Crystal-Site-Based Artificial Neural Networks for Material Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nomenclature
2.2. Features
2.3. Software and Computational Infrastructure
3. Results and Discussion
3.1. Classification of Crystal Compounds
3.2. Retrieval of Compounds with an Archetypal Structure Type
3.3. Lattice Parameter Assessment with the Extracted Features by the ANN
3.4. Features’ Influence on the Performance of the ANNs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, B.; Lu, Y.; Zhou, J.; Chouhan, T.; Wang, H.; Golani, P.; Xu, M.; Xu, Q.; Guan, C.; Liu, Z. Machine learning-guided synthesis of advanced inorganic materials. Mater. Today 2020, 41, 72–80. [Google Scholar] [CrossRef]
- Raccuglia, P.; Elbert, K.C.; Adler, P.D.F.; Falk, C.; Wenny, M.B.; Mollo, A.; Zeller, M.; Friedler, S.A.; Schrier, J.; Norquist, A.J. Machine-learning-assisted materials discovery using failed experiments. Nature 2016, 533, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sorkun, M.C.; Astruc, S.; Koelman, J.M.V.A.; Er, S. An artificial intelligence-aided virtual screening recipe for two-dimensional materials discovery. NPJ Comput. Mater. 2020, 6, 106. [Google Scholar] [CrossRef]
- Kaufmann, K.; Vecchio, K.S. Searching for high entropy alloys: A machine learning approach. Acta Mater. 2020, 198, 178–222. [Google Scholar] [CrossRef]
- Dai, D.; Liu, Q.; Hu, R.; Wei, X.; Ding, G.; Xu, B.; Xu, T.; Zhang, J.; Xu, Y.; Zhang, H. Method construction of structure-property relationship from data by machine learning assisted mining for materials design applications. Mater. Des. 2020, 196, 109194. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, W.B.; Lee, J.H.; Singh, S.P.; Sohn, K.S. A deep-learning technnique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns. Nat. Commun. 2020, 11, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W.B.; Chung, J.; Jung, J.; Sohn, K.; Singh, S.P.; Pyo, M.; Shim, N.; Sohn, K.S. Classification of crystal structure using a convolutional neural network. IUCrJ 2017, 4, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Schütt, K.T.; Sauceda, H.E.; Kindermans, P.J.; Tkatchenko, A.; Müller, K.R. SchNet—A deep learning architecture for molecules ans materials. J. Chem. Phys. 2018, 148, 241722. [Google Scholar] [CrossRef] [PubMed]
- Pilania, G.; Gubernatis, J.E.; Lookman, T. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput. Mater. Sci. 2017, 129, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Pilania, G.; Balachandran, P.V.; Kim, C.; Lookman, T. Finding new perovskite halides via machine learning. Front. Mater. 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Peralta, J.I.; Bokhimi, X. Ternary halide perovskites for possible optoelectronic applications revealed by Artificial Intelligence and DFT calculations. Mater. Chem. Phys. 2021, 267, 124710. [Google Scholar] [CrossRef]
- Hong, Y.; Hou, B.; Jian, H.; Zhang, J. Machine learning and artificial neutal network accelerated computational discoveries in materials science. WIREs Comput. Mol. Sci. 2020, 10, e1450. [Google Scholar] [CrossRef]
- Schütt, O.; VandeVondele, J. Machine learning adaptive basis sets for efficient large scale density functional theory simulation. J. Chem. Theory Comput. 2018, 14, 4168–4175. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Isayev, O.; Roitberg, A.E. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 2017, 8, 3192–3203. [Google Scholar] [CrossRef] [Green Version]
- Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. 2016, 4, 053208. [Google Scholar] [CrossRef] [Green Version]
- Materials Genome Initiative, Strategic Plan, National Science Technology Council. Available online: https://obamawhitehouse.archives.gov/mgi (accessed on 4 August 2021).
- Report of the Clean Energy Materials Innovation Challenge Expert Workshop, Mission Innovation. Available online: http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf (accessed on 4 August 2021).
- Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-Bedolla, C.; Sánchez-Carrera, R.S.; Gold-Parker, A.; Voigt, L.; Brockway, A.M.; Aspuru-Guzik, A. The Harvard Clean Energy Project: Large-scale computational screening and design of organic photovoltaics an the World Community Grid. J. Phys. Chem. Lett. 2011, 2, 2241–2251. [Google Scholar] [CrossRef] [Green Version]
- Vom Material zur Innovation. Rahmenprogramm zur Förderung der Materialforschung “Bundesministerium für Bildung und Forschung”. Available online: https://www.ptj.de/vom-material-zur-innovation (accessed on 4 August 2021).
- Voulodimos, A.; Doulami, N.; Doulamis, A.; Protopapadakis, E. Recent developments in Deep Learning for engineering applications. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkac, M.; Verner, R. Artificial neural networks in business: Two decades of research. Appl. Soft Comput. 2016, 38, 788–804. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Sze, V.; Chen, Y.H.; Yang, T.J.; Emer, J.S. Efficient processing of deep neural networks: A tutorial and survey. Proc. IEEE 2017, 105, 2295–2329. [Google Scholar] [CrossRef] [Green Version]
- Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 2016, 145, 170901. [Google Scholar] [CrossRef] [Green Version]
- Ghiringelli, L.M.; Vybiral, J.; Levchenko, S.V.; Draxl, C.; Scheffler, M. Big data of materials science: Critical role of the descriptor. Phys. Rev. Lett. 2015, 114, 105503. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, A.; Shamanaev, I.V. Crystal structure representation for neural networks using topological approach. Mol. Inf. 2017, 36, 1600162. [Google Scholar] [CrossRef]
- Thimm, G. Crystal topologies—The achievable and inevitble symmetries. Acta Crystallogr. A 2009, 65, 213–226. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, D.; Chen, X.; Li, T.; Wei, G.W.; Pan, F. Topological representations of crystalline compounds for the machine-learning prediction of materials properties. NPJ Comput. Mater. 2021, 7, 28. [Google Scholar] [CrossRef]
- Faber, F.; Lindmaa, A.; von Lillienfeld, O.A.; Armiento, R. Crystal structure representations for machine learning models of formation enegies. Int. J. Quantum Chem. 2015, 115, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Saidi, W.A.; Shadid, W.; Castelli, I.E. Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network. NPJ Comput. Mater. 2020, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Pathak, Y.; Juneja, K.S.; Varma, G.; Ehara, M.; Priyakumar, U.D. Deep learning enabled inorganic material generator. Phys. Chem. Chem. Phys. 2020, 22, 26935. [Google Scholar] [CrossRef]
- Jha, D.; Ward, L.; Paul, A.; Liao, W.K.; Choudhary, A.; Wolverton, C.; Agrawal, A. ElmNet: Deep learning the chemistry of materials from only elemental composition. Sci. Rep. 2018, 8, 17593. [Google Scholar] [CrossRef]
- Goodall, R.E.A.; Lee, A.A. Predicting materials properties without crystal struture: Deep representation learning from stoichiometry. Nat. Commum. 2020, 11, 6280. [Google Scholar] [CrossRef]
- Xie, T.; Grossman, J.C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 2018, 120, 145301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J.; Shi, H.; Borlido, P.; Chen, L.; Botti, S.; Marques, M.A.L. Predicting the thermodynamic stability of solids combining density functional theory and machine learning. Chem. Mater. 2017, 29, 5090–5103. [Google Scholar] [CrossRef]
- Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 2017, 8, 15679. [Google Scholar] [CrossRef] [PubMed]
- Choubisa, H.; Askerka, M.; Ryczko, K.; Voznyy, O.; Mills, K.; Tamblyn, I.; Sargent, E.H. Crystal site feature embedding enables exploration of large chemical spaces. Matter 2020, 3, 433–448. [Google Scholar] [CrossRef]
- Brown, I.D. The Chemical Bond in Inorganic Chemistry. The Bond. Valence Model, 1st ed.; Oxford University Press: Oxford, UK, 2002; pp. 121–133. [Google Scholar] [CrossRef]
- Ryan, K.; Lengyel, J.; Shatruk, M. Crystal structure prediction via Deep Learning. J. Am. Chem. Soc. 2018, 140, 10158–10168. [Google Scholar] [CrossRef]
- Valle, M.; Oganov, A.R. Crystal fingerprint space—A novel paradigm for studying crystal-structure sets. Acta Crystallogr. A 2010, 66, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Chen, C.; Wang, Z.; Chu, I.H.; Ong, S.P. Deep neural networks for accurate predictions of crytal stability. Nat. Commun. 2018, 9, 3800. [Google Scholar] [CrossRef]
- Gómez-Peralta, J.I.; Bokhimi, X. Discovering new perovskites with artificial intelligence. J. Solid State Chem. 2020, 285, 121253. [Google Scholar] [CrossRef]
- Gómez-Peralta, J.I. Descubrimiento de Compuestos con Estructura Tipo Perovskita a Través de Inteligencia Artificial y Cálculos Químico Cuánticos. Ph.D. Thesis, National Autonomous University of Mexico, Mexico City, Mexico, 19 February 2021. Available online: http://132.248.9.195/ptd2020/diciembre/0805987/Index.html (accessed on 5 August 2021).
- Patolli 2021. Available online: https://github.com/gomezperalta/patolli_2021 (accessed on 4 August 2021).
- Tilley, R.J.D. Perovskites: Structure–Property Relationships, 1st ed.; Wiley: Chichester, UK, 2016; pp. 123–154. [Google Scholar]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.T.; Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Gražulis, S.; Daškevič, A.; Merkys, A.; Chateigner, D.; Lutterotti, L.; Quirós, M.; Serebryanaya, N.R.; Moeck, P.; Downs, R.T.; LeBail, A. Crystallography Open Database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 2012, 40, D420–D427. [Google Scholar] [CrossRef]
- Gražulis, S.; Merkys, A.; Vaitkus, A.; Okulič-Kazarinas, M. Computing stoichiometric molecular composition from crystal structures. J. Appl. Crystallogr. 2015, 48, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Vaitkus, A.; Merkys, A.; Gražulis, S. Validation of the Crystallography Open Database using the crystallographic information framework. J. Appl. Crystallogr. 2021, 54, 661–672. [Google Scholar] [CrossRef]
- Ong, S.P.; Richards, W.D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V.L.; Persson, K.A.; Ceder, G. Phython materials genomics (pymatgen): A robust, open-source phython library for materials analysis. Comput. Mater. Sci. 2013, 68, 314–319. [Google Scholar] [CrossRef] [Green Version]
- Woodward, P.M. Octahedral tilting in perovskites. I. Geometrical considerations. Acta Crystallogr. B 1997, 53, 32–43. [Google Scholar] [CrossRef]
- Woodward, P.M. Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Crystallogr. B 1997, 53, 44–66. [Google Scholar] [CrossRef]
- Haas, C. Phase transitions in crystals with the spinel structure. J. Phys. Chem. Solids 1965, 26, 1225–1232. [Google Scholar] [CrossRef]
- Sickafus, K.E.; Wills, J.M. Structure of spinel. J. Am. Ceram. Soc. 1999, 82, 3279–3292. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA: A three dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 2008, 41, 653–658. [Google Scholar] [CrossRef]
- Javed, S.G.; Khan, A.; Majid, A.; Mirza, A.M.; Bashir, J. Lattice constant prediction of orthorhombic ABO3 perovskites using support vector machines. Comput. Mater. Sci. 2007, 39, 627–634. [Google Scholar] [CrossRef]
- Majid, A.; Khan, A.; Choi, T.S. Predicting lattice constant of complex cubic perovskites using computational intelligence. Comput. Mater. Sci. 2011, 50, 1879–1888. [Google Scholar] [CrossRef]
- Majid, A.; Khan, A.; Javed, G.; Mirza, A.M. Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression. Comput. Mater. Sci. 2010, 50, 363–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z. Machine learning lattice parameters of monoclinic double perovskites. Int. J. Quantum Chem. 2021, 121, e26480. [Google Scholar] [CrossRef]
- Song, Z.; Zhou, D.; Liu, Q. Tolerance factor and phase stability of the garnet structure. Acta Crystallogr. C 2019, 75, 1353–1358. [Google Scholar] [CrossRef]
ANN | Features in Input Data | Architecture (2 Hidden Layers + Output Layer) | Structure Type Outputs |
---|---|---|---|
4S4O-NEF | 33 | 231, 132, 4 | Garnet, perovskite, spinel, and others |
6S4O-NEF | 150 | 900, 750, 4 | Garnet, perovskite, spinel, and others |
6S8O-NEF | 900, 750, 8 | Garnet, hexagonal perovskite, ilmenite, layered perovskite, -o-tp- perovskite, perovskite, spinel, and others | |
4S4O-WEF | 42 | 210, 126, 4 | Garnet, perovskite, spinel, and others |
6S4O-WEF | 163 | 1141, 652, 4 | Garnet, perovskite, spinel, and others |
6S8O-WEF | 815, 163, 8 | Garnet, hexagonal perovskite, ilmenite, layered perovskite, -o-tp- perovskite, perovskite, spinel, and others | |
6S10O-WEF | 815, 652, 10 | Fluorite, garnet, halite, hexagonal perovskite, ilmenite, layered perovskite, -o-tp- perovskite, perovskite, spinel, and others |
4S4O-NEF | 4S4O-WEF | 6S4O-NEF | 6S4O-WEF | 6S8O-NEF | 6S8O-WEF | 6S10O-WEF | |
---|---|---|---|---|---|---|---|
Garnet | 100.00 | 96.55 | 100.00 | 100.00 | 93.33 | 93.33 | 100.00 |
Perovskite | 94.93 | 95.43 | 93.13 | 95.98 | 92.62 | 94.14 | 95.82 |
Spinel | 98.44 | 96.92 | 94.24 | 96.32 | 95.52 | 94.93 | 90.41 |
Hexagonal perovskite | NA | NA | NA | NA | 75.00 | 75.00 | 83.33 |
Ilmenite | NA | NA | NA | NA | 71.43 | 85.71 | 85.71 |
Layered perovskite | NA | NA | NA | NA | 97.22 | 94.59 | 97.30 |
-o-tp- perovskite | NA | NA | NA | NA | 90.91 | 90.91 | 91.67 |
Fluorite | NA | NA | NA | NA | NA | NA | 87.10 |
Halite | NA | NA | NA | NA | NA | NA | 87.01 |
Others | 97.54 | 98.61 | 92.74 | 92.47 | 93.63 | 94.25 | 93.32 |
Average | 97.73 | 96.88 | 95.03 | 96.19 | 88.71 | 90.36 | 91.17 |
ANN | Recall (%) by Number of Wyckoff Sites | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |
4S4O-WEF | 99.83 | 94.22 | 96.97 | 96.85 | NA | NA |
4S4O-NEF | 100.00 | 98.42 | 96.41 | 96.55 | NA | NA |
6S4O-WEF | 99.92 | 90.78 | 93.72 | 96.22 | 83.89 | 93.02 |
6S4O-NEF | 100.00 | 97.33 | 92.72 | 96.15 | 82.71 | 92.53 |
6S8O-WEF | 99.83 | 99.07 | 93.02 | 96.57 | 85.35 | 91.28 |
6S8O-NEF | 100.00 | 97.61 | 94.12 | 96.01 | 85.75 | 91.06 |
6S10O-WEF | 97.22 | 85.14 | 94.12 | 94.53 | 84.56 | 93.43 |
Structure Type | R2 | MSE Fitting | MSE Test | Mean Lattice Parameters (Å) |
---|---|---|---|---|
Simple cubic perovskite ) | 0.9996 | 0.0001 (344) | 0.1057 (39 of 54) | 4.1698 ± 0.4315 |
Double cubic perovskite ) | 0.9992 | 0.0002 (205) | 0.0984 (23 of 33) | 8.4807 ± 0.5310 |
Garnet ) | 0.9998 | 3 × 10−5 (165) | 0.0931 (23 of 28) | 12.0808 ± 0.3654 |
Spinel ) | 0.9682 | 0.0256 (714) | 0.0676 (107 of 127) | 8.7000 ± 0.8976 |
Orthorhombic perovskite ) | 0.9836 | 0.0035 (388) | 0.0683 (70 of 87) | 5.5148 ± 0.3834 5.6433 ± 0.4045 7.8291 ± 0.5659 |
Trigonal perovskite ) | 0.9994 | 0.0002 (134) | 0.0297 (15 of 22) | 5.3548 ± 0.3351 13.9118 ± 1.0555 |
Tetragonal Ruddlesden–Popper ) | 0.9422 | 0.0085 (196) | 0.0673 (18 of 31) | 3.9434 ± 0.3340 15.9746 ± 3.9851 |
Precision (%) in the Test Set with | ||||||
---|---|---|---|---|---|---|
ANN | All Features | No Atomic Radii and Electronegativities | No Geometric Factors | No Packing Factors | No Local Functions | No Density |
4S4O-NEF | 97.73 | NA | 94.93 | 88.59 | 22.35 | NA |
6S4O-NEF | 95.03 | NA | 95.00 | 76.60 | 50.84 | NA |
6S8O-NEF | 88.71 | NA | 88.06 | 49.65 | 16.23 | NA |
4S4O-WEF | 96.88 | 91.41 | 97.09 | 94.57 | 28.79 | 97.46 |
4S6O-WEF | 96.19 | 86.28 | 96.16 | 81.40 | 41.27 | 95.33 |
4S8O-WEF | 90.36 | 74.15 | 89.52 | 60.52 | 42.37 | 88.96 |
4S10O-WEF | 91.17 | 80.30 | 89.67 | 69.09 | 37.04 | 89.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Peralta, J.I.; García-Peña, N.G.; Bokhimi, X. Crystal-Site-Based Artificial Neural Networks for Material Classification. Crystals 2021, 11, 1039. https://doi.org/10.3390/cryst11091039
Gómez-Peralta JI, García-Peña NG, Bokhimi X. Crystal-Site-Based Artificial Neural Networks for Material Classification. Crystals. 2021; 11(9):1039. https://doi.org/10.3390/cryst11091039
Chicago/Turabian StyleGómez-Peralta, Juan I., Nidia G. García-Peña, and Xim Bokhimi. 2021. "Crystal-Site-Based Artificial Neural Networks for Material Classification" Crystals 11, no. 9: 1039. https://doi.org/10.3390/cryst11091039
APA StyleGómez-Peralta, J. I., García-Peña, N. G., & Bokhimi, X. (2021). Crystal-Site-Based Artificial Neural Networks for Material Classification. Crystals, 11(9), 1039. https://doi.org/10.3390/cryst11091039