AgSn[Bi1−xSbx]Se3: Synthesis, Structural Characterization, and Electrical Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structures and Compositions of Selenide Samples
Kt = ½ (hc + kc)
lt = lc
Kh = ½ (hc − lc)
lh = hc + kc + lc
3.2. Electrical Properties and Seebeck Coefficients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zeier, W.G.; Zevalkink, A.; Gibbs, Z.; Hautier, G.; Kanatzidis, M.; Snyder, J. Thinking Like a Chemist: Intuition in Thermoelectric Materials. Angew. Chem. Int. Ed. 2016, 55, 6826–6841. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.-D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Minnich, A.J.; Dresselhaus, M.S.; Ren, Z.F.; Chen, G. Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2009, 2, 466–479. [Google Scholar] [CrossRef]
- Vineis, C.H.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970–3980. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.F.; Loo, S.; Guo, F.; Chen, W.; Dyck, J.S.; Uher, C.; Hogan, T.; Polychroniadis, E.K.; Kanatzidis, M.G. Cubic AgPbmSbTe2+ m: Bulk thermoelectric materials with high figure of merit. Science 2004, 303, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Mitra, S.; Zhao, L.-D.; Shen, Y.; Wang, Y.; Felser, C.; Berardan, D. The Role of Ionized Impurity Scattering on the Thermoelectric Performances of Rock Salt AgPbmSnSe2+m. Adv. Funct. Mater. 2016, 26, 5149–5157. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Chang, C.H.; Zhang, X.; Pei, Y.; Li, F.; Yuan, B.; Gong, S.H.; Zhao, L.-D. Thermoelectric transport properties of AgmPb100BimSe100+2m system. J. Mater. Sci. Mater. Electron. 2016, 27, 2712–2717. [Google Scholar] [CrossRef]
- Sootsman, J.; Chung, D.Y.; Kanatzidis, M. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- Kanatzidis, M. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Slade, T.J.; Grovogui, J.; Kuo, J.; Anand, S.; Bailey, T.; Wood, M.; Uher, C.; Snyder, J.; Dravid, V.; Kanatzidis, M. Understanding the thermally activated charge transport in NaPbmSbQm+2 (Q= S, Se, Te) thermoelectrics: Weak dielectric screening leads to grain boundary dominated charge carrier scattering. Energy Environ. Sci. 2020, 13, 1509–1518. [Google Scholar] [CrossRef]
- Dutta, M.; Pal, K.; Waghmare, U.V.; Biswas, K. Bonding heterogeneity and lone pair induced anharmonicity resulted in ultralow thermal conductivity and promising thermoelectric properties in n-type AgPbBiSe3. Chem. Sci. 2019, 10, 4905–4913. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.F.; He, X.R.; Avdeev, M.; Yu, D.H.; Cui, J.L.; Li, H. Preparation and thermoelectric properties of AgPbmSbSem+2 materials. J. Solid State Chem. 2008, 181, 1434–1438. [Google Scholar] [CrossRef]
- Quarez, E.; Hsu, K.-F.; Pcionek, R.; Frangis, N.; Polychroniadis, E.K.; Kanatzidis, M. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPbmSbTe2+m. The myth of solid solutions. J. Am. Chem. Soc. 2005, 127, 9177–9190. [Google Scholar] [CrossRef] [PubMed]
- Lioutas, C.H.; Frangis, N.; Todorov, I.; Chung, D.; Kanatzidis, M. Understanding nanostructures in thermoelectric materials: An electron microscopy study of AgPb18SbSe20 crystals. Chem. Mater. 2010, 22, 5630–5635. [Google Scholar] [CrossRef]
- Luo, Y.; Hao, S.; Cai, S.; Slade, T.J.; Luo, Z.Z.; Dravid, V.P.; Yan, Q.; Kanatzidis, M.G. High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe3 by High-Entropy Engineering. J. Am. Chem. Soc. 2020, 142, 15187–15198. [Google Scholar] [CrossRef]
- Pei, Y.L.; Wu, H.; Sui, J.; Li, J.; Berardan, D.; Barreteau, C.; Pan, L.; Dragoe, N.; Liu, W.S.; He, J.; et al. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy Environ. Sci. 2013, 6, 1750–1755. [Google Scholar] [CrossRef]
- Figueroa-Millon, S.; Álvarez-Serrano, I.; Bérardan, D.; Galdámez, A. Synthesis and transport properties of p-type lead-free AgSnmSbSe2Tem thermoelectric systems. Mater. Chem. Phys. 2018, 211, 321–328. [Google Scholar] [CrossRef]
- Tan, G.; Shi, F.; Sun, H.; Zhao, L.D.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. SnTe–AgBiTe 2 as an efficient thermoelectric material with low thermal conductivity. J. Mater. Chem. A 2014, 2, 20849–20854. [Google Scholar] [CrossRef]
- Falkenbach, O.; Schmitz, A.; Dankwort, T.; Koch, G.; Kienle, L.; Mueller, E.; Schlecht, S. Tin Telluride-Based Nanocomposites of the Type AgSnmBiTe2+m (BTST-m) as Effective Lead-Free Thermoelectric Materials. Chem. Mater. 2015, 27, 7296–7305. [Google Scholar] [CrossRef]
- Xing, Z.B.; Li, Z.Y.; Tan, Q.; Wei, T.R.; Wu, C.F.; Li, J.F. Composition optimization of p-type AgSnmSbTem+ 2 thermoelectric materials synthesized by mechanical alloying and spark plasma sintering. J. Alloys Compd. 2014, 615, 451–455. [Google Scholar] [CrossRef]
- Han, M.K.; Androulakis, J.; Kim, S.J.; Kanatzidis, M.G. Lead-Free Thermoelectrics: High Figure of Merit in p-type AgSnmSbTem+ 2. Adv. Energy Mater. 2012, 2, 157–161. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Rietveld, H.M. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Cryst. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Lutterotti, L. Total Pattern Fitting for the Combined Size–Strain–Stress–Texture Determination in Thin Film Diffraction. Nucl. Inst. Methods Phys. Res. B 2010, 268, 334–340. [Google Scholar] [CrossRef]
- Slade, T.J.; Pal, K.; Grovogui, J.A.; Bailey, T.P.; Male, J.; Khoury, J.F.; Zhou, X.; Chung, D.Y.; Snyder, J.; Uher, C.; et al. Contrasting SnTe–NaSbTe2 and SnTe–NaBiTe2 Thermoelectric Alloys: High Performance Facilitated by Increased Cation Vacancies and Lattice Softening. J. Am. Chem. Soc. 2020, 142, 12524–12535. [Google Scholar] [CrossRef] [PubMed]
- Sudo, K.; Goto, Y.; Sogabe, R.; Hoshi, K.; Miura, A.; Moriyoshi, C.; Kuroiwa, Y.; Mizuguchi, Y. Doping-Induced Polymorph and Carrier Polarity Changes in Thermoelectric Ag(Bi,Sb)Se2 Solid Solution. Inorg. Chem. 2019, 58, 7628–7633. [Google Scholar] [CrossRef]
- Bilc, D.; Mahanti, S.D.; Quarez, E.; Hsu, K.F.; Pcionek, R.; Kanatzidis, M.G. Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPbmSbTe2+m: The Role of Ag-Sb Microstructures. Phys. Rev. Lett. 2004, 93, 146403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, S.; Rao, A.; Gahtori, B.; Bathula, S.; Dhar, A.; Chang, C.C.; Kuo, Y.K. Low-temperature thermoelectric properties of Pb doped Cu2SnSe3. Phys. B Condens. Matter 2017, 520, 7–12. [Google Scholar] [CrossRef]
- Suekuni, K.; Tsuruta, K.; Ariga, T.; Koyano, M. Variable-range-hopping conduction and low thermal conductivity in chalcogenide spinel CuyFe4Sn12X32 (X = S, Se). J. Appl. Phys. 2011, 109, 083709. [Google Scholar] [CrossRef]
- Androulakis, J.; Do, J.-H.; Pcionek, R.; Kong, H.; D’Angelo, J.J.; Hogan, T.; Quarez, E.; Palchik, O.; Uher, C.; Short, J.; et al. Coexistence of Large Thermopower and Degenerate Doping in the Nanostructured Material Ag0.85SnSb1.15Te3. Chem. Mater. 2006, 18, 4719–4721. [Google Scholar] [CrossRef]
σ at RT (S·cm−1) £ | Seebeck Coefficient at RT (μV·K−1) § | Seebeck Coefficient at 450 K (μV·K−1) § * | |
---|---|---|---|
AgSnBiSe3 | 2.46 | +7.39 | +89.6 |
AgSnBi0.8Sb0.2Se3 | 3.22 | +36.2 | - |
AgSnBi0.2Sb0.8Se3 | 2.97 | +49.8 | - |
AgSn2Bi0.8Sb0.2Se4 | 1.22 × 10−3 | +3.93 | +92.0 |
AgSn2Bi0.2Sb0.8Se4 | 2.35 × 10−3 | +4.91 | +114.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Gálvez, P.; Delgado, D.; López, M.L.; Álvarez-Serrano, I.; Moris, S.; Galdámez, A. AgSn[Bi1−xSbx]Se3: Synthesis, Structural Characterization, and Electrical Behavior. Crystals 2021, 11, 864. https://doi.org/10.3390/cryst11080864
Valencia-Gálvez P, Delgado D, López ML, Álvarez-Serrano I, Moris S, Galdámez A. AgSn[Bi1−xSbx]Se3: Synthesis, Structural Characterization, and Electrical Behavior. Crystals. 2021; 11(8):864. https://doi.org/10.3390/cryst11080864
Chicago/Turabian StyleValencia-Gálvez, Paulina, Daniela Delgado, María Luisa López, Inmaculada Álvarez-Serrano, Silvana Moris, and Antonio Galdámez. 2021. "AgSn[Bi1−xSbx]Se3: Synthesis, Structural Characterization, and Electrical Behavior" Crystals 11, no. 8: 864. https://doi.org/10.3390/cryst11080864
APA StyleValencia-Gálvez, P., Delgado, D., López, M. L., Álvarez-Serrano, I., Moris, S., & Galdámez, A. (2021). AgSn[Bi1−xSbx]Se3: Synthesis, Structural Characterization, and Electrical Behavior. Crystals, 11(8), 864. https://doi.org/10.3390/cryst11080864