(BEDT-TTF)2X system. Crystals 2012, 2, 374–392. [Google Scholar] [CrossRef]
- Pinterić, M.; Lazić, P.; Pustogow, A.; Ivek, T.; Kuveždić, M.; Milat, O.; Gumhalter, B.; Basletić, M.; Čulo, M.; Korin-Hamzić, B.; et al. Anion effects on electronic structure and electrodynamic properties of the Mott insulator κ-(BEDT-TTF)2Ag2(CN)3. Phys. Rev. B 2016, 94, 161105. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Kamiya, M.; Haemori, M.; Suzuki, H.; Tanaka, S.; Nishio, Y.; Kajita, K.; Moriyama, H. First systematic band-filling control in organic conductors. J. Am. Chem. Soc. 2002, 124, 1251–1260. [Google Scholar] [CrossRef]
- Naito, T.; Inabe, T.; Niimi, H.; Asakura, K. Light-induced transformation of molecular materials into devices. Adv. Mater. 2004, 16, 1786–1790. [Google Scholar] [CrossRef]
- Yamamoto, H.M.; Ito, H.; Shigeto, K.; Tsukagoshi, K.; Kato, R. Direct formation of micro/nanocrystalline 2,5-dimethyl-N,N′-dicyanoquinonediimine complexes on SiO2/Si substrates and multiprobe measurement of conduction properties. J. Am. Chem. Soc. 2006, 128, 700–701. [Google Scholar] [CrossRef]
- Naito, T.; Sugawara, H.; Inabe, T.; Kitajima, Y.; Miyamoto, T.; Niimi, H.; Asakura, K. UV-vis-induced vitrification of a molecular crystal. Adv. Func. Mater. 2007, 17, 1663–1670. [Google Scholar] [CrossRef]
- Naito, T.; Sugawara, H.; Inabe, T. Mechanism of spatially resolved photochemical control of resistivity of a molecular crystalline solid. Nanotechnology 2007, 18, 424008. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, T.; Niimi, H.; Chun, W.-J.; Kitajima, Y.; Sugawara, H.; Inabe, T.; Naito, T.; Asakura, K. Chemical states of Ag in Ag(DMe-DCNQI)2 photoproducts and a proposal for its photoinduced conductivity change mechanism. Chem. Lett. 2007, 36, 1008–1009. [Google Scholar] [CrossRef]
- Miyamoto, T.; Kitajima, Y.; Sugawara, H.; Naito, T.; Inabe, T.; Asakura, K. Origin of photochemical modification of the resistivity of Ag(DMe-DCNQI)2 studied by X-ray absorption fine structure. J. Phys. Chem. C 2009, 113, 20476–20480. [Google Scholar] [CrossRef]
- Naito, T. Spatially resolved control of electrical resistivity in organic materials—Development of a new fabrication method of junction structures. In Nanotechnology: Nanofabrication, Patterning, and Self Assembly; Dixon, C.J., Curtines, O.W., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2010; Chapter 7; pp. 275–292. [Google Scholar]
- Naito, T.; Kakizaki, A.; Inabe, T.; Sakai, R.; Nishibori, E.; Sawa, H. Growth of nanocrystals in a single crystal of different materials: A way of giving function to molecular crystals. Cryst. Growth Design 2011, 11, 501–506. [Google Scholar] [CrossRef]
- Naito, T. Optical control of electrical properties in molecular crystals; states of matter beyond thermodynamic restrictions. Chem. Lett. 2018, 47, 1441–1452. [Google Scholar] [CrossRef]
- Heuzé, K.; Mézière, C.; Fourmigué, M.; Batail, P.; Coulon, C.; Canadell, E.; Auban-Senzier, P.; Jérome, D. An efficient, redox-enhanced pair of hydrogen-bond tweezers for chloride anion recognition, a key synthon in the construction of a novel type of organic metal based on the secondary amide-functionalized ethylenedithiotetrathiafulvalene, β″-(EDT-TTF-CONHMe)2[Cl·H2O]. Chem. Mater. 2000, 12, 1898–1904. [Google Scholar] [CrossRef]
- Hirose, T.; Imai, H.; Naito, T.; Inabe, T. Charge carrier doping in the Ni(dmit)2 simple salts by hydrogen-bonding pyridinium cations (dmit = 1,3-dithiol-2thione-4,5-dithiolate). J. Solid State Chem. 2002, 168, 535–546. [Google Scholar] [CrossRef]
- Akutagawa, T.; Hasegawa, T.; Nakamura, T.; Saito, G. Hydrogen-bonded supramolecular (2,2′-bi-1H-benzimidazole)(2-(2-1H-benzimidazolyl)-1H-benzimidazolium+)2(Cl−) as an electron donor in a TCNQ complex. CrystEngComm 2003, 5, 54–57. [Google Scholar] [CrossRef]
- Baudron, S.A.; Avarvari, N.; Batail, P.; Coulon, C.; Clérac, R.; Canadell, E.; Auban-Senzier, P. Singular crystalline β′-layered topologies directed by ribbons of self-complementary amide⋯amide ring motifs in [EDT-TTF-(CONH2)2]2X (X = HSO4−, ClO4−, ReO4−, AsF6−): Coupled activation of ribbon curvature, electron interactions, and magnetic susceptibility. J. Am. Chem. Soc. 2003, 125, 11583–11590. [Google Scholar] [CrossRef]
- Devic, T.; Avarvari, N.; Batail, P. A series of redox active, tetrathiafulvalene-based amidopyridines and bipyridines ligands: Syntheses, crystal structures, a radical cation salt and group 10 transition-metal complexes. Chem. Eur. J. 2004, 10, 3697–3707. [Google Scholar] [CrossRef] [PubMed]
- Baudron, S.A.; Avarvari, N.; Canadell, E.; Auban-Senzier, P.; Batail, P. Structural isomerism in crystals of redox-active secondary ortho-diamides: The role of competing intra- and intermolecular hydrogen bonds in directing crystalline topologies. Chem. Eur. J. 2004, 10, 4498–4511. [Google Scholar] [CrossRef]
- Akutsu-Sato, A.; Akutsu, H.; Turner, S.S.; Day, P.; Probert, M.R.; Howard, J.A.K.; Akutagawa, T.; Takeda, S.; Nakamura, T.; Mori, T. The first proton-conducting metallic ion-radical salts. Angew. Chem. Int. Ed. Engl. 2004, 44, 292–295. [Google Scholar] [CrossRef]
- Akutagawa, T.; Takeda, S.; Hasegawa, T.; Nakamura, T. Proton transfer and a dielectric phase transition in the molecular conductor (HDABCO+)2(TCNQ)3. J. Am. Chem. Soc. 2004, 126, 291–294. [Google Scholar] [CrossRef]
- Réthoré, C.; Fourmigué, M.; Avarvari, N. Tetrathiafulvalene-hydroxyamides and -oxazolines: Hydrogen bonding, chirality, and a radical cation salt. Tetrahedron 2005, 61, 10935–10942. [Google Scholar] [CrossRef]
- Baudron, S.A.; Batail, P.; Coulon, C.; Clérac, R.; Canadell, E.; Laukhin, V.; Melzi, R.; Wzietek, P.; Jérome, D.; Auban-Senzier, P.; et al. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic-inorganic hybrid compound: Electronic instability, molecular motion, and charge localization. J. Am. Chem. Soc. 2005, 127, 11785–11797. [Google Scholar] [CrossRef]
- Isono, T.; Kamo, H.; Ueda, A.; Takahashi, K.; Nakao, A.; Kumai, R.; Nakao, H.; Kobayashi, K.; Murakami, Y.; Mori, H. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nat. Commun. 2013, 4, 1344. [Google Scholar] [CrossRef] [Green Version]
- Ueda, A.; Yamada, S.; Isono, T.; Kamo, H.; Nakao, A.; Kumai, R.; Nakao, H.; Murakami, Y.; Yamamoto, K.; Nishio, Y.; et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: A phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 2014, 136, 12184–12192. [Google Scholar] [CrossRef] [PubMed]
- Makhotkina, O.; Lieffrig, J.; Jeannin, O.; Fourmigué, M.; Aubert, E.; Espinosa, E. Cocrystal or salt: Solid state-controlled iodine shift in crystalline halogen-bonded systems. Cryst. Growth Design 2015, 15, 3464–3473. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366. [Google Scholar] [CrossRef]
- Akutagawa, T.; Koshinaka, H.; Sato, D.; Takeda, S.; Noro, S.-I.; Takahashi, H.; Kumai, R.; Tokura, Y.; Nakamura, T. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat. Mater. 2009, 8, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, T.; Mori, T.; Graf, D.; Brooks, J.S.; Takahide, Y.; Uji, S.; Shirahata, T.; Imakubo, T. Interlayer charge disproportionation in the layered organic superconductor κH-(DMEDO-TSeF)2[Au(CN)4](THF) with polar dielectric insulating layers. Phys. Rev. Lett. 2012, 109, 147005. [Google Scholar] [CrossRef] [Green Version]
- Tomić, S.; Dressel, M. Ferroelectricity in molecular solids: A review of electrodynamic properties. Rep. Prog. Phys. 2015, 78, 096501. [Google Scholar] [CrossRef]
- Harada, J.; Shimojo, T.; Oyamaguchi, H.; Hasegawa, H.; Takahashi, Y.; Satomi, K.; Suzuki, Y.; Kawamata, J.; Inabe, T. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules. Nat. Chem. 2016, 8, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Akutsu, H.; Ishihara, K.; Yamada, J.-I.; Nakatsuji, S.; Turner, S.S.; Nakazawa, Y. A strongly polarized organic conductor. CrystEngComm 2016, 18, 8151–8154. [Google Scholar] [CrossRef]
- Akutsu, H.; Ishihara, K.; Ito, S.; Nishiyama, F.; Yamada, J.-I.; Nakasuji, S.; Turner, S.S.; Nakazawa, Y. Anion polarity-induced self-doping in a purely organic paramagnetic conductor, α′-α′-(BEDT-TTF)2(PO-CONH-m-C6H4SO3)·H2O where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene and PO is the radical 2,2,5,5-Tetramethyl-3-pyrrolin-1-oxyl. Polyhedron 2017, 136, 23–29. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, Z.; Chen, Z.; Zhang, Q. Organic cocrystals: Beyond electrical conductivities and field-effect transistors (FETs). Angew. Chem. Int. Ed. Engl. 2019, 58, 9696–9711. [Google Scholar] [CrossRef] [PubMed]
- Harada, J.; Kawamura, Y.; Takahashi, Y.; Uemura, Y.; Hasegawa, T.; Taniguchi, H.; Maruyama, K. Plastic/ferroelectric crystals with easily switchable polarization: Low-voltage operation, unprecedentedly high pyroelectric performance, and large piezoelectric effect in polycrystalline forms. J. Am. Chem. Soc. 2019, 141, 9349–9357. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-W.; Kitagawa, H. Proton transport in metal-organic frameworks. Chem. Rev. 2020, 120, 8416–8467. [Google Scholar] [CrossRef]
- Yoshimoto, R.; Yamashita, S.; Akutsu, H.; Nakazawa, Y.; Kusamoto, T.; Oshima, Y.; Nakano, T.; Yamamoto, H.M.; Kato, R. Electric dipole induced bulk ferromagnetism in dimer Mott molecular compounds. Sci. Rep. 2021, 11, 1332. [Google Scholar] [CrossRef]
- Lunkenheimer, P.; Müller, J.; Krohns, S.; Schrettle, F.; Loidl, A.; Hartmann, B.; Rommel, R.; de Souza, M.; Hotta, C.; Schlueter, J.A.; et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 2012, 11, 755–758. [Google Scholar] [CrossRef]
- Rothaemel, B.; Forro, L.; Cooper, J.R.; Schilling, J.S.; Weger, M.; Bele, P.; Brunner, H.; Schweitzer, D.; Keller, H.J. Magnetic susceptibility of α and β phases of di[bis(ethylenediothiolo) tetrathiafulvalene] tri-iodide [(BEDT-TTF)2I3] under pressure. Phys. Rev. B 1986, 34, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Moldenhauer, J.; Horn, C.H.; Pokhodnia, K.I.; Schweitzer, D.; Heinen, I.; Keller, H.J. FT-IR absorption spectroscopy of BEDT-TTF radical salts: Charge transfer and donor-anion interaction. Synth. Met. 1993, 60, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Kino, H.; Fukuyama, H. On the phase transition of α-(ET)2I3. J. Phys. Soc. Jpn. 1995, 64, 1877–1880. [Google Scholar] [CrossRef]
- Seo, H. Charge ordering in organic ET compounds. J. Phys. Soc. Jpn. 2000, 69, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Takano, Y.; Hiraki, K.; Yamamoto, H.M.; Nakamura, T.; Takahashi, T. Charge disproportionation in the organic conductor, α-(BEDT-TTF)2I3. J. Phys. Chem. Solids 2001, 62, 393–395. [Google Scholar] [CrossRef]
- Wojciechowski, R.; Yamamoto, K.; Yakushi, K.; Inokuchi, M.; Kawamoto, A. High-pressure Raman study of the charge ordering in α-(BEDT-TTF)2I3. Phys. Rev. B 2003, 67, 224105. [Google Scholar] [CrossRef]
- Kakiuchi1, T.; Wakabayashi, Y.; Sawa, H.; Takahashi, T.; Nakamura, T. Charge ordering in α-(BEDT-TTF)2I3 by synchrotron X-ray diffraction. J. Phys. Soc. Jpn. 2007, 76, 113702. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Kowalska, A.A.; Yakushi, K. Direct observation of ferroelectric domains created by Wigner crystallization of electrons in α-[Bis (ethylenedithio) tetrathiafulvalene]2I3. Appl. Phys. Lett. 2010, 96, 122901. [Google Scholar] [CrossRef]
- Yue, Y.; Nakano, C.; Yamamoto, K.; Uruichi, M.; Wojciechowski, R.; Inokuchi, M.; Yakushi, K.; Kawamoto, A. Charge order-disorder phase transition in α′-[bis(ethylenedithio) tetrathiafulvalene]2IBr2 [α′-(BEDT-TTF)2IBr2]. J. Phys. Soc. Jpn. 2009, 78, 044701. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yakushi, K. Second-harmonic generation study of ferroelectric organic conductors α-(BEDT-TTF)2X (X = I3 and I2Br). In Molecular Electronic and Related Materials—Control and Probe with Light; Naito, T., Ed.; Transworld Research Network: Kerala, India, 2010; pp. 185–201. [Google Scholar]
- Ivek, T.; Korin-Hamzić, B.; Milat, O.; Tomić, S.; Clauss, C.; Drichko, N.; Schweitzer, D.; Dressel, M. Electrodynamic response of the charge ordering phase: Dielectric and optical studies of α-(BEDT-TTF)2I3. Phys. Rev. B 2011, 83, 165128. [Google Scholar] [CrossRef] [Green Version]
- Potember, R.S.; Poehler, T.O.; Cowan, D.O. Electrical switching and memory phenomena in Cu-TCNQ thin films. Appl. Phys. Lett. 1979, 34, 405–407. [Google Scholar] [CrossRef]
- Bässler, H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys. Stat. Sol. 1993, 175, 15–56. [Google Scholar] [CrossRef]
- Nishikawa, H.; Kojima, S.; Kodama, T.; Ikemoto, I.; Suzuki, S.; Kikuchi, K.; Fujitsuka, M.; Luo, H.; Araki, Y.; Ito, O. Photophysical study of new methanofullerene-TTF diads: An obvious intramolecular charge transfer in the ground states. J. Phys. Chem. A 2004, 108, 1881–1890. [Google Scholar] [CrossRef]
- Mataga, N.; Chosrowjan, H.; Taniguchi, S. Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry: Our early studies and recent developments. J. Photochem. Photobio. C: Photochem. Rev. 2005, 6, 37–79. [Google Scholar] [CrossRef]
- Loosli, C.; Jia, C.; Liu, S.-X.; Haas, M.; Dias, M.; Levillain, E.; Neels, A.; Labat, G.; Hauser, A.; Decurtins, S. Synthesis and electrochemical and photophysical studies of tetrathiafulvalene-annulated phthalocyanines. J. Org. Chem. 2005, 70, 4988–4992. [Google Scholar] [CrossRef] [Green Version]
- Shigehiro, T.; Yagi, S.; Maeda, T.; Nakazumi, H.; Fujiwara, H.; Sakurai, Y. Novel 10,13-disubstitutedd dipyrido[3,2-a:2′,3′-c]phenazines and their platinum(II) complexes: Highly luminescent ICT-type fluorophores based on D–A–D structures. Tetrahed. Lett. 2005, 55, 5195–5198. [Google Scholar] [CrossRef]
- Fujiwara, H.; Tsujimoto, K.; Sugishima, Y.; Takemoto, S.; Matsuzaka, H. New fluorene-substituted TTF derivatives as photofunctional materials. Phys. B 2010, 405, S12–S14. [Google Scholar] [CrossRef]
- Fujiwara, H.; Yokota, S.; Hayashi, S.; Takemoto, S.; Matsuzaka, H. Development of photofunctional materials using TTF derivatives containing a 1,3-benzothiazole ring. Phys. B 2010, 405, S15–S18. [Google Scholar] [CrossRef]
- Wenger, S.; Bouit, P.-A.; Chen, Q.; Teuscher, J.; di Censo, D.; Humphry-Baker, R.; Moser, J.-E.; Delgado, J.L.; Martín, N.; Zakeeruddin, S.M.; et al. Efficient electron transfer and sensitizer regeneration in stable π-extended tetrathiafulvalene-sensitized solar cells. J. Am. Chem. Soc. 2010, 132, 5164–5169. [Google Scholar] [CrossRef] [Green Version]
- Lemmetyinen, H.; Tkachenko, N.V.; Efimov, A.; Niemi, M. Photoinduced intra- and intermolecular electron transfer in solutions and in solid organized molecular assemblies. Phys. Chem. Chem. Phys. 2011, 13, 397–412. [Google Scholar] [CrossRef]
- Furukawa, K.; Sugishima, Y.; Fujiwara, H.; Nakamura, T. Photoinduced triplet states of photoconductive TTF derivatives including a fluorescent group. Chem. Lett. 2011, 40, 292–294. [Google Scholar] [CrossRef]
- Naito, T.; Karasudani, T.; Mori, S.; Ohara, K.; Konishi, K.; Takano, T.; Takahashi, Y.; Inabe, T.; Nishihara, S.; Inoue, K. Molecular photoconductor with simultaneously photocontrollable localized spins. J. Am. Chem. Soc. 2012, 134, 18656–18666. [Google Scholar] [CrossRef]
- Naito, T.; Karasudani, T.; Ohara, K.; Takano, T.; Takahashi, Y.; Inabe, T.; Furukawa, K.; Nakamura, T. Simultaneous control of carriers and localized spins with light in organic materials. Adv. Mater. 2012, 24, 6153–6157. [Google Scholar] [CrossRef]
- Brunetti, F.G.; López, J.L.; Atienza, C.; Martín, N. π-extended TTF: A versatile molecule for organic electronics. J. Mater. Chem. 2012, 22, 4188–4205. [Google Scholar] [CrossRef]
- Maeda, T.; Mineta, S.; Fujiwara, H.; Nakao, H.; Yagi, S.; Nakazumi, H. Conformationla effect of symmetrical squaraine dyes on the performance of dye-sensitized solar cells. J. Mater. Chem. A 2013, 1, 1303–1309. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Ogasawara, R.; Fujiwara, H. Photocurrent generation based on new tetrathiafulvalene-BODIPY dyads. Tetrahedron Lett. 2013, 54, 1251–1255. [Google Scholar] [CrossRef]
- Takubo, N.; Tajima, N.; Yamamoto, H.M.; Cui, H.; Kato, R. Lattice distortion stabilizes the photoinduced metallic phase in the charge-ordered organic salts (BEDT-TTF)3X2 (X = ReO4, ClO4). Phys. Rev. Lett. 2013, 110, 227401. [Google Scholar] [CrossRef]
- Naito, T.; Karasudani, T.; Nagayama, N.; Ohara, K.; Konishi, K.; Mori, S.; Takano, T.; Takahashi, Y.; Inabe, T.; Kinose, S.; et al. Giant photoconductivity in NMQ[Ni(dmit)2]. Eur. J. Inorg. Chem. 2014, 4000–4009. [Google Scholar] [CrossRef]
- Noma, H.; Ohara, K.; Naito, T. [Cu(dmit)2]2− Building block for molecular conductors and magnets with photocontrollable spin distribution. Chem. Lett. 2014, 43, 1230–1232. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Ogasawara, R.; Kishi, Y.; Fujiwara, H. TTF-fluorene dyads and their M(CN)2− (M = Ag, Au) salts designed for photoresponsive conducting materials. New J. Chem. 2014, 38, 406–418. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Ogasawara, R.; Nakagawa, T.; Fujiwara, H. Photofunctional conductors based on TTF-BODIPY dyads bearing p-phenylene and p-phenylenevinylene spacers. Eur. J. Inorg. Chem. 2014, 2014, 3960–3972. [Google Scholar] [CrossRef]
- Ng, T.-W.; Lo, M.-F.; Fung, M.-K.; Zhang, W.-J.; Lee, C.-S. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics. Adv. Mater. 2014, 26, 5569–5574. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, N.; Yamamoto, T.; Naito, T. Activation energy for photoconduction in molecular crystals. Chem 2015, 2, 74–80. [Google Scholar]
- Mitrano, M.; Cantaluppi, A.; Nicoletti, D.; Kaiser, S.; Perucchi, A.; Lupi, S.; di Pietro, P.; Pontiroli, D.; Riccò, M.; Clark, S.R.; et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 2016, 530, 461–464. [Google Scholar] [CrossRef]
- Noma, H.; Ohara, K.; Naito, T. Direct control of spin distribution and anisotropy in Cu-dithiolene complex anions by light. Inorganics 2016, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, R.; Yamamoto, T.; Ohara, K.; Naito, T. Dye-sensitized molecular charge transfer complexes: Magnetic and conduction properties in the photoexcited states of Ni(dmit)2 salts containing photosensitive dyes. Magnetochemistry 2017, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Yamamoto, T.; Yamamoto, R.; Zhang, M.Y.; Yamamoto, T. A possibly highly conducting state in an optically excited molecular crystal. J. Mater. Chem. C 2019, 7, 9175–9183. [Google Scholar] [CrossRef]
- Naito, T.; Watanabe, N.; Sakamoto, Y.; Miyaji, Y.; Shirahata, T.; Misaki, Y.; Kitou, S.; Sawa, H. A molecular crystal with an unprecedentedly long-lived photoexcited state. Dalton Trans. 2019, 48, 12858–12866. [Google Scholar] [CrossRef]
- Mogensen, J.; Michaels, H.; Roy, R.; Broløs, L.; Kilde, M.D.; Freitag, M.; Nielsen, M.B. Indenofluorene-Extended tetrathiafulvalene scaffolds for dye-sensitized solar cells. Eur. J. Org. Chem. 2020, 2020, 6127–6134. [Google Scholar] [CrossRef]
- Naito, T. Prototype material for new strategy of photon energy storage. Inorganics 2020, 8, 53. [Google Scholar] [CrossRef]
- Tsujimoto, K.; Yamamoto, S.; Fujiwara, H. Synthesis and physical properties of tetrathiafulvalene-8-quinolinato zinc(II) and nickel(II) complexes. Inorganics 2021, 9, 11. [Google Scholar] [CrossRef]
- Schultz, A.J.; Wang, H.H.; Soderholm, L.C.; Sifter, T.L.; Williams, J.M.; Bechgaard, K.; Whangbo, M.-H. Crystal structures of [Au(DDDT)2]0 and [(n-Bu)4N][Ni(DDDT)2] and the ligandlike character of the isoelectronic radicals [Au(DDDT)2]0 and [Ni(DDDT)2]−. Inorg. Chem. 1987, 26, 3757–3761. [Google Scholar] [CrossRef]
- Rindorf, G.; Thorup, N.; Bjørnholm, T.; Bechgaard, K. Structure of bis(benzene-1,2-dithiolato)gold(IV). Acta Crystallogr. Sec. C 1990, 46, 1437–1439. [Google Scholar] [CrossRef]
- Schiødt, N.C.; Bjørnholm, T.; Bechgaard, K.; Neumeier, J.J.; Allgeier, C.; Jacobsen, C.S.; Thorup, N. Structural, electrical, magnetic, and optical properties of bis-benzene-1,2-dithiolate-Au(IV) crystals. Phys. Rev. B 1996, 53, 1773–1778. [Google Scholar] [CrossRef] [Green Version]
- Belo, D.; Alves, H.; Lopes, E.B.; Duarte, M.T.; Gama, V.; Henriques, R.T.; Almeida, M.; Perez-Benitez, A.; Rovira, C.; Veciana, J. Gold complexes with dithiothiphene ligands: A metal based on a neutral molecule. Chem. Eur. J. 2001, 7, 511–519. [Google Scholar] [CrossRef]
- Tanaka, H.; Okano, Y.; Kobayashi, H.; Suzuki, W.; Kobayashi, A. A three-dimensional synthetic metallic crystal composed of single-component molecules. Science 2001, 291, 285–287. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Tanaka, H.; Kobayashi, H. Molecular design and development of single-component molecular metals. J. Mater. Chem. 2001, 11, 2078–2088. [Google Scholar] [CrossRef]
- Dautel, O.J.; Fourmigué, M.; Canadell, E.; Auban-Senzier, P. Fluorine segregation controls the solid-state organization and Electronic properties of Ni and Au dithiolene complexes: Stabilization of a conducting single-component gold dithiolene complex. Adv. Funct. Mater. 2002, 12, 693–698. [Google Scholar] [CrossRef]
- Tanaka, H.; Kobayashi, H.; Kobayashi, A. A conducting crystal based on a single-component paramagnetic molecule, [Cu(dmdt)2] (dmdt = dimethyltetrathiafulvalenedithiolate). J. Am. Chem. Soc. 2002, 124, 10002–10003. [Google Scholar] [CrossRef]
- Suzuki, W.; Fujiwara, E.; Kobayashi, A.; Fujishiro, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Fujiwara, H.; Kobayashi, H. Highly conducting crystals based on single-component gold complexes with extended-TTF dithiolate ligands. J. Am. Chem. Soc. 2003, 125, 1486. [Google Scholar] [CrossRef]
- Kobayashi, A.; Sasa, M.; Suzuki, W.; Fujiwara, E.; Tanaka, H.; Tokumoto, M.; Okano, Y.; Fujiwara, H.; Kobayashi, H. Infrared electronic absorption in a single-component molecular metal. J. Am. Chem. Soc. 2004, 126, 426–427. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, A.; Fujiwara, E.; Kobayashi, H. Single-component molecular metals with extended-TTF dithiolate ligands. Chem. Rev. 2004, 104, 5243–5264. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Tokumoto, M.; Ishibashi, S.; Graf, D.; Choi, E.S.; Brooks, J.S.; Yasuzuka, S.; Okano, Y.; Kobayashi, H.; Kobayashi, A. Observation of three-dimensional Fermi surface in a single-component molecular metal, [Ni(tmdt)2]. J. Am. Chem. Soc. 2004, 126, 10518–10519. [Google Scholar] [CrossRef] [PubMed]
- Lusar, R.; Uriel, S.; Vicent, C.; Clemente-Juan, J.M.; Coronado, E.; Gómez-García, C.J.; Braïda, B.; Canadell, E. Single-component magnetic conductors based on Mo3S7 trinuclear clusters with outer dithiolate ligands. J. Am. Chem. Soc. 2004, 126, 12076–12083. [Google Scholar] [CrossRef]
- Ishibashi, S.; Tanaka, H.; Kohyama, M.; Tokumoto, M.; Kobayashi, A.; Kobayashi, H.; Terakura, K. Ab initio electronic structure calculation for single-component molecular conductor Au(tmdt)2 (tmdt = trimethylenetetrathiafulvalenedithiolate). J. Phys. Soc. Jpn. 2005, 74, 843–846. [Google Scholar] [CrossRef]
- Sasa, M.; Fujiwara, E.; Kobayashi, A.; Ishibashi, S.; Terakura, K.; Okano, Y.; Fujiwara, H.; Kobayashi, H. Crystal structures and physical properties of single-component molecular conductors consisting of nickel and gold complexes with (trifluoromethyl)tetrathiafulvalenedithiolate ligands. J. Mater. Chem. 2005, 15, 155–163. [Google Scholar] [CrossRef]
- Kobayashi, A.; Zhou, B.; Kobayashi, H. Development of metallic crystals composed of single-component molecules. J. Mater. Chem. 2005, 15, 3449–3451. [Google Scholar] [CrossRef]
- Zhou, B.; Shimamura, M.; Fujiwara, E.; Kobayashi, A.; Higashi, T.; Nishibori, E.; Sakata, M.; Cui, H.B.; Takahashi, K.; Kobayashi, H. Magnetic transitions of single-component molecular metal [Au(tmdt)2] and its alloy systems. J. Am. Chem. Soc. 2006, 128, 3872–3873. [Google Scholar] [CrossRef]
- Kobayashi, A.; Okano, Y.; Kobayashi, H. Molecular design and physical properties of single-component molecular metals. J. Phys. Soc. Jpn. 2006, 75, 051002. [Google Scholar] [CrossRef]
- Nunes, J.P.M.; Figueira, M.J.; Belo, D.; Santos, I.C.; Ribeiro, B.; Lopes, E.B.; Henriques, R.T.; Vidal-Gancedo, J.; Veciana, J.; Rovira, C.; et al. Transition metal bisdithiolene complexes based on extended ligands with fused terathiafulvalene and thiophene moieties: New single-component molecular metals. Chem. Eur. J. 2007, 13, 9841–9849. [Google Scholar] [CrossRef]
- Llusar, R.; Triguero, S.; Polo, V.; Vicent, C.; Gómez-García, C.J.; Jeannin, O.; Fourmigué, M. Trinuclear Mo3S7 clusters coordinated to dithiolate or diselenolate ligands and their use in the preparation of magnetic single component molecular conductors. Inorg. Chem. 2008, 47, 9400–9409. [Google Scholar] [CrossRef]
- Seo, H.; Ishibashi, S.; Okano, Y.; Kobayashi, H.; Kobayashi, A.; Fukuyama, H.; Terakura, K. Single-componenet molecular metals as multiband π-d systems. J. Phys. Soc. Jpn. 2008, 77, 023714. [Google Scholar] [CrossRef] [Green Version]
- Hara, Y.; Miyagawa, K.; Kanoda, K.; Shimamura, M.; Zhou, B.; Kobayashi, A.; Kobayashi, H. NMR evidence for antiferromagnetic transition in the single-component molecular conductor, [Au(tmdt)2] at 110 K. J. Phys. Soc. Jpn. 2008, 77, 053706. [Google Scholar] [CrossRef] [Green Version]
- Tenn, N.; Bellec, N.; Jeannin, O.; Piekara-Sady, L.; Auban-Senzier, P.; Iniguez, J.; Canadell, E.; Lorcy, D. A single-component molecular metal based on a thiazole dithiolate gold complex. J. Am. Chem. Soc. 2009, 131, 16961–16967. [Google Scholar] [CrossRef]
- Zhou, B.; Kobayashi, A.; Okano, Y.; Nakashima, T.; Aoyagi, S.; Nishibori, E.; Sakata, M.; Tokumoto, M.; Kobayashi, H. Single-component molecular conductor [Pt(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate)—An advanced molecular metal exhibiting high metallicity. Adv. Mat. 2009, 21, 3596–3600. [Google Scholar] [CrossRef]
- Mercuri, M.L.; Deplano, P.; Pilia, L.; Serpe, A.; Artizzu, F. Interactions modes and physical properties in transition metal chalcogenolene-based molecular materials. Coord. Chem. Rev. 2010, 254, 1419–1433. [Google Scholar] [CrossRef]
- Garreau-de Bonneval, B.; Ching, K.I.M.-C.; Alary, F.; Bui, T.-T.; Valade, L. Neutral d8 metals bis-dithiolene complexes: Synthesis, electronic properties and applications. Coord. Chem. Rev. 2010, 254, 1457–1467. [Google Scholar] [CrossRef]
- Belo, D.; Almeida, M. Transition metal complexes based on thiophene-dithiolene ligands. Coord. Chem. Rev. 2010, 254, 1479–1492. [Google Scholar] [CrossRef]
- Zhou, B.; Yajima, H.; Kobayashi, A.; Okano, Y.; Tanaka, H.; Kumashiro, T.; Nishibori, E.; Sawa, H.; Kobayashi, H. Single-component molecular conductor [Cu(tmdt)2] containing an antiferromagnetic Heisenberg chain. Inorg. Chem. 2010, 49, 6740–6747. [Google Scholar] [CrossRef]
- Perochon, R.; Davidson, P.; Rouzière, S.; Camerel, F.; Piekara-Sady, L.; Guizouarn, T.; Fourmigué, M. Probing magnetic interactions in columnar phases of a paramagnetic gold dithiolene complex. J. Mater. Chem. 2011, 21, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Takagi, R.; Miyagawa, K.; Kanoda, K.; Zhou, B.; Kobayashi, A.; Kobayashi, H. NMR evidence for antiferromagnetic transition in the single-component molecular system [Cu(tmdt)2]. Phys. Rev. B 2012, 85, 184424. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Idobata, Y.; Kobayashi, A.; Cui, H.; Kato, R.; Takagi, R.; Mitagawa, K.; Kanoda, K.; Kobayashi, H. Single-component molecular conductor [Cu(dmdt)2] with three-dimensionally arranged magnetic moments exhibiting a coupled electric and magnetic transition. J. Am. Chem. Soc. 2012, 134, 12724–12731. [Google Scholar] [CrossRef]
- Yzambart, G.; Bellec, N.; Nasser, G.; Jeannin, O.; Roisnel, T.; Fourmigué, M.; Auban-Senzier, P.; Íňiguez, J.; Canadell, E.; Lorcy, D. Anisotropic chemical pressure effects in single-component molecular metals based on radical dithiolene and diselenolene gold complexes. J. Am. Chem. Soc. 2012, 134, 17138–17148. [Google Scholar] [CrossRef]
- Zhou, B.; Yajima, H.; Idobata, Y.; Kobayashi, A.; Kobayashi, T.; Nishibori, E.; Sawa, H.; Kobayashi, H. Single-component layered molecular conductor, [Au(ptdt)2]. Chem. Lett. 2012, 41, 154–156. [Google Scholar] [CrossRef]
- Papavassiliou, G.C.; Anyfantis, G.C.; Mousdis, G.A. Neutral metal 1,2-dithiolenes: Preparations, properties and possible applications of unsymmetrical in comparison to the symmetrical. Crystals 2012, 2, 762–811. [Google Scholar] [CrossRef] [Green Version]
- Filatre-Furcate, A.; Bellec, N.; Jeannin, O.; Auban-Senzier, P.; Fourmigué, M.; Vacher, A.; Lorcy, D. Radical or not radical: Compared structures of metal (M = Ni, Au) bis-dithiolene complexes with a thiazole backbone. Inorg. Chem. 2014, 53, 8681–8690. [Google Scholar] [CrossRef] [PubMed]
- Le Gal, Y.; Roisnel, T.; Auban-Senzier, P.; Guizouarn, T.; Lorcy, D. Hydrogen-bonding interactions in a single-component molecular conductor: A hydroxyethyl-substituted radical gold dithiolene. Inorg. Chem. 2014, 53, 8755–8761. [Google Scholar] [CrossRef]
- Higashino, T.; Jeannin, O.; Kawamoto, T.; Lorcy, D.; Mori, T.; Fourmigué, M. A single-component conductor based on a radical gold dithiolene complex with alkyl-substituted thiophene-2,3-dithiolene ligand. Inorg. Chem. 2015, 54, 9908–9913. [Google Scholar] [CrossRef] [PubMed]
- Mebrouk, K.; Kaddour, W.; Auban-Senzier, P.; Pasquier, C.; Jeannin, O.; Camerel, F.; Fourmigué, M. Molecular alloys of neutral nickel/gold dithiolene complexes in single-component semiconductors. Inorg. Chem. 2015, 54, 7454–7460. [Google Scholar] [CrossRef] [PubMed]
- Filatre-Furcate, A.; Bellec, N.; Jeannin, O.; Auban-Senzier, P.; Fourmigué, M.; Íňiguez, J.; Canadell, E.; Brière, B.; Lorcy, D. Single-component conductors: A sturdy electronic structure generated by bulky substituents. Inorg. Chem. 2016, 55, 6036–6046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branzea, D.G.; Pop, F.; Auban-Senzier, P.; Clérac, R.; Alemany, P.; Canadell, E.; Avarvari, N. Localization versus delocalization in chiral single component conductors of gold bis(dithiolene) complexes. J. Am. Chem. Soc. 2016, 138, 6838–6851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, F.; Avarvari, N. Chiral metal-dithiolene complexes. Coord. Chem. Rev. 2017, 346, 20–31. [Google Scholar] [CrossRef]
- Filatre-Furcate, A.; Roisnel, T.; Fourmigué, M.; Jeannin, O.; Bellec, N.; Auban-Senzier, P.; Lorcy, D. Subtle steric differences impact the structural and conducting properties of radical gold bis(dithiolene) complexes. Chem. Eur. J. 2017, 23, 16004–16013. [Google Scholar] [CrossRef]
- Kato, R.; Suzumura, Y. Novel Dirac electron in single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). J. Phys. Soc. Jpn. 2017, 86, 064705. [Google Scholar] [CrossRef]
- Kato, R.; Cui, H.-B.; Tsumuraya, T.; Miyazaki, T.; Suzumura, Y. Emergence of the Dirac electron system in a single-component molecular conductor under high pressure. J. Am. Chem. Soc. 2017, 139, 1770–1773. [Google Scholar] [CrossRef]
- Suzumura, Y. Anisotropic conductivity of nodal line semimetal in single-component molecular conductor [Pd(dddt)2]. J. Phys. Soc. Jpn. 2017, 86, 124710. [Google Scholar] [CrossRef] [Green Version]
- Suzumura, Y.; Kato, R. Magnetic susceptibility of Dirac electrons in single-component molecular conductor [Pd(dddt)2] under pressure. Jpn. J. Appl. Phys. 2017, 56, 05FB02. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Terauchi, T.; Sumi, S.; Matsushita, Y. Carrier generation and electronic properties of a single-component pure organic metal. Nat. Mater. 2017, 16, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Le Gal, Y.; Roisnel, T.; Auban-Senzier, P.; Bellec, N.; Íñiguez, J.; Canadell, E.; Lorcy, D. Stable Metallic state of a neutral-radical single-component conductor at ambient pressure. J. Am. Chem. Soc. 2018, 140, 6998–7004. [Google Scholar] [CrossRef] [PubMed]
- Tsumuraya, T.; Kato, R.; Suzumura, Y. Effective hamiltonian of topological nodal line semimetal in single-component molecular conductor [Pd(dddt)2] from first-principles. J. Phys. Soc. Jpn. 2018, 87, 113701. [Google Scholar] [CrossRef]
- Suzumura, Y.; Cui, H.; Kato, R. Conductivity and resistivity of Dirac electrons in single-component molecular conductor [Pd(dddt)2]. J. Phys. Soc. Jpn. 2018, 87, 084702. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.A.L.; Vieira, B.J.C.; Andrade, M.M.A.; Santos, I.C.; Rabaça, S.; Lopes, E.B.; Coutinho, J.T.; Pereira, L.C.J.; Almeida, M.; Belo, D. Gold and nickel extended thiophenic-TTF bisdithiolene complexes. Molecules 2018, 23, 424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, B.; Ishibashi, S.; Ishii, T.; Sekine, T.; Takehara, R.; Miyagawa, K.; Kanoda, K.; Nishibori, E.; Kobayashi, A. Single-component molecular conductor [Pt(dmdt)2]—A three-dimensional ambient-pressure molecular Dirac electron system. Chem. Commun. 2019, 55, 3327–3330. [Google Scholar] [CrossRef] [PubMed]
- Hachem, H.; Bellec, N.; Fourmigué, M.; Lorcy, D. Hydrogen bonding interactions in single component molecular conductors based on metal (Ni, Au) bis(dithiolene) complexes. Dalton Trans. 2020, 49, 6056–6064. [Google Scholar] [CrossRef]
- Suzumura, Y.; Kato, R.; Ogata, M. Electric transport of nodal line semimetals in single-component molecular conductors. Crystals 2020, 10, 862. [Google Scholar] [CrossRef]
- Kato, R.; Cui, H.; Minamidate, T.; Yeung, H.H.-M.; Suzumura, Y. Electronic structure of a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) under high pressure. J. Phys. Soc. Jpn. 2020, 89, 124706. [Google Scholar] [CrossRef]
- Cui, H.; Yeung, H.H.-M.; Kawasugi, Y.; Minamidate, T.; Saunders, L.K.; Kato, R. High-pressure crystal structure and unusual magnetoresistance of a single-component molecular conductor [Pd(dddt)2] (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate). Crystals 2021, 11, 534. [Google Scholar] [CrossRef]
- Tajima, N.; Sugawara, S.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K. Transport properties of massless Dirac fermions in an organic conductor α-(BEDT-TTF)2I3 under pressure. EPL 2007, 80, 47002-p1-p5. [Google Scholar] [CrossRef]
- Kobayashi, A.; Suzumura, Y.; Fukuyama, H. Hall effect and orbital diamagnetism in zerogap state of molecular conductor α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2008, 77, 064718. [Google Scholar] [CrossRef]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Montambaux, G.; Piéchon, F.; Fuchs, J.-N.; Goerbig, M.O. Merging of Dirac points in a two-dimensional crystal. Phys. Rev. B 2009, 80, 153412. [Google Scholar] [CrossRef]
- Hirata, M.; Ishikawa, K.; Miyagawa, K.; Kanoda, K.; Tamura, M. 13C NMR study on the charge-disproportionated conducting state in the quasi-two-dimensional organic conductor α-(BEDT-TTF)2I3. Phys. Rev. B 2011, 84, 125133. [Google Scholar] [CrossRef] [Green Version]
- Hiraki, K.-I.; Harada, S.; Arai, K.; Takano, Y.; Takahashi, T.; Tajima, N.; Kato, R.; Naito, T. Local spin susceptibility of α-D2I3 (D = bis(ethylendithio)tetraselenafulvalene (BETS) and bis(ethylendithio) dithiadiselenafulvalene (BEDT-STF)) studied by 77Se NMR. J. Phys. Soc. Jpn. 2011, 80, 014715. [Google Scholar] [CrossRef]
- Suzumura, Y.; Kobayashi, A. Berry curvature of the dirac particle in α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2011, 80, 104701. [Google Scholar] [CrossRef] [Green Version]
- Hosur, P.; Parameswaran, S.A.; Vishwanash, A. Charge transport in Weyl semimetals. Phys. Rev. Lett. 2012, 108, 046602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, N.; Kato, R.; Sugawara, S.; Nishio, Y.; Kajita, K. Interband effects of magnetic field on Hall conductivity in the multilayered massless Dirac fermion system α-(BEDT-TTF)2I3. Phys. Rev. B 2012, 85, 033401. [Google Scholar] [CrossRef] [Green Version]
- Suzumura, Y.; Kobayashi, A. Theory of Dirac electrons in organic conductors. Crystals 2012, 2, 266–283. [Google Scholar] [CrossRef] [Green Version]
- Bácsi, Á.; Virosztek, A. Low-frequency optical conductivity in graphene and in other scale-invariant two-band systems. Phys. Rev. B 2013, 87, 125425. [Google Scholar] [CrossRef] [Green Version]
- Timusk, T.; Carbotte, J.P.; Homes, C.C.; Bosov, D.N.; Sharapov, S.G. Three-dimensional Dirac fermions in quasicrystals seen via optical conductivity. Phys. Rev. B 2013, 87, 235121. [Google Scholar] [CrossRef] [Green Version]
- Monteverde, M.; Goerbig, M.O.; Auban-Senzier, P.; Navarin, F.; Henck, H.; Pasquier, C.R.; Mézière, C.; Batail, P. Coexistence of Dirac and massive carriers in α-(BEDT-TTF)2I3 under hydrostatic pressure. Phys. Rev. B 2013, 87, 245110. [Google Scholar] [CrossRef] [Green Version]
- Suzumura, Y.; Kobayashi, A. Effects of zero line and ferrimagnetic fluctuation on nuclear magnetic resonance for Dirac electrons in molecular conductor α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2013, 82, 054715. [Google Scholar] [CrossRef] [Green Version]
- Kajita, K.; Nishio, Y.; Tajima, N.; Suzumura, Y.; Kobayashi, A. Molecular Dirac fermion systems—Theoretical and experimental approaches. J. Phys. Soc. Jpn. 2014, 83, 072002. [Google Scholar] [CrossRef]
- Wehling, T.O.; Black-Schaffer, A.M.; Balatsky, A.V. Dirac materials. Adv. Phys. 2014, 63, 1–76. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Deng, S.; Liu, Z.; Liu, Z. The rare two-dimensional materials with Dirac cones. Natl. Sci. Rev. 2015, 2, 22–39. [Google Scholar] [CrossRef] [Green Version]
- Fuseya, Y.; Ogata, M.; Fukuyama, H. Transport properties and diamagnetism of Dirac electrons in bismuth. J. Phys. Soc. Jpn. 2015, 84, 012001. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, D.; Carbotte, J.P.; Nateprov, A.A.; Löhle, A.; Dressel, M.; Pronin, A.V. Interband optical conductivity of the [001]-oriented Dirac semimetal Cd3As2. Phys. Rev. B 2016, 93, 121202(R). [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, K.; Sata, Y.; Taniguchi, T.; Hirata, M.; Liu, D.; Tamura, M.; Kanoda, K. Transition from a metal to a massless–Dirac-fermion phase in an organic conductor investigated by 13C NMR. J. Phys. Soc. Jpn. 2016, 85, 073710. [Google Scholar] [CrossRef]
- Matsuno, G.; Omori, Y.; Eguchi, T.; Kobayashi, A. Topological domain wall and valley Hall effect in charge ordered phase of molecular Dirac fermion system α-(BEDT-TTF)2I3. J. Phys. Soc. Jpn. 2016, 85, 094710. [Google Scholar] [CrossRef]
- Hirata, M.; Ishikawa, K.; Miyagawa, K.; Tamura, M.; Berthier, C.; Basko, D.; Kobayashi, A.; Matsuno, G.; Kanoda, K. Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor. Nat. Commun. 2016, 7, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Ishikawa, K.; Takehara, R.; Miyagawa, K.; Tamura, M.; Kanoda, K. Insulating nature of strongly correlated massless Dirac fermions in an organic crystal. Phys. Rev. Lett. 2016, 116, 226401. [Google Scholar] [CrossRef] [Green Version]
- Beyer, R.; Dengl, A.; Peterseim, T.; Wackerow, S.; Ivek, T.; Pronin, A.V.; Schweitzer, D.; Dressel, M. Pressure-dependent optical investigations of α-(BEDT-TTF)2I3: Tuning charge order and narrow gap towards a Dirac semimetal. Phys. Rev. B 2016, 93, 195116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Jiao, Y.; Ma, F.; Bottle, S.; Zhao, M.; Chen, Z.; Du, A. Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin-orbit coupling. Phys. Chem. Chem. Phys. 2017, 19, 5449–5453. [Google Scholar] [CrossRef] [PubMed]
- Hirata, M.; Ishikawa, K.; Matsuno, G.; Kobayashi, A.; Miyagawa, K.; Tamura, M.; Berthier, C.; Kanoda, K. Anomalous spin correlations and excitonic instability of interacting 2D Weyl fermions. Science 2017, 358, 1403–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzumura, Y. Effect of long-range coulomb interaction on NMR shift in massless Dirac electrons of organic conductor. J. Phys. Soc. Jpn. 2018, 87, 024705. [Google Scholar] [CrossRef]
- Tajima, N. Effects of carrier doping on the transport in the Dirac electron system α-(BEDT-TTF)2I3 under high pressure. Crystals 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, D.; Yaresko, A.; Li, W.; Löhle, A.; Hübner, R.; Schilling, M.B.; Shekhar, C.; Felser, C.; Dressel, M.; Pronin, A.V. Optical conductivity of the Wyle semimetal NbP. Phys. Rev. B 2018, 98, 195203. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, Y.; Wang, N.; Xue, Y.; Zuo, Z.; Liu, H.; Li, Y. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744–7803. [Google Scholar] [CrossRef] [PubMed]
- Molle, A.; Grazianetti, C.; Tao, L.; Taneja, D.; Alam, M.H.; Akinwande, D. Silicene, silicene derivatives, and their device applications. Chem. Soc. Rev. 2018, 47, 6370–6387. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Hasan, M.Z. Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: A review. Adv. Phys. X 2018, 3, 569–591. [Google Scholar] [CrossRef]
- Osada, T. Topological properties of τ-type organic conductors with a checkerboard lattice. J. Phys. Soc. Jpn. 2018, 88, 114707. [Google Scholar] [CrossRef]
- Suzumura, Y.; Tsumuraya, T.; Kato, R.; Matsuura, H.; Ogata, M. Role of velocity field and principal axis of tilted Dirac cones in effective Hamiltonian of non-coplanar nodal loop. J. Phys. Soc. Jpn. 2019, 88, 124704. [Google Scholar] [CrossRef]
- Tani, T.; Tajima, N.; Kobayashi, A. Field-angle dependence of interlayer magnetoresistance in organic Dirac electron system α-(BEDT-TTF)2I3. Crystals 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Uykur, E.; Kuntscher, C.A.; Dressel, M. Optical signatures of energy gap in correlated Dirac fermions. NPJ Quantum Mater. 2019, 4, 19. [Google Scholar]
- Mandal, I.; Saha, K. Thermopower in an anisotropic two-dimensional Weyl semimetal. Phys. Rev. B 2020, 101, 045101. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Doi, R.; Suzumura, Y. Exotic Dirac cones on the band structure of α-STF2I3 at ambient temperature and pressure. J. Phys. Soc. Jpn. 2020, 89, 023701. [Google Scholar] [CrossRef] [Green Version]
- Naito, T.; Doi, R. Band structure and physical properties of α-STF2I3: Dirac electrons in disordered conduction sheets. Crystals 2020, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Kobara, R.; Igarashi, S.; Kawasugi, Y.; Doi, R.; Naito, T.; Tamura, M.; Kato, R.; Nishio, Y.; Kajita, K.; Tajima, N. Universal behavior of magnetoresistance in organic Dirac electron systems. J. Phys. Soc. Jpn. 2020, 89, 113703. [Google Scholar] [CrossRef]
- Ohki, D.; Yoshimi, K.; Kobayashi, A. Transport properties of the organic Dirac electron system α-(BEDT-TSeF)2I3. Phys. Rev. B 2020, 102, 235116. [Google Scholar] [CrossRef]
- Tsumuraya, T.; Suzumura, Y. First-principles study of the effective Hamiltonian for Dirac fermions with spin-orbit coupling in two-dimensional molecular conductor α-(BETS)2I3. Eur. Phys. J. B 2021, 94, 17. [Google Scholar] [CrossRef]
- Kitou, S.; Tsumuraya, T.; Sawahata, H.; Ishii, F.; Hiraki, K.-I.; Nakamura, T.; Katayama, N.; Sawa, H. Ambient-pressure Dirac electron system in the quasi-two-dimensional molecular conductor α-(BETS)2I3. Phys. Rev. B 2021, 103, 035135. [Google Scholar] [CrossRef]
- Martin, L.; Turner, S.S.; Day, P.; Guionneau, P.; Haward, J.A.K.; Hibbs, D.E.; Light, M.E.; Hoursthouse, M.B.; Uruichi, M.; Yakushi, K. Crystal chemistry and physical properties of superconducting and semiconducting charge transfer salts of the type (BEDT-TTF)4[AIMIII(C2O4)3]·PhCN (AI = H3O, NH4, K.; MIII = Cr, Fe, Co, Al; BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene). Inorg. Chem. 2001, 40, 1363–1371. [Google Scholar] [CrossRef]
- Minguet, M.; Luneau, D.; Lhotel, E.; Villar, V.; Paulsen, C.; Amabilino, D.B.; Veciana, J. An enantiopure molecular ferromagnet. Angew. Chem. Int. Ed. Engl. 2002, 41, 586–589. [Google Scholar] [CrossRef]
- Réthoré, C.; Fourmigué, M.; Avarvari, N. Tetrathiafulvalene based phosphino-oxazolines: A new family of redox active chiral ligands. Chem. Commun. 2004, 4, 1384–1385. [Google Scholar] [CrossRef] [PubMed]
- Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Murcia-Martínez, A.; Canadell, E. A chiral molecular conductor: Synthesis, structure, and physical properties of [ET]3[Sb2(L-tart)2]·CH3CN (ET = bis(ethylendithio)tetrathiafulvalene; L-tart = (2R,3R)-(+)-tartrate). Inorg. Chem. 2004, 43, 8072–8077. [Google Scholar] [CrossRef] [PubMed]
- Coronado, E.; Galán-Mascarós, J.R.; Gómez-García, C.J.; Martínez-Ferrero, E.; Almeida, M.; Waerenborgh, J.C. Oxalate-based 3D chiral magnets: The series [ZII(bpy)3][ClO4][MIIFeIII (ox)3] (ZII = Fe, Ru; MII = Mn, Fe; bpy = 2,2′-bipyridine; ox = oxalate dianion). Eur. J. Inorg. Chem. 2005, 2064–2070. [Google Scholar] [CrossRef]
- Réthoré, C.; Avarvari, N.; Canadell, E.; Auban-Senzier, P.; Fourmigué, M. Chiral molecular metals: Syntheses, structures, and properties of the AsF6− salts of racemic (±)-, (R)-, and (S)-tetrathiafulvalene-oxazoline derivatives. J. Am. Chem. Soc. 2005, 127, 5748–5749. [Google Scholar] [CrossRef]
- Martin, L.; Day, P.; Akutsu, H.; Yamada, J.-I.; Nakatsuji, S.; Clegg, W.; Harrington, R.W.; Horton, P.N.; Hursthouse, M.B.; McMillan, P.; et al. Metallic molecular crystals containing chiral or racemic guest molecules. CrystEngComm 2007, 9, 865–867. [Google Scholar] [CrossRef]
- Avarvari, N.; Wallis, J.D. Strategies towards chiral molecular conductors. J. Mater. Chem. 2009, 19, 4061–4076. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Brooks, A.C.; Martin, L.; Day, P.; Li, H.; Horton, P.; Male, L.; Wallis, J.D. Novel enantiopure bis(pyrrolo)tetrathiafulvalene donors exhibiting chiral crystal packing arrangements. CrystEngComm 2009, 11, 993–996. [Google Scholar] [CrossRef]
- Martin, L.; Day, P.; Nakatsuji, S.; Yamada, J.; Akutsu, H.; Horton, P. A molecular charge transfer salt of BEDT-TTF containing a single enantiomer of tris(oxalate)chromate(III) crystallised from a chiral solvent. CrystEngComm 2010, 12, 1369–1372. [Google Scholar] [CrossRef]
- Martin, L.; Day, P.; Horton, P.; Nakatsuji, S.; Yamada, J.; Akutsu, H. Chiral conducting salts of BEDT-TTF containing a single enantiomer tris(oxalate)chromate(III) crystallised from a chiral solvent. J. Mater. Chem. 2010, 20, 2738–2742. [Google Scholar] [CrossRef]
- Madalan, A.M.; Réthoré, C.; Fourmigué, M.; Canadell, E.; Lopes, E.B.; Almeida, M.; Auban-Senzier, P.; Avarvari, N. Order versus disorder in chiral tetrathiafulvalene-oxazoline radical-cation salts: Structural and theoretical investigations and physical properties. Chem. Eur. J. 2010, 16, 528–537. [Google Scholar] [CrossRef]
- Yang, S.; Brooks, A.C.; Martin, L.; Day, P.; Pilkington, M.; Clegg, W.; Harrington, R.W.; Russo, L.; Wallis, J.D. New chiral organosulfur donors related to bis(ethylenedithio)tetrathiafulvalene. Tetrahedron 2010, 66, 6977–6989. [Google Scholar] [CrossRef]
- Awheda, I.; Krivickas, S.J.; Yang, S.; Martin, L.; Guziak, M.A.; Brooks, A.C.; Pelletier, F.; Le Kerneau, M.; Day, P.; Horton, P.N.; et al. Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts. Tetrahedron 2013, 69, 8738–8750. [Google Scholar] [CrossRef] [Green Version]
- Biet, T.; Fihey, A.; Cauchy, T.; Vanthuyne, N.; Roussel, C.; Crassous, J.; Avarvari, N. Ethylenedithio-tetrathiafulvalene-helicenes: Electroactive helical precursors with switchable chiroptical properties. Chem. Eur. J. 2013, 19, 13160–13167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pop, F.; Auban-Senzier, P.; Frąckowiak, A.; Ptaszyński, K.; Olejniczak, I.; Wallis, J.D.; Canadell, E.; Avarvari, N. Chirality driven metallic versus semiconducting behavior in a complete series of radical cation salts based on dimethyl-ethylenedithio-tetrathiafulvalene (DM-EDT-TTF). J. Am. Chem. Soc. 2013, 135, 17176–17186. [Google Scholar] [CrossRef] [Green Version]
- Pop, F.; Laroussi, S.; Cauchy, T.; Gomez-Garcia, C.J.; Wallis, J.D.; Avarvari, N. Tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) revisited: Crystal structures, chiroptical properties, theoretical calculations, and a complete series of conducting radical cation salts. Chirality 2013, 25, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Pop, F.; Auban-Senzier, P.; Canadell, E.; Rikken, G.L.J.A.; Avarvari, N. Electrical magnetochiral anisotropy in a bulk chiral molecular conductor. Nat. Commun. 2014, 5, 3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Pop, F.; Melan, C.; Brooks, A.C.; Martin, L.; Horton, P.; Auban-Senzier, P.; Rikken, G.L.J.A.; Avarvari, N.; Wallis, J.D. Charge transfer complexes and radical cation salts of chiral methylated organosulfur donors. CrystEngComm 2014, 16, 3906–3916. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Akutsu, H.; Horton, P.N.; Hursthouse, M.B. Chirality in charge-transfer salts of BEDT-TTF of tris(oxalato)chromate(III). CrystEngComm 2015, 17, 2783–2790. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Akutsu, H.; Horton, P.N.; Hursthouse, M.B.; Harrington, R.W.; Clegg, W. Chiral radical-cation salts of BEDT-TTF containing a single enantiomer of tris(oxalato)aluminate(III) and –chromate(III). Eur. J. Inorg. Chem. 2015, 2015, 1865–1870. [Google Scholar] [CrossRef]
- Atzori, M.; Pop, F.; Auban-Senzier, P.; Clérac, R.; Canadell, E.; Mercuri, M.L.; Avarvari, N. Complete series of chiral paramagnetic molecular conductors based on tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) and chloranilate-bridged heterobimetallic honeycomb layers. Inorg. Chem. 2015, 54, 3643–3653. [Google Scholar] [CrossRef]
- Togawa, Y.; Kousaka, Y.; Inoue, K.; Kishine, J.-I. Symmetry, structure, and dynamics of monoaxial chiral magnets. J. Phys. Soc. Jpn. 2016, 85, 112001. [Google Scholar] [CrossRef]
- Martin, L. Molecular conductors of BEDT-TTF with tris(oxalate)metallate anions. Coord. Chem. Rev. 2018, 376, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Pop, F.; Zigon, N.; Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 2019, 119, 8435–8478. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Tomita, T.; Minami, S.; Fu, M.; Koretsune, T.; Kitatani, M.; Muhammad, I.; Nishio-Hamane, D.; Ishii, R.; Ishii, F.; et al. Anomalous transport due to Wyle fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 2021, 12, 572. [Google Scholar] [CrossRef]
- Pouget, J.-P.; Alemany, P.; Canadell, E. Donor-anion interactions in quarter-filled low-dimensional organic conductors. Mater. Horiz. 2018, 5, 590–640. [Google Scholar] [CrossRef] [Green Version]
- Mroweh, N.; Auban-Senzier, P.; Vanthuyne, N.; Canadell, E.; Avarvari, N. Chiral EDT-TTF precursors with one stereogenic centre: Substituent size modulation of the conducting properties in the (R-EDT-TTF)2PF6 (R = Me or Et) series. J. Mater. Chem. C 2019, 7, 12664–12673. [Google Scholar] [CrossRef] [Green Version]
- Mroweh, N.; Pop, F.; Mézière, C.; Allain, M.; Auban-Senzier, P.; Vanthuyne, N.; Alemany, P.; Canadell, E.; Avarvari, N. Combining chirality and hydrogen bonding in methylated ethylenedithio-tetrathiafulvalene primary diamide precursors and radical cation salts. Cryst. Growth Des. 2020, 20, 2516–2526. [Google Scholar] [CrossRef]
- Mroweh, N.; Mézière, C.; Pop, F.; Auban-Senzier, P.; Alemany, P.; Canadell, E.; Avarvari, N. In search of chiral molecular superconductors: κ-[(S,S)-DM-BEDT-TTF]2ClO4 Revisited. Adv. Mater. 2020, 32, 2002811. [Google Scholar] [CrossRef] [PubMed]
- Mroweh, N.; Mézière, C.; Allain, M.; Auban-Senzier, P.; Canadell, E.; Avarvari, N. Conservation of structural arrangements and 3 :1 stoichiometry in a series of crystalline conductors of TMTTF, TMTSF, BEDT-TTF, and chiral DM-EDT-TTF with the oxo-bis[pentafluorotantalate(v)] dianion. Chem. Sci. 2020, 11, 10078–10091. [Google Scholar] [CrossRef] [PubMed]
- Mroweh, N.; Auban-Senzier, P.; Vanthuyne, N.; Lopes, E.B.; Almeida, M.; Canadell, E.; Avarvari, N. Chiral conducting Me-EDT-TTF and Et-EDT-TTF-based radical cation salts with the perchlorate anion. Crystals 2020, 10, 1069. [Google Scholar] [CrossRef]
- Short, J.I.; Blundell, T.J.; Krivickas, S.J.; Yang, S.; Wallis, J.D.; Akutsu, H.; Nakazawa, Y.; Martin, L. Chiral molecular conductor with an insulator-metal transition close to room temperature. Chem. Commun. 2020, 56, 9497–9500. [Google Scholar] [CrossRef] [PubMed]
- Blundell, T.J.; Brannan, M.; Nishimoto, H.; Kadoya, T.; Yamada, J.-I.; Akutsu, H.; Nakazawa, Y.; Martin, L. Chiral metal down to 4.2 K—A BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2−. Chem. Commun. 2021, 57, 5406–5409. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naito, T. Modern History of Organic Conductors: An Overview. Crystals 2021, 11, 838. https://doi.org/10.3390/cryst11070838
Naito T. Modern History of Organic Conductors: An Overview. Crystals. 2021; 11(7):838. https://doi.org/10.3390/cryst11070838
Chicago/Turabian StyleNaito, Toshio. 2021. "Modern History of Organic Conductors: An Overview" Crystals 11, no. 7: 838. https://doi.org/10.3390/cryst11070838
APA StyleNaito, T. (2021). Modern History of Organic Conductors: An Overview. Crystals, 11(7), 838. https://doi.org/10.3390/cryst11070838