Thermoelastic Properties and Elastocaloric Effect in Rapidly Quenched Ribbons of Ti2NiCu Alloy in the Amorphous and Crystalline State
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thermoelastic Properties of Ti2NiCu Melt Spun Ribbon
3.2. ECE in Rapidly Quenched Ribbons
3.2.1. ECE in Amorphous Rapidly Quenched Ti2NiCu Ribbons
3.2.2. ECE in the Polycrystalline Ti2NiCu Ribbons
4. Discussion
5. Theory
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moya, X.; Kar-Narayan, S.; Mathur, N.D. Caloric materials near ferroic phase transitions. Nat. Mater. 2014, 13, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, S.A.; Myalikgulyev, G.; Annarazov, M.P.; Tyurin, A.L.; Myndyev, R.W.; Akopyan, S.A. Giant elastocaloric effect in FeRh alloy. Phys. Lett. A 1992, 171, 234–236. [Google Scholar] [CrossRef]
- Liang, X.; Xiao, F.; Jin, M.; Jin, X.; Fukuda, T.; Kakeshita, T. Elastocaloric effect induced by the rubber-like behavior of nanocrystalline wires of a Ti-50.8 Ni (at.%) alloy. Scr. Mater. 2017, 134, 42–46. [Google Scholar] [CrossRef]
- Sehitoglu, H.; Wu, Y.; Ertekin, E. Elastocaloric effects in the extreme. Scr. Mater. 2018, 148, 122–126. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y.; Zhang, C.; Li, S.; Wu, E.; Li, W.; Li, L. The elastocaloric effect of Ni50.8Ti49.2 shape memory alloys. J. Phys. D Appl. Phys. 2018, 51, 132018. [Google Scholar] [CrossRef]
- Ossmer, H.; Chluba, C.; Kauffmann-Weiss, S.; Quandt, E.; Kohl, M. TiNi-based films for elastocaloric microcooling—Fatigue life and device performance. APL Mater. 2016, 4, 62. [Google Scholar] [CrossRef]
- Bechtold, C.; Chluba, C.; Lima de Miranda, R.; Quandt, E. High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. APL Mater. 2012, 101, 9. [Google Scholar] [CrossRef]
- Cong, D.; Xiong, W.; Planes, A.; Ren, Y.; Mañosa, L.; Cao, P.; Nie, Z.; Sun, X.; Yang, Z.; Hong, X.; et al. Colossal Elastocaloric Effect in Ferroelastic Ni-Mn-Ti Alloys. Phys. Rev. Lett. 2019, 122, 252019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mañosa, L.; Planes, A. Materials with Giant Mechanocaloric Effects: Cooling by Strength. Adv. Mater. 2017, 29, 1603607. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, D.; Liu, J. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy. Sci. Rep. 2016, 6, 25500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Schütze, A.; Seelecke, S. Elastocaloric cooling processes: The influence of material strain and strain rate on efficiency and temperature span. APL Mater. 2016, 4, 064107. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Sebald, G.; Guyomar, D. Temperature dependence of the elastocaloric effect in natural rubber. Phys. Lett. A 2017, 381, 2112–2116. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Liu, J. Elastocaloric effect and superelastic stability in Ni–Mn–In–Co polycrystalline Heusler alloys: Hysteresis and strain-rate effects. Sci. Rep. 2017, 7, 2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kareev, S.I.; Glezer, A.M.; Shelyakov, A.V. Shape memory effect in Ti-Ni-Cu alloy caused by Joule heating. Bull. Russ. Acad. Sci. Phys. 2009, 73, 1293–1295. [Google Scholar]
- Kourov, N.I.; Korolev, A.V.; Pushin, V.G.; Koledov, V.V.; Shavrov, V.G.; Khovailo, V.V. Electrical and magnetic properties of the rapidly quenched Ni2.16Mn0.84Ga alloy with the shape-memory effect. Phys. Metal. Metallograf. 2005, 99, 4, 376. [Google Scholar]
- Pushin, V.G.; Kourov, N.I.; Korolev, A.V.; Kazantsev, V.A.; Yurchenko, L.I.; Koledov, V.V.; Shavrov, V.G.; Khovailo, V.V. Effect of rapid quenching on the physical properties of the Ni54Mn21Ga25 alloy. Phys. Metal. Metallograf. 2005, 99, 401–410. [Google Scholar]
- Kamantsev, A.P.; Koledov, V.V.; Mashirov, A.V.; Dilmieva, E.T.; Shavrov, V.G.; Cwik, J.; Los, A.S.; Nizhankovskii, V.I.; Rogacki, K.; Tereshina, I.S.; et al. Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe. J. Appl. Phisics 2015, 117, 163903. [Google Scholar]
- Irzhak, A.V.; Lega, P.V.; Zhikharev, A.M.; Koledov, V.V.; Orlov, A.P.; Kuchin, D.S.; Tabachkova, N.Y.; Dikan, V.A.; Shelyakov, A.V.; Berezin, M.Y.; et al. Shape memory effect in nanosized Ti2NiCu alloy-based composites. Rep. Acad. Sci. 2017, 472, 139. [Google Scholar] [CrossRef]
- Lega, P.; Koledov, V.; Orlov, A.; Kuchin, D.; Frolov, A.; Shavrov, V.; Khovaylo, V. Composite Materials Based on Shape-Memory Ti2NiCu Alloy for Frontier Micro- and Nanomechanical Applications. Adv. Eng. Mater. 2017, 19, 1700154. [Google Scholar] [CrossRef]
- von Gratowski, S.V.; Koledov, V.V.; Shavrov, V.G.; Petrenko, S.F.; Irzhak, A.V.; Shelyakov, A.V.; Jede, R. Advanced System for Nanofabrication and Nanomanipulation Based on Shape Memory Alloy. In Frontiers in Materials Processing, Applications, Research and Technology; Springer: Singapore, 2018; pp. 135–154. [Google Scholar] [CrossRef]
- Belyaev, S.P.; Istomin-Kastrovsky, V.V.; Koledov, V.V.; Kuchin, D.S.; Resnina, N.N.; Tabachkova, N.Y.; Shavrov, V.G.; Shelyakov, A.V.; Ivanov, S.E. Structure and functional properties of rapidly quenched ribbons of Ti2NiCu alloy with different fractions of the crystalline phase. Bull. Russ. Acad. Sci. Phys. 2011, 75, 1078. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Course of Theoretical Physics Vol 7: Theory and Elasticity; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morozov, E.; Kuznetsov, D.; Kalashnikov, V.; Victor, K.; Shavrov, V. Thermoelastic Properties and Elastocaloric Effect in Rapidly Quenched Ribbons of Ti2NiCu Alloy in the Amorphous and Crystalline State. Crystals 2021, 11, 949. https://doi.org/10.3390/cryst11080949
Morozov E, Kuznetsov D, Kalashnikov V, Victor K, Shavrov V. Thermoelastic Properties and Elastocaloric Effect in Rapidly Quenched Ribbons of Ti2NiCu Alloy in the Amorphous and Crystalline State. Crystals. 2021; 11(8):949. https://doi.org/10.3390/cryst11080949
Chicago/Turabian StyleMorozov, Evgeny, Dmitry Kuznetsov, Vladimir Kalashnikov, Koledov Victor, and Vladimir Shavrov. 2021. "Thermoelastic Properties and Elastocaloric Effect in Rapidly Quenched Ribbons of Ti2NiCu Alloy in the Amorphous and Crystalline State" Crystals 11, no. 8: 949. https://doi.org/10.3390/cryst11080949
APA StyleMorozov, E., Kuznetsov, D., Kalashnikov, V., Victor, K., & Shavrov, V. (2021). Thermoelastic Properties and Elastocaloric Effect in Rapidly Quenched Ribbons of Ti2NiCu Alloy in the Amorphous and Crystalline State. Crystals, 11(8), 949. https://doi.org/10.3390/cryst11080949