Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup
Abstract
:1. Introduction
2. Morphological Properties of CFA Extracted Cenospheres
3. Properties of Cenospheres Recovered from CFA
4. Methods Used to Recovery Cenospheres from CFA
4.1. Wet Separation
4.2. Dry Separation Method for Recovery of Cenospheres from CFA
5. Applications of Cenospheres in Ceramics and Environmental Cleanup
5.1. Applications of Cenospheres in Environmental Cleanup
5.2. Applications of Cenospheres in Construction
5.2.1. Applications of Cenospheres for Concrete and Concrete with Lightweight Material
5.2.2. Cenospheres as Replacement of Cement and Fine Aggregate (FA) from Concrete
5.2.3. Cenospheres as an Insulating Material
5.2.4. Application of Cenospheres in Ceramics
5.2.5. Application of Cenospheres as Fillers and Nanofillers
5.2.6. Cenospheres as an Internal Curing Agent
5.2.7. Application of Cenospheres in Manufacturing of Composite Material
5.3. Applications of Cenospheres in Syntactic Foams and Spheroplastics
5.4. Miscellaneous Applications of Cenospheres
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CS | Cenospheres |
TC | Thermal conductivity |
CFA | Coal fly ash |
TPPs | Thermal power plants |
LWC | Lightweight concrete |
References
- Yadav, V.K.; Gnanamoorthy, G.; Cabral-Pinto, M.M.S.; Alam, J.; Ahamed, M.; Gupta, N.; Singh, B.; Choudhary, N.; Inwati, G.K.; Yadav, K.K. Variations and similarities in structural, chemical, and elemental properties on the ashes derived from the coal due to their combustion in open and controlled manner. Environ. Sci. Pollut. Res. 2021, 28, 32609–32625. [Google Scholar] [CrossRef]
- Yadav, V.K.; Fulekar, M.H. Advances in Methods for Recovery of Ferrous, Alumina, and Silica Nanoparticles from Fly Ash Waste. Ceramics 2020, 3, 384–420. [Google Scholar] [CrossRef]
- Naveen Kumar, B.; Radhika, R.; Kumar, V.V.; Chakradhar, B. Regulatory Requirements for Fly ash Utilisation from Thermal Power Plants in India. Int. J. Appl. Environ. Sci. 2020, 15, 151–166. [Google Scholar]
- Virendra, K.Y.; Pallavi, S.; Chagan, L.; Govindhan, G.; Nisha, C.; Bijendra, S.; Neha, T.; Haresh, K.; Pankaj, K. Synthesis and Characterization of Mullites From Silicoaluminous Fly Ash Waste. Int. J. Appl. Nanotechnol. Res. IJANR 2020, 5, 10–25. [Google Scholar] [CrossRef]
- Dzikuć, M.; Kuryło, P.; Dudziak, R.; Szufa, S.; Dzikuć, M.; Godzisz, K. Selected Aspects of Combustion Optimization of Coal in Power Plants. Energies 2020, 13, 2208. [Google Scholar] [CrossRef]
- Nisha, C.; Virendra Kumar, Y.; Parth, M.; Samreen Heena, K.; Gajendra Kumar, I.; Suriyaprabha, R.; Bijendra, S.; Yadav, A.K.; Raman Kumar, R. Recovery of Natural Nanostructured Minerals: Ferrospheres, Plerospheres, Cenospheres, and Carbonaceous Particles From Fly Ash. In Handbook of Research on Emerging Developments and Environmental Impacts of Ecological Chemistry; Gheorghe, D., Ashok, V., Eds.; IGI Global: Hershey, PA, USA, 2020; pp. 450–470. [Google Scholar] [CrossRef]
- Goodarzi, F.; Sanei, H. Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel 2009, 88, 382–386. [Google Scholar] [CrossRef]
- Strzałkowska, E. Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. Int. J. Coal Geol. 2021, 240, 103746. [Google Scholar] [CrossRef]
- Ranjbar, N.; Künzel, C. Cenospheres: A review. Fuel 2017, 207, 1–12. [Google Scholar] [CrossRef]
- Ngu, L.-N.; Wu, H.; Zhang, D.-K. Characterization of Ash Cenospheres in Fly Ash from Australian Power Stations. Energy Fuels 2007, 21, 3437–3445. [Google Scholar] [CrossRef]
- Gupta, S.; Chaudhary, S. 21—Use of fly ash for the development of sustainable construction materials. In New Materials in Civil Engineering; Samui, P., Kim, D., Iyer, N.R., Chaudhary, S., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 677–689. [Google Scholar] [CrossRef]
- Soh, W.M.; Tan, J.; Heng, J.Y.Y.; Cheeseman, C. Production of Cenospheres from Coal Fly Ash through Vertical Thermal Flame (VTF) Process. Mater. Sci. Forum 2017, 880, 7–10. [Google Scholar] [CrossRef]
- Strzałkowska, E.; Adamczyk, Z. Influence of chemical composition of fly-ash cenospheres on their grains size. Int. J. Environ. Sci. Technol. 2020, 17, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Danish, A.; Mosaberpanah, M.A. Formation mechanism and applications of cenospheres: A review. J. Mater. Sci. 2020, 55, 4539–4557. [Google Scholar] [CrossRef]
- Yoriya, S.; Intana, T.; Tepsri, P. Separation of Cenospheres from Lignite Fly Ash Using Acetone–Water Mixture. Appl. Sci. 2019, 9, 3792. [Google Scholar] [CrossRef] [Green Version]
- Żyrkowski, M.; Neto, R.C.; Santos, L.F.; Witkowski, K. Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel 2016, 174, 49–53. [Google Scholar] [CrossRef]
- Shukla, A.; Bose, A. Uptake and loss of water in a cenosphere–concrete composite material. Cem. Concr. Res. 2003, 33, 1681–1686. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H. Ash Cenosphere from Solid Fuels Combustion. Part 1: An Investigation into Its Formation Mechanism Using Pyrite as a Model Fuel. Energy Fuels 2012, 26, 130–137. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Yang, E.-H. Development of Ultra-Lightweight and High Strength Engineered Cementitious Composites. J. Compos. Sci. 2021, 5, 113. [Google Scholar] [CrossRef]
- Li, Y. Ash Cenosphere Formation, Fragmentation and its Contribution to Particulate Matter Emission during Solid Fuels Combustion. Ph.D. Thesis, Curtin University, Curtin, Australia, 2012. [Google Scholar]
- Wrona, J.; Żukowski, W.; Bradło, D.; Czupryński, P. Recovery of Cenospheres and Fine Fraction from Coal Fly Ash by a Novel Dry Separation Method. Energies 2020, 13, 3576. [Google Scholar] [CrossRef]
- Ge, J.C.; Yoon, S.K.; Choi, N.J. Application of Fly Ash as an Adsorbent for Removal of Air and Water Pollutants. Appl. Sci. 2018, 8, 1116. [Google Scholar] [CrossRef] [Green Version]
- Kleinhans, U.; Wieland, C.; Frandsen, F.J.; Spliethoff, H. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energy Combust. Sci. 2018, 68, 65–168. [Google Scholar] [CrossRef]
- Yoriya, S.; Tepsri, P. Separation Process and Microstructure-Chemical Composition Relationship of Cenospheres from Lignite Fly Ash Produced from Coal-Fired Power Plant in Thailand. Appl. Sci. 2020, 10, 5512. [Google Scholar] [CrossRef]
- Fomenko, E.; Anshits, N.; Solovyov, L.; Mikhaylova, O.; Anshits, A. Composition and Morphology of Fly Ash Cenospheres Produced from the Combustion of Kuznetsk Coal. Energy Fuels 2013, 27, 5440–5448. [Google Scholar] [CrossRef]
- Fomenko, E.; Anshits, N.; Solov’ev, L.; Mikhailova, O.; Anshits, A. Composition and structure of the shells of fly ash cenospheres from the combustion of coal of the Kuznetsk Basin. Solid Fuel Chem. 2014, 48, 129–139. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Rogovenko, E.S.; Solovyov, L.A.; Anshits, A.G. Gas permeation properties of hollow glass-crystalline microspheres. RSC Adv. 2014, 4, 9997–10000. [Google Scholar] [CrossRef]
- Nakonieczny, D.; Antonowicz, M.; Paszenda, Z. Cenospheres and their application advantages in biomedical engineering—A systematic review. Rev. Adv. Mater. Sci. 2020, 59, 115–130. [Google Scholar] [CrossRef]
- Drozhzhin, V.S.; Shpirt, M.Y.; Danilin, L.D.; Kuvaev, M.D.; Pikulin, I.V.; Potemkin, G.A.; Redyushev, S.A. Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations. Solid Fuel Chem. 2008, 42, 107–119. [Google Scholar] [CrossRef]
- Anshits, N.; Vereshchagina, T.; Fomenko, E.; Kruchek, D.M.; Bayukov, O.; Kyrenskii, L.V.; Zykova, I.; Paretskov, E.N.; Anshits, A.G. Coal fly ash cenospheres and their application for immobilization of liquid radioactive waste. In Proceedings of the 10th International Conference on Environmental Remediation and Radioactive Waste Management, ICEM’05, Glasgow, Scotland, 3–8 September 2005; American Society of Mechanical Engineers: New York, NY, USA, 2005; Volume 2005, pp. 1124–1131. [Google Scholar]
- Adesina, A. Sustainable application of cenospheres in cementitious materials—Overview of performance. Dev. Built Environ. 2020, 4, 100029. [Google Scholar] [CrossRef]
- Jiang, T.; Gao, Y.; Wang, Y.; Zhao, Z.; Yu, J.; Yang, K.; Zhao, Y.; Li, W.; Wu, X. Development and Mechanical Characterization of HGMS–EHS-Reinforced Hollow Glass Bead Composites. ACS Omega 2020, 5, 6725–6737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Jia, D.; Liu, B. Characterization of porous silicon nitride ceramics by pressureless sintering using fly ash cenosphere as a pore-forming agent. J. Eur. Ceram. Soc. 2009, 29, 1529–1534. [Google Scholar] [CrossRef]
- Leelarungroj, K.; Likitlersuang, S.; Chompoorat, T.; Janjaroen, D. Leaching mechanisms of heavy metals from fly ash stabilised soils. Waste Manag. Res. 2018, 36, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Sandeep, P.; Sahu, S.K.; Kothai, P.; Pandit, G.G. Leaching Behavior of Selected Trace and Toxic Metals in Coal Fly Ash Samples Collected from Two Thermal Power Plants, India. Bull. Environ. Contam. Toxicol. 2016, 97, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, S.V.; Menendez, R.; Diaz-Somoano, M.; Martinez-Tarazona, M.R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates. Fuel 2004, 83, 585–603. [Google Scholar] [CrossRef]
- Li, Y.; Gao, X.; Wu, H. Further Investigation into the Formation Mechanism of Ash Cenospheres from an Australian Coal-Fired Power Station. Energy Fuels 2013, 27, 811–815. [Google Scholar] [CrossRef]
- Jiang, L.; Elbaz, A.M.; Guida, P.; Al-Noman, S.M.; AlGhamdi, I.A.; Saxena, S.; Roberts, W.L. Cenosphere Formation during Single-Droplet Combustion of Heavy Fuel Oil. Energy Fuels 2019, 33, 1570–1581. [Google Scholar] [CrossRef]
- Urunkar, Y.; Pandit, A.; Bhargava, P.; Joshi, J.; Mathpati, C.; Vasanthakumaran, S.; Jain, D.; Hussain, Z.; Patel, S.; More, V. Light-weight thermal insulating fly ash cenosphere ceramics. Int. J. Appl. Ceram. Technol. 2018, 15, 1467–1477. [Google Scholar] [CrossRef]
- Qian, H.; Cheng, X.; Zhang, H.; Zhang, R.; Wang, Y. Preparation of Porous Mullite Ceramics Using Fly Ash Cenosphere as a Pore-Forming Agent by Gelcasting Process. Int. J. Appl. Ceram. Technol. 2014, 11, 858–863. [Google Scholar] [CrossRef]
- Haustein, E.; Kuryłowicz-Cudowska, A. The Effect of Fly Ash Microspheres on the Pore Structure of Concrete. Minerals 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Biju-Duval, P. A New Porous Material Based on Cenospheres. Master’s Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2007. [Google Scholar]
- Patel, S.K.; Majhi, R.K.; Satpathy, H.P.; Nayak, A.N. Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate. Constr. Build. Mater. 2019, 226, 579–590. [Google Scholar] [CrossRef]
- Chávez-Valdez, A.; Vargas-Gutiérrez, G.; Almanza-Robles, J.M.; Arizmendi-Morquecho, A. Fly Ash Cenospheres Coatings by EPD-Microwave Sintering Process for SiC Corrosion Resistance. Key Eng. Mater. 2009, 412, 201–206. [Google Scholar] [CrossRef]
- Kumar, P.; Maiti, U.; Sikdar, A.; Das, T.; Kumar, A.; Sudarsan, V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019, 59, 687–738. [Google Scholar] [CrossRef]
- Singh, A.K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 2018, 149, 188–197. [Google Scholar] [CrossRef]
- Bora, P.J.; Mallik, N.; Ramamurthy, P.C.; Kishore; Madras, G. Poly(vinyl butyral) -polyaniline-magnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding. Compos. Part B Eng. 2016, 106, 224–233. [Google Scholar] [CrossRef]
- Manocha, L.M.; Ram, K.A.; Manocha, S.M. Separation of Cenospheres from Fly Ashes by Floatation Method. Eurasian ChemTech J. 2011, 13, 89–95. [Google Scholar] [CrossRef]
- Chávez-Valdez, A.; Arizmendi-Morquecho, A.; Vargas, G.; Almanza, J.M.; Alvarez-Quintana, J. Ultra-low thermal conductivity thermal barrier coatings from recycled fly-ash cenospheres. Acta Mater. 2011, 59, 2556–2562. [Google Scholar] [CrossRef]
- Tiwari, M.; Shukla, S.P.; Mohan, D.; Bhargava, D.S.; Kisku, G.C. Modified Cenospheres as an Adsorbent for the Removal of Disperse Dyes. Adv. Environ. Chem. 2015, 2015, 349254. [Google Scholar] [CrossRef]
- Hirajima, T.; Petrus, H.T.B.M.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Recovery of cenospheres from coal fly ash using a dry separation process: Separation estimation and potential application. Int. J. Miner. Process. 2010, 95, 18–24. [Google Scholar] [CrossRef]
- Beddu, S.; Zainoodin, M.; Basri, A.; Itam, Z.; Ahmadi, R.; Abd Manan, T.S. The potential of cenospheres production from Malaysian coal power plants. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1101, 012012. [Google Scholar] [CrossRef]
- Eisele, T.; Kawatra, S. Use of froth flotation to remove unburned carbon from fly ash. Miner. Process. Extr. Metall. Rev. 2002, 23, 1–10. [Google Scholar] [CrossRef]
- Walker, A.; Wheelock, T.D. Separation of Carbon from Fly Ash Using Froth Flotation. Coal Prep. 2006, 26, 235–250. [Google Scholar] [CrossRef]
- Saputra, F.Y.A.; Sutijan; Petrus, H.T.B.M. Cenosphere Separation from Fly Ash Using Modified Gravity Separator: Feed Ratio Assessment and Stream Velocity Optimization. IOP Conf. Ser. Mater. Sci. Eng. 2020, 742. [Google Scholar] [CrossRef]
- Ramme, B.W.; Noegel, J.J.; Rohatgi, P.K. Separtion of Cenospheres from Fly Ash. U.S. Patent 8,520,210, 27 August 2013. [Google Scholar]
- Petrus, H.T.B.M.; Hirajima, T.; Oosako, Y.; Nonaka, M.; Sasaki, K.; Ando, T. Performance of dry-separation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit. Int. J. Miner. Process. 2011, 98, 15–23. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, K.; Tang, Y.; Hu, C. Preparation of a Cenosphere Curing Agent and Its Application to Foam Concrete. Adv. Mater. Sci. Eng. 2019, 2019, 7523492. [Google Scholar] [CrossRef] [Green Version]
- Kiani, A.; Zhou, J.; Galvin, K. Multistage Concentration of Cenospheres in Fly Ash Using the Inverted Refux Classifier. Coal Combust. Gasif. Prod. 2015, 7, 40–46. [Google Scholar] [CrossRef]
- Vernon, J.H.; Robert, W. Styron Fly Ash Benificiation Process. U.S. Patent 4,121,945, 24 October 1978. [Google Scholar]
- Ashworth, R.A.; Rodriguez, L.A.; Padilla, A.A.; Spake, N.B.; Berry, W.W.; Schmeda, R.A. Method for the Recovery of Minerals and Production of by-Products from Coal Ash. U.S. Patent 4,652,433, 24 March 1987. [Google Scholar]
- Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S.M. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal Sci. Technol. 2016, 3, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, M.; Galperin, V. Air classification of solid particles: A review. Chem. Eng. Process. Process Intensif. 2005, 44, 279–285. [Google Scholar] [CrossRef]
- Satpathy, H.P.; Patel, S.K.; Nayak, A.N. Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr. Build. Mater. 2019, 202, 636–655. [Google Scholar] [CrossRef]
- Nithyanandam, A.; Deivarajan, T. Development of fly ash cenosphere-based composite for thermal insulation application. Int. J. Appl. Ceram. Technol. 2021, 18, 1825–1831. [Google Scholar] [CrossRef]
- Agrawal, U.S.; Wanjari, S.P. Physiochemical and engineering characteristics of cenosphere and its application as a lightweight construction material—A review. Mater. Today Proc. 2017, 4, 9797–9802. [Google Scholar] [CrossRef]
- Kolay, P.K.; Singh, D.N. Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cem. Concr. Res. 2001, 31, 539–542. [Google Scholar] [CrossRef]
- Arizmendi-Morquecho, A.; Chávez-Valdez, A.; Alvarez-Quintana, J. High temperature thermal barrier coatings from recycled fly ash cenospheres. Appl. Therm. Eng. 2012, 48, 117–121. [Google Scholar] [CrossRef]
- Brooks, A.L.; Fang, Y.; Shen, Z.; Wang, J.; Zhou, H. Enabling high-strength cement-based materials for thermal energy storage via fly-ash cenosphere encapsulated phase change materials. Cem. Concr. Compos. 2021, 120, 104033. [Google Scholar] [CrossRef]
- Rewatkar, M.R.; Shende, D.Z. Experimental investigation on cenosphere-based paper battery and electrochemical battery. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2018–2033. [Google Scholar] [CrossRef]
- Irtiseva, K.; Lapkovskis, V.; Mironovs, V.; Ozolins, J.; Thakur, V.K.; Goel, G.; Baronins, J.; Shishkin, A. Towards Next-Generation Sustainable Composites Made of Recycled Rubber, Cenospheres, and Biobinder. Polymers 2021, 13, 574. [Google Scholar] [CrossRef]
- Kushnoore, S.; Kamitkar, N.; Atgur, V.; Uppin, M.S.; Satishkumar, M. A Review on Utilization of Light Weight Fly Ash Cenosphere as Filler in both Polymer and Alloy-Based Composites. J. Mech. Eng. Res. 2020, 3, 17–23. [Google Scholar] [CrossRef]
- Bora, P.J.; Porwal, M.; Vinoy, K.J.; Kishore; Ramamurthy, P.C.; Madras, G. Industrial waste fly ash cenosphere composites based broad band microwave absorber. Compos. Part B Eng. 2018, 134, 151–163. [Google Scholar] [CrossRef]
- Xu, X.; Li, Q.; Cui, H.; Pang, J.; Sun, L.; An, H.; Zhai, J. Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres. Desalination 2011, 272, 233–239. [Google Scholar] [CrossRef]
- Gadore, V.; Ahmaruzzaman, M. Tailored fly ash materials: A recent progress of their properties and applications for remediation of organic and inorganic contaminants from water. J. Water Process Eng. 2021, 41, 101910. [Google Scholar] [CrossRef]
- Markandeya; Shukla, S.P.; Srivastav, A.L. Removal of Disperse Orange and Disperse Blue dyes present in textile mill effluent using zeolite synthesized from cenospheres. Water Sci. Technol. 2021, 84, 445–457. [Google Scholar] [CrossRef]
- Kruger, R. The Use of Cenospheres in Refractories. Energeia 1996, 7, 1–7. [Google Scholar]
- Hanif, A.; Lu, Z.; Li, Z. Utilization of fly ash cenosphere as lightweight filler in cement-based composites—A review. Constr. Build. Mater. 2017, 144, 373–384. [Google Scholar] [CrossRef]
- Lilkov, V.; Djabarov, N.; Bechev, G.; Petrov, O. Properties and hydration products of lightweight and expansive cements Part II: Hydration products. Cem. Concr. Res. 1999, 29, 1641–1646. [Google Scholar] [CrossRef]
- Hanif, A.; Parthasarathy, P.; Ma, H.; Fan, T.; Li, Z. Properties improvement of fly ash cenosphere modified cement pastes using nano silica. Cem. Concr. Compos. 2017, 81, 35–48. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Neiva, A.M.R.; Guimarães, F.; Silva, P.B. Release, Migration, Sorption, and (Re)Precipitation of U during Peraluminous Granite Alteration under Oxidizing Conditions in Central Portugal. Geosciences 2018, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Cabral Pinto, M.M.S.; Silva, M.M.V.G.; Neiva, A.M.R. Release, Migration, Sorption and (re)precipitation of U During a Granite Alteration under Oxidizing Conditions. Procedia Earth Planet. Sci. 2014, 8, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Ijaola, A.O.; Farayibi, P.K.; Asmatulu, E. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review. J. Nat. Gas Sci. Eng. 2020, 83, 103544. [Google Scholar] [CrossRef]
- Souza, F.; Montedo, O.; Grassi, R.; Antunes, E.G.P. Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate. Matéria 2019, 24. [Google Scholar] [CrossRef]
- Alqamish, H.H.; Al-Tamimi, A.K. Development and Evaluation of Nano-Silica Sustainable Concrete. Appl. Sci. 2021, 11, 3041. [Google Scholar] [CrossRef]
- Hanif, A.; Diao, S.; Lu, Z.; Fan, T.; Li, Z. Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres—Mechanical and thermal insulating properties. Constr. Build. Mater. 2016, 116, 422–430. [Google Scholar] [CrossRef]
- Brooks, A.L.; Zhou, H.; Hanna, D. Comparative study of the mechanical and thermal properties of lightweight cementitious composites. Constr. Build. Mater. 2018, 159, 316–328. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Yang, E. High Strength Lightweight Strain-Hardening Cementitious Composite Incorporating Cenosphere. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley, CA, USA, 28 May–1 June 2016. [Google Scholar]
- Senthamarai Kannan, K.; Andal, L.; Shanmugasundaram, M. An Investigation on Strength Development of Cement with Cenosphere and Silica Fume as Pozzolanic Replacement. Adv. Mater. Sci. Eng. 2016, 2016, 9367619. [Google Scholar] [CrossRef] [Green Version]
- Ozcivici, E.; Singh, R. Fabrication and Characterization of Ceramic Foams Based on Silicon Carbide Matrix and Hollow Alumino-Silicate Spheres. J. Am. Ceram. Soc. 2005, 88, 3338–3345. [Google Scholar] [CrossRef]
- Tiwari, V.; Shukla, A.; Bose, A. Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 2004, 65, 263–275. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M.; Sarcinella, A. Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars. Materials 2019, 12, 1260. [Google Scholar] [CrossRef] [Green Version]
- Kolay, P.K.; Bhusal, S. Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization. Fuel 2014, 117, 118–124. [Google Scholar] [CrossRef]
- Birla, S.; Mondal, D.P.; Das, S.; Kashyap, D.K.; Ch, V.A.N. Effect of cenosphere content on the compressive deformation behaviour of aluminum-cenosphere hybrid foam. Mater. Sci. Eng. A 2017, 685, 213–226. [Google Scholar] [CrossRef]
- Xie, Y.; McAllister, S.; Edwards, D.; Cheng, I. Fabrication of porous hollow glass microspheres. Lancet 2011, 196, 10727–10730. [Google Scholar] [CrossRef]
- Deepasree, S.; Venkatraman, V.; Srividya, R. Comparative investigation of internal curing agent incorporated with cenosphere. AIP Conf. Proc. 2020, 2270, 030009. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Qian, X.; Hollingsworth, J. Internal curing of high performance concrete using cenospheres. Cem. Concr. Res. 2017, 95, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Luong, D.D.; Cho, K. Magnesium Matrix Composite Foams—Density, Mechanical Properties, and Applications. Metals 2012, 2, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Cabral Pinto, M.M.S.; Ferreira da Silva, E.A. Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment. Int. J. Environ. Res. Public Health 2018, 16, 2. [Google Scholar] [CrossRef] [Green Version]
- Bora, P.J.; Vinoy, K.; Ramamurthy, P.; Kishore; Madras, G. Electromagnetic interference shielding effectiveness of polyaniline-nickel oxide coated cenosphere composite film. Compos. Commun. 2017, 4, 37–42. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M.; Sarcinella, A.; Barroso de Aguiar, J.L. Applications of Sustainable Polymer-Based Phase Change Materials in Mortars Composed by Different Binders. Materials 2019, 12, 3502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, A.; Xiong, W.; Wang, C.; Zhou, Q. Structure and properties of BaFe12O19 coated fly ash cenospheres by sol-gel process. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2006, 21, 129–131. [Google Scholar] [CrossRef]
- Wimalasiri, V.K.; Weerathunga, H.U.; Kottegoda, N.; Karunaratne, V. Silica Based Superhydrophobic Nanocoatings for Natural Rubber Surfaces. J. Nanomater. 2017, 2017, 2102467. [Google Scholar] [CrossRef]
- Breunig, P.; Damodaran, V.; Shahapurkar, K.; Waddar, S.; Doddamani, M.; Jeyaraj, P.; Prabhakar, P. Dynamic impact behavior of syntactic foam core sandwich composites. J. Compos. Mater. 2019, 54, 535–547. [Google Scholar] [CrossRef]
- Bora, P.J.; Vinoy, K.J.; Ramamurthy, P.C.; Kishore; Madras, G. Lightweight polyaniline-cobalt coated fly ash cenosphere composite film for electromagnetic interference shielding. Electron. Mater. Lett. 2016, 12, 603–609. [Google Scholar] [CrossRef]
- Cardoso, R.J.; Shukla, A.; Bose, A. Effect of particle size and surface treatment on constitutive properties of polyester-cenosphere composites. J. Mater. Sci. 2002, 37, 603–613. [Google Scholar] [CrossRef]
- Shukla, S.; Seal, S.; Rahaman, Z.; Scammon, K. Electroless copper coating of cenospheres using silver nitrate activator. Mater. Lett. 2002, 57, 151–156. [Google Scholar] [CrossRef]
- Luong, D.; Lehmhus, D.; Gupta, N.; Weise, J.; Bayoumi, M. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams. Materials 2016, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, L.O.; Ariff, Z.M.; Hashim, S.F.S.; Alomayri, T.; Mahzan, S.; Kamarudin, K.-A.; Muhammad, I.D. Syntactic foams formulations, production techniques, and industry applications: A review. J. Mater. Res. Technol. 2020, 9, 10698–10718. [Google Scholar] [CrossRef]
- Lisyatnikov, M.; Roshchina, S.; Chukhlanov, V. The use of cenospheres for the production of spheroplastics with high dielectric characteristics, obtained from ash of thermal power plant operating on solid fuel. IOP Conf. Ser. Earth Environ. Sci. 2020, 421, 072005. [Google Scholar] [CrossRef]
- Menezes, C.; Rathod, A.P.; Wasewar, K.L. Thermal Conductivity of Fly Ash Cenospheres for Variable Particle Size Ranges. i-Manag J. Mater. Sci. 2016, 4, 19–23. [Google Scholar]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [Green Version]
- Berkowicz, G.; Bradlo, D.; Zukowski, W. Cenospheres as an innovative fluidised bed material. Tech. Trans. Chem. 2016, 2016, 3–10. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; An, Z.; Zhao, X.; Yao, H.; Zhang, M.; Tian, Q.; Zhai, X.; Liu, Y. Polymer microsphere for water-soluble drug delivery via carbon dot-stabilizing W/O emulsion. J. Mater. Sci. 2019, 54, 5160–5175. [Google Scholar] [CrossRef]
- Ploux, L.; Mateescu, M.; Guichaoua, L.; Valentin, J.; Böhmler, J.; Anselme, K.; Champion, E.; Pécout, N.; Chotard-Ghodsnia, R.; Viana, M. New colloidal fabrication of bioceramics with controlled porosity for delivery of antibiotics. J. Mater. Sci. 2016, 51, 8861–8879. [Google Scholar] [CrossRef]
- Chen, W.; Qi, Z.; Zhang, L.; Huang, Z. Effects of cenosphere on the mechanical properties of cement-based composites. Constr. Build. Mater. 2020, 261, 120527. [Google Scholar] [CrossRef]
- Kristombu Baduge, S.; Mendis, P.; San Nicolas, R.; Nguyen, K.; Hajimohammadi, A. Performance of lightweight hemp concrete with alkali-activated cenosphere binders exposed to elevated temperature. Constr. Build. Mater. 2019, 224, 158–172. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Ngo, T.; Provis, J.L.; Kim, T.; Vongsvivut, J. High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Compos. Part B Eng. 2019, 173, 106908. [Google Scholar] [CrossRef]
- Faridi-Majidi, R.; Nezafati, N.; Pazouki, M.; Hesaraki, S. The effect of synthesis parameters on morphology and diameter of electrospun hydroxyapatite nanofibers. J. Aust. Ceram. Soc. 2017, 53, 225–233. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, Q.; Zhang, Q.; Ye, H.; Wang, Z. Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. J. Mater. Sci. 2018, 53, 12421–12431. [Google Scholar] [CrossRef]
- Hanif, A.; Usman, M.; Lu, Z.; Cheng, Y.; Li, Z. Flexural fatigue behavior of thin laminated cementitious composites incorporating cenosphere fillers. Mater. Des. 2018, 140, 267–277. [Google Scholar] [CrossRef]
- Hanif, A.; Parthasarathy, P.; Lu, Z.; Sun, M.; Li, Z. Fiber-reinforced cementitious composites incorporating glass cenospheres—Mechanical properties and microstructure. Constr. Build. Mater. 2017, 154, 529–538. [Google Scholar] [CrossRef]
- Zhan, J.; Zhang, H.; Zhu, G. Preparation of photocatalytic cenosphere immobilized with TiO2 nanoparticles by hydrothermal method. J. Ind. Text. 2013, 44, 99–114. [Google Scholar] [CrossRef]
- Hanif, A.; Lu, Z.; Sun, M.; Parthasarathy, P.; Li, Z. Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix. J. Clean. Prod. 2017, 159, 326–335. [Google Scholar] [CrossRef]
- Hanif, A.; Lu, Z.; Diao, S.; Zeng, X.; Li, Z. Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Constr. Build. Mater. 2017, 140, 139–149. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Zhang, M.-H.; Li, W.; Chia, K.-S.; Liew, R.J.Y. Stability of cenospheres in lightweight cement composites in terms of alkali–silica reaction. Cem. Concr. Res. 2012, 42, 721–727. [Google Scholar] [CrossRef]
- Blanco, F.; García, P.; Mateos, P.; Ayala, J. Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem. Concr. Res. 2000, 30, 1715–1722. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Qian, X. Integrating phase change materials into concrete through microencapsulation using cenospheres. Cem. Concr. Compos. 2017, 80, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Majkrzak, G.L.; Watson., J.P.; Brynt, M.M.; Clayton, K. Effect of cenospheres on fly ash brick properties. In Proceedings of the World of Coal Ash, Covington, KY, USA, 7–10 May 2007. [Google Scholar]
S. No | % Replacement | Density Kg/m3 | W/C Ratio | Reference |
---|---|---|---|---|
1. | 10 20 30 0 | 1724 1592 1477 2200 | 0.32 | [88] |
2. | 40 50 60 70 | 1506 1444 1342 1260 | 0.3 | [80] |
3. | 10 20 30 5 | 1900 1700 1500 | 0.3 | [86] |
4. | 50 75 100 30 | 1980 1867 1769 1612 | - | [64] |
5. | 33 67 100 0 | 2134 1912 1650 1870 | 0.2 | [84] |
6. | 50 75 100 | - - - | - | [43] |
7. | 15 20 | [89] |
S. No. | Topic | Use/Study Outcomes | References |
---|---|---|---|
1. | Application in cementitious materials | Production of lightweight material. Improvisation of thermal and acoustic properties of cementitious materials. | [31] |
2. | Effect on mechanical properties of cement-based composites | Reduced the shrinkage of cement-based composites. | [117] |
3. | Alkali activated cenosphere as a binder for preparation of lightweight hemp-concrete | Provides compressive strength by using less energy. An alternative sustainable binder because of its lower carbon emissions without compromising on mechanical properties. | [118] |
4. | Cenosphere for designing synthetic foams | Increases strength. Improves insulation capacity. Lightweight. | [119] |
5. | Hydroxyapatite cenosphere for water treatment | Effective for treating heavy metals (lead and copper) contaminated water. | [120] |
6. | CS for making long-lasting anode materials for batteries | Improves cycling stability. Increases rate capability and service life Improves safety | [121] |
7. | CFA CS for the formation of lightweight concrete (LWC) | Increased cenosphere content decreases the density of concrete. Perfect for development of structural LWC. | [64] |
8. | Cenosphere as fillers for flexural fatigue properties of thin cementitious materials | Improves strength and ductility and flexural fatigue | [122] |
9. | Glass CS for development of lightweight cementitious composites | Outstanding in cementitious composites formation. Highly compatible with reinforced fiber matrix. Helps to improve the thermal insulation. | [123] |
10. | Synthesis of nano-Ni coated CScomposites | Ease in processing. Lightweight. Cost-effective. Can be used in electromagnetic shielding. | [124] |
11. | CS for lightweight ferrocement (green) formation | Increases compressive strength, ductility, and flexural strength. Improves durability. | [125] |
12. | CS as filler in cement-based composites | Increases strength. Used in casting lightweight load-carrying structural members. | [126] |
13. | Cenosphere’s stability against alkali-silica reaction in cement composite | Protection from the alkali-silica reaction. Show pozzolanic reactivity, which increases with temperature. | [127] |
14. | Formation of cenosphere concrete material | Increases water uptake due to the porous nature of CS. Improves equilibrium water content. | [17] |
15. | CS as FA for development of lightweight high strength concrete | Increases compressive strength. Low porosity. Low density. | [84] |
16. | Properties of asphalt concrete and cenosphere cement | Increment of 17% in density of concrete by replacing FA with CS. Increment of 40% in sound absorption by using cement with CS. | [91] |
17. | CS for preparation of lightweight cementitious material | Improves mechanical properties. Reduces permeability. Increases durability. Improves thermal insulation. | [86] |
18. | Cenosphere’s use in development of lightweight concrete | Improves TC. | [128] |
19. | Cenosphere’s use for microencapsulating phase change materials (PCM) in concrete | Cost-effective. Increases thermal storage stability and capacity. Improves mechanical properties. | [129] |
20. | CS for internal curing of high-performance concrete | Increases compressive strength. Removes of autogenous shrinkage. Reduces stress concentration. | [97] |
21. | Cenosphere’s effect on properties of CFA brick | Reduces in bulk density. Improves performance on cold region. Improves insulating properties. Financially sound. | [130] |
22. | CS: Use in refractories | CS were used as feedstock to form innovative refractories. Cenosphere incorporation helped to meet enhanced performance characteristics. | [77] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, V.K.; Yadav, K.K.; Tirth, V.; Jangid, A.; Gnanamoorthy, G.; Choudhary, N.; Islam, S.; Gupta, N.; Son, C.T.; Jeon, B.-H. Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals 2021, 11, 1067. https://doi.org/10.3390/cryst11091067
Yadav VK, Yadav KK, Tirth V, Jangid A, Gnanamoorthy G, Choudhary N, Islam S, Gupta N, Son CT, Jeon B-H. Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals. 2021; 11(9):1067. https://doi.org/10.3390/cryst11091067
Chicago/Turabian StyleYadav, Virendra Kumar, Krishna Kumar Yadav, Vineet Tirth, Ashok Jangid, G. Gnanamoorthy, Nisha Choudhary, Saiful Islam, Neha Gupta, Cao Truong Son, and Byong-Hun Jeon. 2021. "Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup" Crystals 11, no. 9: 1067. https://doi.org/10.3390/cryst11091067
APA StyleYadav, V. K., Yadav, K. K., Tirth, V., Jangid, A., Gnanamoorthy, G., Choudhary, N., Islam, S., Gupta, N., Son, C. T., & Jeon, B. -H. (2021). Recent Advances in Methods for Recovery of Cenospheres from Fly Ash and Their Emerging Applications in Ceramics, Composites, Polymers and Environmental Cleanup. Crystals, 11(9), 1067. https://doi.org/10.3390/cryst11091067