Research on Shock Acceleration Limit of an Ultra-Stable Optical Cavity for Space Applications Based on the Finite Element Methodology
Abstract
:1. Introduction
2. Fundamental Principle
2.1. Duasi-Static Mechanics
2.2. Failure Criterion of the Ultra-Stable Optical Cavity
3. Model of the Finite Element Analysis
4. Results and Discussion
4.1. Deformation and Von Mises Stress Characteristics
4.2. Effect of the Thickness T of the Mid-Plane on the Maximum von Mises Stress
4.3. Effect of the Diameter φ1 of the Fixed Hole on the Maximum von Mises Stress
4.4. Effect of the Positions of Constraint on the Maximum von Mises Stress
4.5. Shock Acceleration Limit
5. Discussions and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 2011, 5, 203–210. [Google Scholar] [CrossRef]
- Swallows, M.D.; Bishof, M.; Lin, Y.; Blatt, S.; Martin, M.J.; Rey, A.M.; Ye, J. Suppression of Collisional Shifts in a Strongly Interacting Lattice Clock. Science 2011, 331, 1043–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huntemann, N.; Okhapkin, M.; Lipphardt, B.; Weyers, S.; Tamm, C.; Peik, E. High-Accuracy Optical Clock Based on the Octupole Transition inYb+171. Phys. Rev. Lett. 2012, 108, 090801. [Google Scholar] [CrossRef] [Green Version]
- Sherman, J.A.; Lemke, N.D.; Hinkley, N.; Pizzocaro, M.; Fox, R.W.; Ludlow, A.D.; Oates, C.W. High-Accuracy Measurement of Atomic Polarizability in an Optical Lattice Clock. Phys. Rev. Lett. 2012, 108, 153002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFerran, J.J.; Yi, L.; Mejri, S.; Di Manno, S.; Zhang, W.; Guéna, J.; Le Coq, Y.; Bize, S. Neutral Atom Frequency Reference in the Deep Ultraviolet with Fractional Uncertainty = 5.7 × 10−15. Phys. Rev. Lett. 2012, 108, 183004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, S.; Senger, A.; Möhle, K.; Nagel, M.; Kovalchuk, E.V.; Peters, A. Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level. Phys. Rev. D 2009, 80, 105011. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, C.J.; Oelker, E.; Robinson, J.M.; Bothwell, T.; Kedar, D.; Milner, W.R.; Marti, G.E.; Derevianko, A.; Ye, J. Precision Metrology Meets Cosmology: Improved Constraints on Ultralight Dark Matter from Atom-Cavity Frequency Comparisons. Phys. Rev. Lett. 2020, 125, 201302. [Google Scholar] [CrossRef]
- Chou, C.W.; Hume, D.B.; Rosenband, T.; Wineland, D.J. Optical Clocks and Relativity. Science 2010, 329, 1630–1633. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Kéfélian, F.; Crane, S.; Lopez, O.; Lours, M.; Millo, J.; Holleville, D.; Lemonde, P.; Chardonnet, C.; AmyKlein, A.; et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization. J. Opt. Soc. Am. B 2008, 25, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Predehl, K.; Grosche, G.; Raupach, S.M.F.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hansch, T.W.; Udem, T.; Holzwarth, R.; et al. A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science 2012, 336, 441–444. [Google Scholar] [CrossRef]
- Barger, R.L.; Sorem, M.; Hall, J. Frequency stabilization of a cw dye laser. Appl. Phys. Lett. 1973, 22, 573–575. [Google Scholar] [CrossRef] [Green Version]
- Drever, R.W.P.; Hall, J.L.; Kowalski, F.V.; Hough, J.; Ford, G.M.; Munley, A.J.; Ward, H. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 1983, 22, 97–105. [Google Scholar] [CrossRef]
- Millo, J.; Magalhães, D.; Mandache, C.; Le Coq, Y.; English, E.M.L.; Westergaard, P.G.; Lodewyck, J.; Bize, S.; Lemonde, P.; Santarelli, G. Ultrastable lasers based on vibration insensitive cavities. Phys. Rev. A 2009, 79, 053829. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Hall, J.; Ye, J.; Yang, T.; Zang, E.; Li, T. Vibration-induced elastic deformation of Fabry-Perot cavities. Phys. Rev. A 2006, 74, 053801. [Google Scholar] [CrossRef] [Green Version]
- Leibrandt, D.R.; Thorpe, M.J.; Notcutt, M.; Drullinger, R.E.; Rosenband, T.; Bergquist, J.C. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments. Opt. Express 2011, 19, 3471–3482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibrandt, D.R.; Thorpe, M.J.; Bergquist, J.C.; Rosenband, T. Field-test of a robust, portable, frequency-stable laser. Opt. Express 2011, 19, 10278–10286. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.; Lisdat, C.; Legero, T.; Sterr, U.; Ernsting, I.; Nevsky, A.; Schiller, S. Demonstration of a transportable 1 Hz-linewidth laser. Appl. Phys. A 2011, 104, 741–745. [Google Scholar] [CrossRef] [Green Version]
- Webster, S.; Gill, P. Force-insensitive optical cavity. Opt. Lett. 2011, 36, 3572–3574. [Google Scholar] [CrossRef] [PubMed]
- Argence, B.; Argence, B.; Prevost, E.; Lévèque, T.; le Goff, R.; Bize, S.; Lemonde, P.; Santarelli, G. Prototype of an ultra-stable optical cavity for space applications. Opt. Express 2012, 20, 25409–25420. [Google Scholar] [CrossRef] [Green Version]
- Leibrandt, D.R.; Bergquist, J.C.; Rosenband, T. Cavity-stabilized laser with acceleration sensitivity below 10−12 g−1. Phys. Rev. A 2013, 87, 023829. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Nevsky, A.; Cardace, M.; Schiller, S.; Legero, T.; Häfner, S.; Uhde, A.; Sterr, U. A compact, robust, and transportable ultra-stable laser with a fractional frequency instability of 1 × 10−15. Rev. Sci. Instrum. 2014, 85, 113107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Świerad, D.; Häfner, S.; Vogt, S.; Venon, B.; Holleville, D.; Bize, S.; Kulosa, A.; Bode, S.; Singh, Y.; Bongs, K.; et al. Ultra-stable clock laser system development towards space applications. Sci. Rep. 2016, 6, srep33973. [Google Scholar] [CrossRef] [Green Version]
- Koller, S.B.; Grotti, J.; Vogt, S.; Al-Masoudi, A.; Dörscher, S.; Häfner, S.; Sterr, U.; Lisdat, C. Transportable Optical Lattice Clock With 7 × 10−17 Uncertainty. Phys. Rev. Lett. 2017, 187, 073601. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Zhang, P.; Shang, J.; Cui, K.; Yuan, J.; Chao, S.; Wang, S.; Shu, H.; Huang, X. A compact, transportable single-ion optical clock with 7.8 × 10−17 systematic uncertainty. Appl. Phys. A 2017, 123, 112. [Google Scholar] [CrossRef]
- SOC2-Towards Neutral-Atom Space Optical Clocks. Available online: http://www.exphy.uni-duesseldorf.de/optical_clock/soc2/index.php (accessed on December 2011).
- LISA-Laser Interferometer Space Antenna-NASA Home Page. Available online: https://lisa.nasa.gov/index.html (accessed on December 2017).
- Luo, J.; Chen, L.-S.; Duan, H.-Z.; Gong, Y.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef] [Green Version]
- Tao, B.; Chen, Q. A vibration-sensitive-cavity design holds impact of higher than 100 g. Appl. Phys. B 2018, 124, 228. [Google Scholar] [CrossRef]
- Zhang, S. Precise Generation and Transfer of Time and Frequency in NTSC; ESA Topical Team on Geodesy and Clocks in Space: Munich, Germany, October 2018. [Google Scholar]
- Hafiz, M.A.; Ablewski, P.; Masoudi, A.A.; Martínez, H.Á.; Balling, P.; Barwood, G.; Benkler, E.; Bober, M.; Borkowski, M.; Bowden, W.; et al. Guidelines for developing optical clocks with 10−18 fractional frequency uncertainty. arXiv 2019, arXiv:1906.11495. [Google Scholar]
- Chen, X.; Jiang, Y.; Li, B.; Yu, H.; Jiang, H.; Wang, T.; Yao, Y.; Ma, L. Laser frequency instability of 6 × 10−16 using 10-cm-long cavities on a cubic spacer. Chin. Opt. Lett. 2020, 18, 030201. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Yuan, J.; Liu, D.; Shu, H.; Huang, X. Integrated multiple wavelength stabilization on a multi-channel cavity for a transportable optical clock. Opt. Express 2020, 28, 11852. [Google Scholar] [CrossRef] [PubMed]
- Nitiss, E.; Bluss, K.; Alnis, J. Numerical 2D and 3D simulations of a spherical Fabry-Perot resonator for application as a reference cavity for laser frequency stabilization. Latv. J. Phys. Tech. Sci. 2015, 52, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Tai, Z.; Yan, L.; Zhang, Y.; Zhang, X.; Guo, W.; Zhang, S. Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth. Latv. J. Chin. Phys. Lett. 2017, 34, 090602. [Google Scholar] [CrossRef]
- Häfner, S.; Herbers, S.; Vogt, S.; Lisdat, C.; Sterr, U. Transportable interrogation laser system with an instability of mod σy = 3 × 10−16. Opt. Express 2020, 28, 16407–16416. [Google Scholar] [CrossRef] [PubMed]
- Parker, B.; Marra, G.; Johnson, L.; Margolis, H.; Webster, S.; Wright, L.; Lea, S.; Gill, P.; Bayvel, P. Transportable cavity-stabilized laser system for optical carrier frequency transmission experiments. Appl. Opt. 2014, 53, 8157–8166. [Google Scholar] [CrossRef] [PubMed]
- Space Station Application System Payload Environmental Test Requirements, China; Department of Space Science and Applications, Chinese Academy of Sciences: Beijing, China, 2014.
- GJB150. 1A-2009, Laboratory Environmental Test Methods of Military Materiel. Available online: https://www.renrendoc.com/p-881076.html (accessed on December 2009).
- Hayashi, K.; Easier, T.; Bradt, R. A Fracture Statistics Estimate of a Borosilicate Glass of the Fatigue Limit of a Borosilicate Glass. J. Eur. Ceram. Soc. 1993, 12, 487–491. [Google Scholar] [CrossRef]
- ZZilcha, O.; Quinn, G.D.; Rowe, J.M.; Pierce, D.J. Investigation into the Mechanical Cause of Failure of Neutron Guide NG-2 at the NIST Research Reactor. J. Fail. Anal. Prev. 2012, 12, 604–616. [Google Scholar] [CrossRef]
- SCHOTT Technical Information No. 33: “Design Strength of Optical Glass and ZERODUR®”. Available online: http://www.us.schott.com/advanced_optics/english/tools_downloads/download/index.html#Technical%20Information (accessed on December 2004).
- Wickert, J. An Introduction to Mechanical Engineering, 1st ed.; Cengage Learning: Boston, MA, USA, 2004; p. 157. [Google Scholar]
Parameters | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio | Ultimate Tensile Stress (MPa) |
---|---|---|---|---|
Value | 2210 | 67.6 | 0.17 | 49.8 |
Shock Direction | T (mm) | φ1 (mm) | Constraint | |||||
---|---|---|---|---|---|---|---|---|
7 | 8 | 9 | 10 | 4.1 | 6.1 | A | B | |
Vertical (g) | 119 | 158 | 185 | 220 | 102 | 119 | 119 | 178 |
Horizontal (g) | 374 | 440 | 488 | 508 | 290 | 374 | 374 | 224 |
Three orthogonal (g) | 99 | 125 | 138 | 167 | 78 | 99 | 99 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; Jiao, D.; Chen, L.; Zhang, L.; Liu, J.; Dong, R.; Liu, T.; Wang, J. Research on Shock Acceleration Limit of an Ultra-Stable Optical Cavity for Space Applications Based on the Finite Element Methodology. Crystals 2021, 11, 998. https://doi.org/10.3390/cryst11080998
Xu G, Jiao D, Chen L, Zhang L, Liu J, Dong R, Liu T, Wang J. Research on Shock Acceleration Limit of an Ultra-Stable Optical Cavity for Space Applications Based on the Finite Element Methodology. Crystals. 2021; 11(8):998. https://doi.org/10.3390/cryst11080998
Chicago/Turabian StyleXu, Guanjun, Dongdong Jiao, Long Chen, Linbo Zhang, Jun Liu, Ruifang Dong, Tao Liu, and Junbiao Wang. 2021. "Research on Shock Acceleration Limit of an Ultra-Stable Optical Cavity for Space Applications Based on the Finite Element Methodology" Crystals 11, no. 8: 998. https://doi.org/10.3390/cryst11080998
APA StyleXu, G., Jiao, D., Chen, L., Zhang, L., Liu, J., Dong, R., Liu, T., & Wang, J. (2021). Research on Shock Acceleration Limit of an Ultra-Stable Optical Cavity for Space Applications Based on the Finite Element Methodology. Crystals, 11(8), 998. https://doi.org/10.3390/cryst11080998