Investigation on the Effects of Grain Boundary on Deformation Behavior of Bicrystalline Pillar by Crystal Plasticity Finite Element Method
Abstract
:1. Introduction
2. Crystal Plasticity Simulation Model
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hamid, M.; Lyu, H.; Schuessler, B.J.; Wo, P.C.; Zbib, H.M. Modeling and characterization of grain boundaries and slip transmission in dislocation density-based crystal plasticity. Crystals 2017, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Bieler, T.; Eisenlohr, P.; Zhang, C.; Phukan, H.; Crimp, M. Grain boundaries and interfaces in slip transfer. Curr. Opin. Solid State Mater. Sci. 2014, 18, 212–226. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhuang, Z.; Liu, F.; Liu, X.; Liu, Z. Investigation of grain boundary and orientation effects in polycrystalline metals by a dislocation-based crystal plasticity model. Comput. Mater. Sci. 2018, 159, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Wagoner, R.H.; Clark, W.A.T. Dislocation and grain boundary interactions in metals. Acta Mater. 1988, 36, 3231–3241. [Google Scholar] [CrossRef]
- Bayerschen, E.; McBride, A.; Reddy, B.D.; Bohlke, T. Review on slip transmission criteria in experiments and crystal plasticity models. J. Mater. Sci. 2015, 51, 2243–2258. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.W.; Fullwood, D.T.; Wagoner, R.H.; Homer, E.R. Atomistic survey of grain boundary-dislocation interactions in FCC nickel. Comput. Mater. Sci. 2019, 164, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Patala, S. Understanding grain boundaries—The role of crystallography, structural descriptors and machine learning. Comput. Mater. Sci. 2019, 162, 281–294. [Google Scholar] [CrossRef]
- Singh, D.; Parashar, A. Effect of symmetric and asymmetric tilt grain boundaries on the tensile behavior of bcc-Niobium. Comput. Mater. Sci. 2018, 143, 126–132. [Google Scholar] [CrossRef]
- Malyar, N.; Micha, J.; Dehm, G.; Kirchlechner, C. Size effect in bi-crystalline micropillars with a penetrable high angle grain boundary. Acta Mater. 2017, 129, 312–320. [Google Scholar] [CrossRef]
- Malyar, N.; Dehm, G.; Kirchlechner, C. Strain rate dependence of the slip transfer through a penetrable high angle grain boundary in copper. Scr. Mater. 2017, 138, 88–91. [Google Scholar] [CrossRef]
- Kacher, J.; Eftink, B.; Cui, B.; Robertson, I.M. Dislocation interactions with grain boundaries. Curr. Opin. Solid State Mater. Sci. 2014, 18, 227–243. [Google Scholar] [CrossRef]
- Guo, Y.Z.; Li, F.D.; Suo, T.; Tang, Z.B.; Li, Y.L. A close observation on the deformation behavior of bicrystal copper under tensile loading. Mech. Mater. 2013, 62, 80–89. [Google Scholar] [CrossRef]
- Field, D.P.; Alankar, A. Observation of deformation and lattice rotation in a Cu bicrystal. Met. Mater. Trans. A 2010, 42, 676–683. [Google Scholar] [CrossRef]
- Zaefferer, S.; Kuo, J.-C.; Zhao, Z.; Winning, M.; Raabe, D. On the influence of the grain boundary misorientation on the plastic deformation of aluminum bicrystals. Acta Mater. 2003, 51, 4719–4735. [Google Scholar] [CrossRef]
- Chen, C.R.; Li, S.X.; Wang, Z.G. Characteristic of strain and resolved shear stress in a bicrystal with the grain boundary oeroendicular to the tensile axis. Mater. Sci. Eng. A 1998, 247, 15–22. [Google Scholar] [CrossRef]
- Kiener, D.; Motz, C.; Dehm, G. Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng. A 2009, 505, 79–87. [Google Scholar] [CrossRef]
- Tiba, I.; Richeton, T.; Motz, C.; Vehoff, H.; Berbenni, S. Incompatibility stresses at grain boundaries in Ni bicrystalline micropillars analyzed by an anisotropic model and slip activity. Acta Mater. 2015, 83, 227–238. [Google Scholar] [CrossRef]
- Kheradmand, N.; Vehoff, H.; Barnoush, A. An insight into the role of the grain boundary in plastic deformation by means of a bicrystalline pillar compression test and atomistic simulation. Acta Mater. 2013, 61, 7454–7465. [Google Scholar] [CrossRef]
- Kheradmand, N.; Knorr, A.F.; Marx, M.; Deng, Y. Microscopic incompatibility controlling plastic deformation of bicrystals. Acta Mater. 2016, 106, 219–228. [Google Scholar] [CrossRef]
- Weaver, J.S.; Li, N.; Mara, N.A.; Jones, D.R.; Cho, H.; Bronkhorst, C.A.; Fensin, S.J.; Gray, G.T. Slip transmission of high angle grain boundaries in body-centered cubic metals: Micropillar compression of pure Ta single and bi-crystals. Acta Mater. 2018, 156, 356–368. [Google Scholar] [CrossRef]
- Mayeur, J.R.; Beyerlein, I.J.; Bronkhorst, C.A.; Mourad, H.M. Incorporating interface affected zones into crystal plasticity. Int. J. Plast. 2015, 65, 206–225. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zambaldi, C.; Mercier, D.; Eisenlohr, P.; Bieler, T.R.; Crimp, M.A. Quantifying deformation processes near grain boundaries in α titanium using nanoindentation and crystal plasticity modeling. Int. J. Plast. 2016, 86, 170–186. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Guang, Z.; Ke-Shi, Z. Grain boundary effects on the inelastic deformation behavior of bicrystals. Mater. Sci. Eng. A 2003, 361, 83–92. [Google Scholar] [CrossRef]
- Zikry, M.; Kao, M. Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 1996, 44, 1765–1798. [Google Scholar] [CrossRef]
- Wu, Q.; Zikry, M.A. Microstructural modeling of transgranular and intergranular fracture in crystalline materials with coincident site lattice grain-boundaries: Σ3 and Σ17b bicrystals. Mater. Sci. Eng. A 2016, 661, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Livingston, J.D.; Chalmers, B. Multiple slip in bicrystal deformation. Acta Met. 1957, 5, 322–327. [Google Scholar] [CrossRef]
- Koning, M.D.; Miller, R.; Bulatov, V.V.; Abraham, F.F. Modelling grain boundary resistance in intergranular dislocation slip transmission. Philos. Mag. A 2009, 82, 2511–2527. [Google Scholar] [CrossRef]
- Ashmawi, W.M.; Zikry, M.A. Prediction of grain-boundary interfacial mechanisms in polycrystalline materials. J. Eng. Mater. Technol. 2002, 124, 88–96. [Google Scholar] [CrossRef]
- Asaro, R.J.; Rice, J.R. Strain localization in ductile single crystals. J. Mech. Phys. Solids 1977, 25, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Zikry, M.A. An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 1994, 50, 337–350. [Google Scholar] [CrossRef]
- Ashmawi, W.M.; Zikry, M.A. Effects of grain boundaries and dislocation density evolution on large strain deformation modes in FCC crystalline materials. J. Comput. Mater. Des. 2000, 7, 55–62. [Google Scholar] [CrossRef]
- Shanthraj, P.; Zikry, M.A. Dislocation density evolution and interactions in crystalline materials. Acta Mater. 2011, 59, 7695–7702. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, X.; Wang, P.; Lu, S. Crystal plasticity analysis of cylindrical holes and their effects on the deformation behavior of Ni-based single-crystal superalloys with different secondary orientations. Int. J. Plast. 2019, 119, 249–272. [Google Scholar] [CrossRef]
- Hook, R.E.; Hirth, J.P. The deformation behavior of non-isoaxial bicrystals of Fe-3% Si. Acta Met. 1967, 15, 1099–1110. [Google Scholar] [CrossRef]
- Bieler, T.R.; Alizadeh, R.; Peña-Ortega, M.; Llorca, J. An analysis of (the lack of) slip transfer between near-cube oriented grains in pure Al. Int. J. Plast. 2019, 118, 269–290. [Google Scholar] [CrossRef] [Green Version]
Specimen | Crystal | Direction | Crystal Orientation | Crystal | Direction | Crystal Orientation |
---|---|---|---|---|---|---|
BC1 | A1 | [001] | [1 5 3] | B1 | [001] | [6 5 5] |
[100] | [1 −2 3] | [100] | [5 −17 11] | |||
BC2 | A2 | [010] | [1 5 3] | B2 | [010] | [6 5 5] |
[100] | [1 −2 3] | [100] | [5 −17 11] | |||
BC3 | A3 | [100] | [1 5 3] | B3 | [100] | [6 5 5] |
[001] | [1 −2 3] | [001] | [5 −17 11] |
Slip Plane | Slip Direction | Schmid Factor | ||||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | B1 | B2 | B3 | |||
γ1 | 1 1 1 | 0 −1 1 | 0.197 | 0.082 | 0.292 | 0.060 | 0.026 | 0.026 |
γ2 | 1 1 1 | 1 0 −1 | 0.208 | 0.326 | 0.117 | 0.065 | 0.080 | 0.006 |
γ3 | 1 1 1 | −1 1 0 | 0.405 | 0.245 | 0.175 | 0.005 | 0.055 | 0.021 |
γ4 | −1 1 1 | 1 0 1 | 0.337 | 0.326 | 0 | 0.209 | 0.046 | 0.165 |
γ5 | −1 1 1 | 1 1 0 | 0.486 | 0.489 | 0 | 0.209 | 0.323 | 0.124 |
γ6 | −1 1 1 | 0 −1 1 | 0.149 | 0.163 | 0 | 0.022 | 0.277 | 0.289 |
γ7 | 1 −1 1 | 0 1 1 | 0.069 | 0.082 | 0.175 | 0.285 | 0.101 | 0.186 |
γ8 | 1 −1 1 | 1 1 0 | 0.052 | 0.245 | 0.175 | 0.313 | 0.059 | 0.371 |
γ9 | 1 −1 1 | 1 0 −1 | 0.017 | 0.326 | 0.350 | 0.028 | 0.160 | 0.186 |
γ10 | 1 1 −1 | 0 1 1 | 0.278 | 0.163 | 0.117 | 0.285 | 0.412 | 0.129 |
γ11 | 1 1 −1 | 1 0 1 | 0.146 | 0.326 | 0.467 | 0.313 | 0.037 | 0.251 |
γ12 | 1 1 −1 | −1 1 0 | 0.132 | 0.489 | 0.350 | 0.029 | 0.437 | 0.475 |
Parameter | Symbol | Value | Unit | Reference |
---|---|---|---|---|
Elastic moduli | C11 | 246,500 | MPa | |
C12 | 147,300 | MPa | ||
C44 | 124,700 | MPa | ||
Reference strain rate | 0.001 | 1/s | [33] | |
Rate sensitivity parameter | m | 20 | 1 | [33] |
Static yield stress | τy | 120 | MPa | |
Interaction coefficient | ααβ | 0.2 | 1 | [32] |
ααα | 0.6 | 1 | [32] | |
Initial dislocation density | ρim0 | 10,000 | mm−2 | [24] |
ρm0 | 10 | mm−2 | [24] | |
Dislocation density evolution coefficient | gsour | 4.52 × 10−5 | 1 | |
gminter | 5.53 | 1 | ||
gimmob | 1.626 × 10−3 | 1 | ||
grecor | 6.67 | 1 | [24] | |
Burgers vector | b | 3.0 × 10−7 | mm | [24] |
Sample | BC1 | BC2 | BC3 | |||
---|---|---|---|---|---|---|
Crystal | A1 | B1 | A2 | B2 | A3 | B3 |
E(MPa) | 182,000 | 258,000 | 156,000 | 205,000 | 208,300 | 203,600 |
σ/σT | 0.827 | 1.173 | 0.864 | 1.136 | 1.011 | 0.989 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Wang, P.; Lu, S. Investigation on the Effects of Grain Boundary on Deformation Behavior of Bicrystalline Pillar by Crystal Plasticity Finite Element Method. Crystals 2021, 11, 923. https://doi.org/10.3390/cryst11080923
Zhou H, Wang P, Lu S. Investigation on the Effects of Grain Boundary on Deformation Behavior of Bicrystalline Pillar by Crystal Plasticity Finite Element Method. Crystals. 2021; 11(8):923. https://doi.org/10.3390/cryst11080923
Chicago/Turabian StyleZhou, Hui, Pei Wang, and Shanping Lu. 2021. "Investigation on the Effects of Grain Boundary on Deformation Behavior of Bicrystalline Pillar by Crystal Plasticity Finite Element Method" Crystals 11, no. 8: 923. https://doi.org/10.3390/cryst11080923
APA StyleZhou, H., Wang, P., & Lu, S. (2021). Investigation on the Effects of Grain Boundary on Deformation Behavior of Bicrystalline Pillar by Crystal Plasticity Finite Element Method. Crystals, 11(8), 923. https://doi.org/10.3390/cryst11080923