The Electrochemical Mechanism of Preparing Mn from LiMn2O4 in Waste Batteries in Molten Salt
Abstract
:1. Introduction
2. Experimental Methods
3. Experimental Results and Discussion
3.1. Reaction of LiMn2O4 in Molten Salt
3.2. Electrochemical Reduction of Lithium Manganate
3.2.1. Square Wave Voltammetry
3.2.2. Open Circuit-Chronopotential
3.2.3. Cyclic Voltammetry
4. The Effect of Time on Electrolysis
4.1. The Effect of Electrolysis Time on the Product
4.2. Electro Deoxidation Product Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Z.; Lin, M.; Qiu, R.; Zhu, J.; Ruan, J.; Qiu, R. A novel technology of recovering magnetic micro particles from spent lithium-ion batteries by ultrasonic dispersion and water flow-magnetic separation. Resour. Conserv. Recycl. 2021, 164, 105172. [Google Scholar] [CrossRef]
- Nayaka, G.; Zhang, Y.; Dong, P.; Wang, D.; Zhou, Z.; Duan, J.; Li, X.; Lin, Y.; Meng, Q.; Pai, K.; et al. An environmental friendly attempt to recycle the spent Li-ion battery cathode through organic acid leaching. J. Environ. Chem. Eng. 2019, 7, 102854. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Xiang, M.; Guo, J.; Bai, H.; Bai, W.; Liu, X. Effects of crystal structure and plane orientation on lithium and nickel co-doped spinel lithium manganese oxide for long cycle life lithium-ion batteries. J. Colloid Interface Sci. 2021, 585, 729–739. [Google Scholar] [CrossRef]
- Huacheng, L.I.; Liao, Y.; Situ, L. An experimental study on preparation of lithium manganate doped with niobium from manganese tetroxide. China’s Manganese Ind. 2020, 38, 31–36. [Google Scholar]
- Wei, S.J.L. Synthesis of lithium ion batteries cathode material LiMn2O4 by microwave method. Shandong Chem. Ind. 2020, 49, 37–38. [Google Scholar]
- Libiao, H. Power battery needs a “good death”. China Qual. Dly. 2021, 7, 4–20. [Google Scholar]
- Sun, S.; Jin, C.; He, W.; Li, G.; Zhu, H.; Huang, J. Management status of waste lithium-ion batteries in China and a complete closed-circuit recycling process. Sci. Total Environ. 2021, 776, 145913. [Google Scholar] [CrossRef] [PubMed]
- Callegari, D.; Colombi, S.; Nitti, A.; Simari, C.; Nicotera, I.; Ferrara, C.; Mustarelli, P.; Pasini, D.; Quartarone, E. Autonomous Self-Healing Strategy for Stable Sodium-Ion Battery: A Case Study of Black Phosphorus Anodes. ACS Appl. Mater. Interfaces 2021, 13, 13170–13182. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Song, M.; Zhang, Y.; Zhang, C.; Gao, H.; Niu, J.; Ma, W.; Qin, J.; Zhang, Z. A self-healing CuGa2 anode for high-performance Li ion batteries. J. Power Sources 2019, 437, 226889. [Google Scholar] [CrossRef]
- Tang, Y.; Xie, H.; Zhang, B.; Chen, X.; Zhao, Z.; Qu, J.; Xing, P.; Yin, H. Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co. Waste Manag. 2019, 97, 140–148. [Google Scholar] [CrossRef]
- Zhuang, L.; Sun, C.; Zhou, T.; Li, H.; Dai, A. Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant. Waste Manag. 2019, 85, 175–185. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Qiu, R.; Ruan, J.; Qiu, R. A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. J. Clean. Prod. 2019, 229, 1148–1157. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Xu, Z. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries. J. Hazard. Mater. 2016, 302, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Nathália, V.; Nogueira, C.A.; Guimarães, C.; Pereira, M.F.C.; Durão, F.O.; Margarido, F. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite. Waste Manag. 2018, 71, 350–361. [Google Scholar]
- Xiao, J.; Li, J.; Xu, Z. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environ. Sci. Technol. 2020, 54, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Atia, T.A.; Elia, G.; Hahn, R.; Altimari, P.; Pagnanelli, F. Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries. J. Energy Chem. 2019, 35, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Song, J.; Cao, H.; Lin, X.; Zhang, X.; Zheng, X.; Zhang, Y.; Sun, Z. Selective recovery of valuable metals from spent lithium-ion batteries—Process development and kinetics evaluation. J. Clean. Prod. 2018, 178, 833–845. [Google Scholar] [CrossRef]
- Xiao, S.; Liu, W.; Gao, L. Cathodic process of manganese (II) in NaCl-KCl melt. Ionics 2016, 22, 2387–2390. [Google Scholar] [CrossRef]
- Jiao, S.-Q.; Jiao, H.-D.; Song, W.-L.; Wang, M.-Y.; Tu, J.-G. A review on liquid metals as cathodes for molten salt/oxide electrolysis. Int. J. Miner. Met. Mater. 2020, 27, 1588–1598. [Google Scholar] [CrossRef]
- Xie, H.; Qu, J.; Ning, Z.; Li, B.; Song, Q.; Zhao, H.; Yin, H. Electrochemical co-desulfurization-deoxidation of low-grade nickel-copper matte in molten salts. J. Electrochem. Soc. 2018, 165, E578–E583. [Google Scholar] [CrossRef]
- Zhao, J.; Yin, H.; Lim, T.; Xie, H.; Hsu, H.-Y.; Forouzan, F.; Bard, A.J. Electrodeposition of photoactive silicon films for low-cost solar cells. J. Electrochem. Soc. 2016, 163, D506–D514. [Google Scholar] [CrossRef]
- Kartal, L.; Timur, S. Direct electrochemical reduction of copper sulfide in molten borax. Int. J. Miner. Met. Mater. 2019, 26, 992–998. [Google Scholar] [CrossRef]
- Mohanty, J.; Behera, P.K. Use of Pre-treated TiO2 as Cathode Material to Produce Ti Metal Through Molten Salt Electrolysis. Trans. Indian Inst. Met. 2019, 72, 859–865. [Google Scholar] [CrossRef]
- Xi, X.; Feng, M.; Zhang, L.; Nie, Z. Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery. Int. J. Miner. Metall. Mater. 2020, 27, 1599–1617. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Zhang, R.; Li, H.; Wang, L.; Cai, Z.; Yan, H.; Cao, W. The Electrochemical Mechanism of Preparing Mn from LiMn2O4 in Waste Batteries in Molten Salt. Crystals 2021, 11, 1066. https://doi.org/10.3390/cryst11091066
Liang J, Zhang R, Li H, Wang L, Cai Z, Yan H, Cao W. The Electrochemical Mechanism of Preparing Mn from LiMn2O4 in Waste Batteries in Molten Salt. Crystals. 2021; 11(9):1066. https://doi.org/10.3390/cryst11091066
Chicago/Turabian StyleLiang, Jinglong, Rui Zhang, Hui Li, Le Wang, Zongying Cai, Hongyan Yan, and Weigang Cao. 2021. "The Electrochemical Mechanism of Preparing Mn from LiMn2O4 in Waste Batteries in Molten Salt" Crystals 11, no. 9: 1066. https://doi.org/10.3390/cryst11091066
APA StyleLiang, J., Zhang, R., Li, H., Wang, L., Cai, Z., Yan, H., & Cao, W. (2021). The Electrochemical Mechanism of Preparing Mn from LiMn2O4 in Waste Batteries in Molten Salt. Crystals, 11(9), 1066. https://doi.org/10.3390/cryst11091066