The Deposit Formation Mechanism in Coal-Fired Rotary Kiln for Iron Ore Pellet Production: A Review
Abstract
:1. Introduction
2. Formation Mechanism of Deposit in Coal-Fired Rotary Kiln
2.1. Description of Grate-Kiln Process and Equipment
2.2. The Distribution of Deposit in Coal-Fired Rotary Kiln
2.3. The Agglomerating Mechanism of Deposit
2.4. The Microstructure of Deposit
2.5. The Adhesion of Deposit to Refractory Bricks
2.6. The Mechanism of the Deposit Formation
3. The Factors Affecting Deposit Formation
3.1. Effect of Pellet Powder
3.2. Effect of Coal Ash
3.3. Effect of Pulverized Coal Combustion Efficiency
3.4. Effect of Roasting Temperature
3.5. Effect of FeO Content
3.6. Effect of Alkali Metals Content
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalra, G.D. Iron ore pellets as a solution to steel—Making raw materials at the crossroad and dominant constituent of basket of iron ores available for export in the future. Miner. Econ. 2014, 26, 127–141. [Google Scholar] [CrossRef]
- Fan, X.H.; Jun, L.I.; Chen, X.L.; Wang, Y.; Gan, M. Temperature Field Simulation Model for Rotary Kiln of Iron Ore Oxidized Pellet. J. Iron Steel Res. Int. 2013, 20, 16–19. [Google Scholar] [CrossRef]
- Osintsev, K.V.; Prikhodko, I.S. On the issue of mathematical modeling of rotary kiln operation in order to reduce fuel consumption. In Proceedings of the International Conference on Mechanical Engineering, Automation and Control Systems 2018, Beijing, China, 26–28 December 2018; Zykova, A., Martyushev, N., Eds.; Iop Publishing Ltd.: Bristol, UK, 2019; Volume 560. [Google Scholar]
- Forsmo, S.P.E.; Forsmo, S.E.; Samskog, P.O.; Björkman, B.M.T. Mechanisms in oxidation and sintering of magnetite iron ore green pellets. Powder Technol. 2008, 183, 247–259. [Google Scholar] [CrossRef]
- Uenaka, T.; Isako, H.; Tokutake, K.; Aketa, K. Coal firing in pelletizing plant developed by kobe steel. Ironmak. Steelmak. 1983, 10, 234–239. [Google Scholar]
- Si, J.F.; Jia, Y.Z.; Liu, J.T.; Liang, D.L.; Hou, J.J. Structure of rings and ring-forming mechanism of rotary pelletizing kiln. Kang T’ieh/Iron Steel 2014, 49, 17–21, 27. [Google Scholar]
- Chatterjee, A.; Mukhopadhyay, P.K. Flow of materials in rotary kilns used for sponge iron manufacture: Part III. Effect of ring formation within the kiln. Metall. Trans. B 1983, 14, 393–399. [Google Scholar] [CrossRef]
- Jiang, T.; He, G.Q.; Gan, M.; Li, G.H.; Fan, X.H.; Yuan, L.S. Forming mechanism of rings in rotary-kiln for oxidized pellet. In Proceedings of the 5th International Congress on the Science and Technology of Ironmaking, ICSTI 2009, Shanghai, China, 20–22 October 2009; pp. 292–297. [Google Scholar]
- Cabielles, M.; Montes-Moran, M.A.; Garcia, A.B. Structural Study of Graphite Materials Prepared by HTT of Unburned Carbon Concentrates from Coal Combustion Fly Ashes. Energy Fuels 2008, 22, 1239–1243. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.; Chen, F.; He, Y.; Jiang, T.; Zheng, F. Combustion Reaction of Pulverized Coal on the Deposit Formation in the Kiln for Iron Ore Pellet Production. Energy Fuels 2016, 30, 6123–6131. [Google Scholar] [CrossRef]
- Thibodeau, E.; Gheribi, A.E.; Jung, I.H. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts. Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci. 2016, 47, 1187–1202. [Google Scholar] [CrossRef]
- Stjernberg, J.; Jonsson, C.Y.C.; Wiinikka, H.; Lindblom, B.; Boström, D.; Öhman, M. Deposit Formation in a Grate–Kiln Plant for Iron-Ore Pellet Production. Part 2: Characterization of Deposits. Energy Fuels 2013, 27, 6171–6184. [Google Scholar] [CrossRef]
- Jonsson, C.Y.C.; Stjernberg, J.; Wiinikka, H.; Lindblom, B.; Boström, D.; Öhman, M. Deposit Formation in a Grate-Kiln Plant for Iron-Ore Pellet Production. Part 1: Characterization of Process Gas Particles. Energy Fuels 2013, 27, 6159–6170. [Google Scholar] [CrossRef]
- Min, X.; Yang, Y.; Li, Q.; Xu, B.; Jiang, T.; Liu, X.; Zhang, Y. Comparison of the Ringing Characteristics Between Acid and Alkaline Iron Ore Pellets Powder in Kiln. In 8th International Symposium on High-Temperature Metallurgical Processing; Springer: Cham, Switzerland, 2017; pp. 651–659. [Google Scholar]
- Buzunov, V.Y.; Tayanchin, A.S.; Cherskikh, I.V.; Polovnikov, V.M. Quality of Russian Petroleum Cokes for Aluminum Production. In TMS Light Metals; Bearne, G., Ed.; Minerals, Metals and Materials Society: Pittsburgh, PA, USA, 2009; pp. 927–931. [Google Scholar]
- Buzunov, V.; Mann, V.; Khramenko, S.; Johnson, J. Influence of Calcination Temperature and Sulfur Level on Coke Properties. In Light Metals 2017; Ratvik, A.P., Ed.; Springer: Cham, Switezerland, 2017; pp. 1151–1156. [Google Scholar] [CrossRef]
- Niiniskorpi, V. Iss. Grate—Kiln—Cooler. Where to oxidize and why? In Proceedings of the 61st Ironmaking Conference Proceedings, Nashville, TN, USA, 10–13 March 2002; Iron & Steel Society: Warrendale, OR, USA, 2002; Volume 61, pp. 533–545. [Google Scholar]
- Han, J.X.; IEEE. The Research on the Automatic Control System of Pellet Production of Grat, Rotary Kiln and Annular Cooler. In Proceedings of the 2012 24th Chinese Control and Decision Conference, Taiyuan, China, 23–25 May 2012; IEEE: New York, NY, USA, 2012; pp. 4184–4185.
- Stjernberg, J.; Isaksson, O.; Ion, J.C. The grate-Kiln induration machine: History, advantages, and drawbacks, and outline for the future. J. S. Afr. Inst. Min. Metall. 2015, 115, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.J.; Liang, L.S.; Tang, S.M.; Luo, Y.H.; Zhao, Y.L.; Song, S.X. A Case Study on Large-scale Grate-kiln Production of Fluxed Iron Oxide Pellets: Zhanjiang Pelletizing Plant of BaoSteel. Miner. Process. Extr. Metall. Rev. 2019, 40, 123–128. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Graham, U.M.; Ward, C.R.; Kostova, I.J.; Maroto-Valer, M.M.; Dai, S.F. Coal-derived unburned carbons in fly ash: A review. Int. J. Coal Geol. 2017, 179, 11–27. [Google Scholar] [CrossRef]
- Akiyama, K.; Pak, H.; Takubo, Y.; Tada, T.; Ueki, Y.; Yoshiie, R.; Naruse, I. Ash deposition behavior of upgraded brown coal in pulverized coal combustion boiler. Fuel Process. Technol. 2011, 92, 1355–1361. [Google Scholar] [CrossRef]
- Song, X.Y.; Fan, Q. The Analysis of Rotary Kiln Thermal Characteristics Based on ANSYS and FLUENT. In Research in Materials and Manufacturing Technologies, Pts 1-3; Kim, Y.H., Yarlagadda, P., Eds.; Trans Tech Publications Ltd.: Durnten-Zurich, Switzerland, 2014; Volume 834, pp. 1523–1528. [Google Scholar]
- Li, G.F.; Liu, Z.; Jiang, G.Z.; Liu, H.H.; Xiong, H.G. Numerical simulation of the influence factors for rotary kiln in temperature field and stress field and the structure optimization. Adv. Mech. Eng. 2015, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Umadevi, T.; Lobo, N.F.; Desai, S.; Mahapatra, P.C.; Sah, R.; Prabhu, M. Optimization of Firing Temperature for Hematite Pellets. ISIJ Int. 2013, 53, 1673–1682. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-F.; Wang, S.; He, Y.; Jiang, T.; Chen, F.; Zheng, F.-Q. Deposit formation mechanisms in a pulverized coal fired grate for hematite pellet production. Fuel Process. Technol. 2017, 161, 33–40. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.F.; Fan, J.J.; Jiang, T.; Chen, F.; Zheng, F.Q.; Yang, L.Z. Deposits in a coal fired grate-kiln plant for hematite pellet production: Characterization and primary formation mechanisms. Powder Technol. 2018, 333, 122–137. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, J.L.; Liu, Z.J. Rings growth behavior within a pre-reduction rotary kiln: The layered structure and formation mechanism. Powder Technol. 2019, 356, 73–82. [Google Scholar] [CrossRef]
- Van Dyk, J.C.; Benson, S.A.; Laumb, M.L.; Waanders, B. Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel 2009, 88, 1057–1063. [Google Scholar] [CrossRef]
- Fu, X.H.; Chen, Z.Z.; Xu, X.Y.; He, L.H.; Song, Y.F. Deposits in Gas-Fired Rotary Kiln for Limonite Magnetization-Reduction Roasting: Characteristics and Formation Mechanism. Metals 2019, 9, 764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.X.; Wu, X.J.; Zhou, T.; Chen, Y.S.; Hou, N.P.; Piao, G.L.; Kobayashi, N.; Itaya, Y.; Mori, S. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion. Proc. Combust. Inst. 2011, 33, 2853–2861. [Google Scholar] [CrossRef]
- Stjernberg, J.; Ion, J.C.; Antti, M.L.; Nordin, L.O.; Lindblom, B.; Oden, M. Extended studies of degradation mechanisms in the refractory lining of a rotary kiln for iron ore pellet production. J. Eur. Ceram. Soc. 2012, 32, 1519–1528. [Google Scholar] [CrossRef]
- Zhong, Q.; Yang, Y.; Jiang, T.; Li, Q.; Xu, B. Effect of coal ash on ring behavior of iron-ore pellet powder in kiln. Powder Technol. 2018, 323, 195–202. [Google Scholar] [CrossRef]
- Xu, G.T.; Li, W.; Chen, X.D.; Zhao, R.K.; Shu, F.H.; Zhang, H.L. Study on ring-forming reasons and refractories used for large-scale gratekiln. Res. Iron Steel 2009, 37, 34–39. [Google Scholar]
- Stjernberg, J.; Nordin, L.O.; Ion, J.C. Evaluation of refractory castables and coatings used in pre-heat zone of grate-kiln for iron ore pellet production. Ironmak. Steelmak. 2015, 42, 274–281. [Google Scholar] [CrossRef]
- Nie, J.H.; Zhang, Z.Y.; Qiao, W.; Sun, J.Y.; Chen, J.F.; Zhou, Q.; Linag, Y.H. Characteristics of the pellet rotary kiln ring. J. Wuhan Univ. Sci. Technol. 2010, 33, 527–531. [Google Scholar]
- Mullinger, P.; Jenkins, B. Industrial and Process Furnaces: Principles, Design and Operation, 2th ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Tsweleng, D. Low-cement chrome-oxide-free castable for use in ironmaking rotary kilns. J. S. Afr. Inst. Min. Metall. 2013, 113, 651–658. [Google Scholar]
- Bilen, M.; Kizgut, S.; Akkaya, B. Prediction of unburned carbon in bottom ash in terms of moisture content and sieve analysis of coal. Fuel Process. Technol. 2015, 138, 236–242. [Google Scholar] [CrossRef]
- Murphy, J.J.; Shaddix, C.R. Combustion kinetics of coal chars in oxygen-enriched environments. Combust. Flame 2006, 144, 710–729. [Google Scholar] [CrossRef]
- McLennan, A.R.; Bryant, G.W.; Stanmore, B.R.; Wall, T.F. Ash formation mechanisms during of combustion in reducing conditions. Energy Fuels 2000, 14, 150–159. [Google Scholar] [CrossRef]
- Zhong, R.; Yi, L.; Huang, Z.; Shen, X.; Jiang, T. Sticking mechanism of low grade iron ore-coal composite in rotary kiln reduction. Powder Technol. 2018, 339, 625–632. [Google Scholar] [CrossRef]
- Wang, S.; Guo, Y.F.; Fan, J.J.; He, Y.; Jiang, T.; Chen, F.; Zheng, F.Q.; Yang, L.Z. Initial stage of deposit formation process in a coal fired grate-rotary kiln for iron ore pellet production. Fuel Process. Technol. 2018, 175, 54–63. [Google Scholar] [CrossRef]
- Kim, H.; Kim, W.H.; Park, J.H.; Min, D.J. A Study on the Effect of Na2O on the Viscosity for Ironmaking Slags. Steel Res. Int. 2010, 81, 17–24. [Google Scholar] [CrossRef]
- Feng, J.-X.; Xie, Z.-Y.; Chen, Y.-M. Temperature Distribution of Iron Ore Pellet Bed in Grate. J. Iron Steel Res. Int. 2012, 19, 7–11. [Google Scholar] [CrossRef]
- Sefidari, H.; Wiinikka, H.; Lindhlom, B.; Nordin, L.O.; Wu, G.; Yazhenskikh, E.; Muller, M.; Ma, C.; Ohman, M. Comparison of high-rank coals with respect to slagging/deposition tendency at the transfer-chute of iron-ore pelletizing grate-kiln plants: A pilot-scale experimental study accompanied by thermochemical equilibrium modeling and viscosity estimations. Fuel Process. Technol. 2019, 193, 244–262. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Zhang, Y.; Li, Q.; Xu, B.; Jiang, T. Cohering Behavior of Iron Ore Pellet Powder in Kiln by a Novel Natural Stacking Method. In 8th International Symposium on High-Temperature Metallurgical Processing; Springer: Cham, Switzerland, 2017; pp. 251–259. [Google Scholar]
- Huffman, G.P.; Huggins, F.E.; Shah, N.; Shah, A. Behavior of basic elements during coal combustion. Prog. Energy Combust. Sci. 1990, 16, 243–251. [Google Scholar] [CrossRef]
- Buhre, B.J.P.; Hinkley, J.T.; Gupta, R.P.; Nelson, P.F.; Wall, T.F. Fine ash formation during combustion of pulverised coal-coal property impacts. Fuel 2006, 85, 185–193. [Google Scholar] [CrossRef]
- Buhre, B.J.P.; Hinkley, J.T.; Gupta, R.P.; Wall, T.F.; Nelson, P.F. Submicron ash formation from coal combustion. Fuel 2005, 84, 1206–1214. [Google Scholar] [CrossRef]
- Bandyopadhyay, R.; Gupta, S.; Bo, L.; Jonsson, S.; French, D.; Sahajwalla, V. Assessment of ash deposition tendency in a rotary kiln using Thermo-mechanical analysis and Experimental Combustion Furnace. Fuel 2014, 135, 301–307. [Google Scholar] [CrossRef]
- Karamanov, A.; Pisciella, P.; Cantalini, C.; Pelino, M. Influence of Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses made with industrial wastes. J. Am. Ceram. Soc. 2000, 83, 3153–3157. [Google Scholar] [CrossRef]
- Sefidari, H.; Lindblom, B.; Wiinikka, H.; Nordin, L.O.; Mouzon, J.; Bhuiyan, I.U.; Ohman, M. The effect of disintegrated iron-ore pellet dust on deposit formation in a pilot-scale pulverized coal combustion furnace. Part I: Characterization of process gas particles and deposits. Fuel Process. Technol. 2018, 177, 283–298. [Google Scholar] [CrossRef]
- Qi, L.W.; Wang, B.; Ma, W.; Yang, Y.B.; Li, S. Study on influences of firing coal quality on ringing of rotary kiln. Sinter. Pelletizing 2016, 41, 28–32. [Google Scholar]
- Bilen, M.; Kizgut, S. Modeling of unburned carbon in fly ash and importance of size parameters. Fuel Process. Technol. 2016, 143, 7–17. [Google Scholar] [CrossRef]
- Hurt, R.; Sun, J.-K.; Lunden, M. A Kinetic Model of Carbon Burnout in Pulverized Coal Combustion. Combust. Flame 1998, 113, 181–197. [Google Scholar] [CrossRef]
- Fan, X.H.; Yang, G.M.; Chen, X.L.; Lu, G.; Huang, X.X.; Xi, L. Predictive models and operation guidance system for iron ore pellet induration in traveling grate–rotary kiln process. Comput. Chem. Eng. 2015, 79, 80–90. [Google Scholar] [CrossRef]
- Bale, C.; Chartrand, P.; Degterov, S.A.; Eriksson, G.; Hack, K.; Ben Mahfoud, R.; Melancon, J.; Pelton, A.D.; Petersen, S. FactSage thermochemical software and databases. Calphad-Comput. Coupling Ph. Diagr. Thermochem. 2002, 26, 189–228. [Google Scholar] [CrossRef]
- Fan, X.H.; Wang, Y.; Chen, X.L. Mathematical models and expert system for grate-kiln process of iron ore oxide pellet production. Part II: Rotary kiln process control. J. Cent. South. Univ. 2012, 19, 1724–1727. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, X.H.; Chen, X.L. Expert System for Control Guidance of Grate-Kiln Pellet Production. ISIJ Int. 2013, 53, 399–402. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, N.S.; Lahiri, A.K. Studies on the reduction of hematite by carbon. Metall. Trans. B 1977, 8, 175–178. [Google Scholar] [CrossRef]
- Huffman, G.P.; Huggins, F.E.; Dunmyre, G.R. Investigation of the high-temperature behaviour of coal ash in reducing and oxidizing atmospheres. Fuel 1981, 60, 585–597. [Google Scholar] [CrossRef]
- Punjak, W.A.; Shadman, F. Aluminosilicate sorbents for control of alkali vapors during coal combustion and gasification. Energy Fuels 1988, 2, 1679–1689. [Google Scholar] [CrossRef]
- Gornostayev, S.S.; Heikkinen, E.P.; Heino, J.J.; Huttunen, S.M.M.; Fabritius, T.M.J. Behavior of Alkali-Bearing Minerals in Coking and Blast Furnace Processes. Steel Res. Int. 2016, 87, 1144–1153. [Google Scholar] [CrossRef]
- Wall, T.F. Mineral matter transformations and ash deposition in pulverised coal combustion. Symp. Combust. 1992, 24, 1119–1126. [Google Scholar] [CrossRef]
- Luo, G.P.; Nie, X.L.; Wu, S.L.; Wang, Y.B.; Liu, J.T.; Zhou, S.G. Influence of F, K, Na on the ring formation properties of oxidized pellet rotary kiln. Sinter. Pelletizing 2013, 3, 29–32. [Google Scholar]
- Sefidari, H.; Ma, C.; Fredriksson, C.; Lindblom, B.; Wiinikka, H.; Nordin, L.O.; Wu, G.; Yazhenskikh, E.; Muller, M.; Ohman, M. The effect of co-firing coal and woody biomass upon the slagging/deposition tendency in iron-ore pelletizing grate-kiln plants. Fuel Process. Technol. 2020, 199. [Google Scholar] [CrossRef]
- Li, K.J.; Zhang, J.L.; Barati, M.; Khanna, R.; Liu, Z.J.; Zhong, J.B.; Ning, X.J.; Ren, S.; Yang, T.J.; Sahajwalla, V. Influence of alkaline (Na, K) vapors on carbon and mineral behavior in blast furnace cokes. Fuel 2015, 145, 202–213. [Google Scholar] [CrossRef]
- Stjernberg, J.; Antti, M.L.; Nordin, L.O.; Oden, M. Degradation of Refractory Bricks Used as Thermal Insulation in Rotary Kilns for Iron Ore Pellet Production. Int. J. Appl. Ceram. Technol. 2009, 6, 717–726. [Google Scholar] [CrossRef]
- Gornostayev, S.S.; Tanskanen, P.A.; Heikkinen, E.P.; Kerkkonen, O.; Harkki, J.J. An example of alkalization of SiO2 in a blast furnace coke. Energy Fuels 2007, 21, 2637–2641. [Google Scholar] [CrossRef]
- Stjernberg, J.; Olivas-Ogaz, M.A.; Antti, M.L.; Ion, J.C.; Lindblom, B. Laboratory scale study of the degradation of mullite/corundum refractories by reaction with alkali-doped deposit materials. Ceram. Int. 2013, 39, 791–800. [Google Scholar] [CrossRef]
- Li, K.J.; Khanna, R.; Bouhadja, M.; Zhang, J.L.; Liu, Z.J.; Su, B.X.; Yang, T.J.; Sahajwall, V.; Singh, C.V.; Barati, M. A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K(2)0 and Na(2)0. Chem. Eng. J. 2017, 313, 1184–1193. [Google Scholar] [CrossRef]
- Cormier, L.; Neuville, D.R. Ca and Na environments in Na2O-CaO-Al2O3-SiO2 glasses: Influence of cation mixing and cation-network interactions. Chem. Geol. 2004, 213, 103–113. [Google Scholar] [CrossRef]
No. | TFe | SiO2 | CaO | Al2O3 | MgO | K2O | Na2O | S |
---|---|---|---|---|---|---|---|---|
G1 | 55.78 | 9.12 | 3.03 | 5.07 | 1.26 | 0.29 | 0.25 | 0.0050 |
K1 | 66.04 | 2.51 | 1.74 | 1.53 | 0.81 | 0.043 | 0.058 | 0.0050 |
K2 | 66.40 | 2.66 | 1.95 | 1.30 | 0.88 | 0.042 | 0.070 | 0.0050 |
K3 | 64.22 | 4.05 | 1.91 | 1.91 | 0.93 | 0.062 | 0.095 | 0.0055 |
K4 | 62.98 | 5.19 | 2.45 | 2.46 | 0.85 | 0.088 | 0.120 | 0.0050 |
K5 | 61.93 | 5.91 | 2.41 | 2.25 | 1.37 | 0.089 | 0.160 | 0.0070 |
K6 | 62.11 | 5.72 | 1.91 | 2.36 | 0.79 | 0.110 | 0.640 | 0.0023 |
K7 | 62.60 | 5.72 | 2.02 | 2.11 | 0.90 | 0.082 | 0.19 | 0.0020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Guo, Y.; Liu, K.; Yang, Z.; Liu, Y.; Jiang, Y.; Chen, F.; Zheng, F.; Yang, L. The Deposit Formation Mechanism in Coal-Fired Rotary Kiln for Iron Ore Pellet Production: A Review. Crystals 2021, 11, 974. https://doi.org/10.3390/cryst11080974
Wang S, Guo Y, Liu K, Yang Z, Liu Y, Jiang Y, Chen F, Zheng F, Yang L. The Deposit Formation Mechanism in Coal-Fired Rotary Kiln for Iron Ore Pellet Production: A Review. Crystals. 2021; 11(8):974. https://doi.org/10.3390/cryst11080974
Chicago/Turabian StyleWang, Shuai, Yufeng Guo, Kuo Liu, Zhuang Yang, Yajing Liu, Ying Jiang, Feng Chen, Fuqiang Zheng, and Lingzhi Yang. 2021. "The Deposit Formation Mechanism in Coal-Fired Rotary Kiln for Iron Ore Pellet Production: A Review" Crystals 11, no. 8: 974. https://doi.org/10.3390/cryst11080974
APA StyleWang, S., Guo, Y., Liu, K., Yang, Z., Liu, Y., Jiang, Y., Chen, F., Zheng, F., & Yang, L. (2021). The Deposit Formation Mechanism in Coal-Fired Rotary Kiln for Iron Ore Pellet Production: A Review. Crystals, 11(8), 974. https://doi.org/10.3390/cryst11080974