Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of ZnO NPs and Carbopol/ZnO Hybrid Nanoparticles Gel
2.2. Characterization of Synthesized ZnO NPs and Carbopol/ZnO Hybrid Nanoparticles Gel
2.3. Antibacterial Sensitivity Test
3. Results and Discussion
3.1. Synthesis and Stabilization Mechanism of ZnO NPs by Carbopol Gel
3.2. Chemical Composition and Phase Identification of Synthesized ZnO NPs and Carbopol/ZnO Hybrid Nanoparticles Gel
3.3. Raman Spectrum of the Synthesized ZnO NPs and Carbopol/ZnO Hybrid Nanoparticles Gel
3.4. BET Surface Area and Pore Size Distribution Analysis of the Synthesized Carbopol/ZnO Hybrid Nanoparticles Gel
3.5. AFM Topographical Analysis of the Synthesized Carbopol/ZnO Hybrid Nanoparticles Gel
3.6. Particle Shape and Size Analysis of Synthesized ZnO NPs and Carbopol/ZnO Hybrid Nanoparticles Gel
3.7. DLS and Zeta-Potential of the Synthesized ZnO NPs and Carbopol/ZnO Hybrid Nanoparticles Gel
3.8. Bioactivity of Carbopol/ZnO Hybrid Nanoparticles Gel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, J.; Pi, J.; Cai, J. The advancing of zinc oxide nanoparticles for biomedical applications. Available online: https://www.hindawi.com/journals/bca/2018/1062562/ (accessed on 7 July 2021).
- Rasmussen, J.W.; Martinez, E.; Louka, P.; Wingett, D.G. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Exp. Opin. Drug Deliv. 2010, 7, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Hamdy, A.; Ismail, S.H.; Ebnalwaled, A.A.; Mohamed, G.G. Characterization of Superparamagnetic/Monodisperse PEG-Coated Magnetite Nanoparticles Sonochemically Prepared from the Hematite Ore for Cd(II) Removal from Aqueous Solutions. J. Inorg. Organomet. Polym. Mater. 2021, 31, 397–414. [Google Scholar] [CrossRef]
- Chieng, B.W.; Loo, Y.Y. Synthesis of ZnO nanoparticles by modified polyol method. Mater. Lett. 2012, 73, 78–82. [Google Scholar] [CrossRef]
- Banerjee, P.; Chakrabarti, S.; Maitra, S.; Dutta, B.K. Zinc oxide nano-particles–sonochemical synthesis, characterization and application for photo-remediation of heavy metal. Ultrason. Sonochem. 2012, 19, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Ghoshal, T.; Biswas, S.; Paul, M.; De, S.K. Synthesis of ZnO nanoparticles by solvothermal method and their ammonia sensing properties. J. Nanosci. Nanotechnol. 2009, 9, 5973–5980. [Google Scholar] [CrossRef] [PubMed]
- Bharti, D.B.; Bharati, A. Synthesis of ZnO nanoparticles using a hydrothermal method and a study its optical activity. Luminescence 2017, 32, 317–320. [Google Scholar] [CrossRef]
- Pineda-Reyes, A.M.; Olvera, M.d.l.L. Synthesis of ZnO nanoparticles from water-in-oil (w/o) microemulsions. Mater. Chem. Phys. 2018, 203, 141–147. [Google Scholar] [CrossRef]
- Somoghi, R.; Purcar, V.; Alexandrescu, E.; Gifu, I.C.; Ninciuleanu, C.M.; Cotrut, C.M.; Oancea, F.; Stroescu, H. Synthesis of Zinc Oxide Nanomaterials via Sol-Gel Process with Anti-Corrosive Effect for Cu, Al and Zn Metallic Substrates. Coatings 2021, 11, 444. [Google Scholar] [CrossRef]
- Adam, R.E.; Pozina, G.; Willander, M.; Nur, O. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photonics Nanostructures Fundam. Appl. 2018, 32, 11–18. [Google Scholar] [CrossRef]
- Lijuan, A.N.; Jun, W.; Tiefeng, Z.; Hanlin, Y.; Zhihui, S. Synthesis of ZnO nanoparticles by direct precipitation method. Adv. Mat. Res. 2012, 380, 335–338. [Google Scholar]
- Naveed Ul Haq, A.; Nadhman, A.; Ullah, I.; Mustafa, G.; Yasinzai, M.; Khan, I. Synthesis approaches of zinc oxide nanoparticles: The dilemma of ecotoxicity. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef]
- Zhang, Y.; Ram, M.K.; Stefanakos, E.K.; Goswami, D.Y. Synthesis, characterization, and applications of ZnO nanowires. J. Nanomater. 2012, 2012, 1–22. [Google Scholar] [CrossRef]
- Chaudhary, S.; Umar, A.; Bhasin, K.K.; Baskoutas, S. Chemical sensing applications of ZnO nanomaterials. Materials 2018, 11, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Huo, L.; Shi, X.; Bai, R.; Zhang, Z.; Zhao, Y.; Chang, Y.; Chen, C. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano 2014, 8, 2562–2574. [Google Scholar] [CrossRef]
- Food and Drug Administration. Select Committee on GRAS Substances (SCOGS) Opinion: Zinc Salts 2015. Washington, DC. 2015. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm (accessed on 1 April 2020).
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Rahman, A.; Husen, A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Maiti, M.; Ganguly, A.; George, J.J.; Bhowmick, A.K. Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber. J. Appl. Polym. Sci. 2007, 105, 2407–2415. [Google Scholar] [CrossRef]
- Hatamie, A.; Khan, A.; Golabi, M.; Turner, A.P.F.; Beni, V.; Mak, W.C.; Sadollahkhani, A.; Alnoor, H.; Zargar, B.; Bano, S.; et al. Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 2015, 31, 10913–10921. [Google Scholar] [CrossRef]
- Sricharussin, W.; Threepopnatkul, P.; Neamjan, N. Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties. Fibers Polym. 2011, 12, 1037–1041. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Bica, B.O.; de Melo, J.V.S. Concrete blocks nano-modified with zinc oxide (ZnO) for photocatalytic paving: Performance comparison with titanium dioxide (TiO2). Constr. Build. Mater. 2020, 252, 119120. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.K.; Dhyani, A.; Juyal, D. Hydrogel: Preparation, characterization and applications. Pharma Innov. 2017, 6, 25. [Google Scholar]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for biomedical applications: Their characteristics and the mechanisms behind them. Gels 2017, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaterji, S.; Kwon, I.K.; Park, K. Smart polymeric gels: Redefining the limits of biomedical devices. Prog. Polym. Sci. 2007, 32, 1083–1122. [Google Scholar] [CrossRef] [Green Version]
- Sultana, F.; Manirujjaman; Imran-Ul-Haque, M.; Arafat, M.; Sharmin, S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci. 2013, 3, 95–105. [Google Scholar]
- Oh, J.K.; Drumright, R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2008, 33, 448–477. [Google Scholar] [CrossRef]
- Soni, K.S.; Desale, S.S.; Bronich, T.K. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J. Controll. Release 2016, 240, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Kabanov, A.V.; Vinogradov, S.V. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. 2009, 48, 5418–5429. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Hu, B.; Yuan, X.; Cai, L.; Gao, H.; Yang, Q. Nanogel: A versatile nano-delivery system for biomedical applications. Pharmaceutics 2020, 12, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 1–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanambal, E. Formulation and Evaluation of pH Triggered in Situ Gelling System of Levofloxacin. M.Sc. Thesis, Madurai Medical College, Madurai, India, 2010. [Google Scholar]
- Gutowski, I.A. The Effects of pH and Concentration on the Rheology of Carbopol Gels. M.Sc. Thesis, Department of Physics: Simon Fraser University, Burnaby, BC, Canada, 2010. [Google Scholar]
- Alam, S.; Algahtani, M.S.; Ahmad, M.Z.; Ahmad, J. Investigation utilizing the HLB concept for the development of moisturizing cream and lotion: In-vitro characterization and stability evaluation. Cosmetics 2020, 7, 43. [Google Scholar] [CrossRef]
- Lorca, S.; Santos, F.; Fernández Romero, A.J. A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers 2020, 12, 2812. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227. [Google Scholar] [CrossRef] [Green Version]
- Malmsten, M. Antimicrobial and antiviral hydrogels. Soft Matter. 2011, 7, 8725–8736. [Google Scholar] [CrossRef]
- Shah, B.; Davidson, P.M.; Zhong, Q. Nanodispersed eugenol has improved antimicrobial activity against Escherichia coli O157: H7 and Listeria monocytogenes in bovine milk. Int. J. Food Microbiol. 2013, 161, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Kupnik, K.; Primožič, M.; Kokol, V.; Leitgeb, M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers 2020, 12, 2825. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, B.L.; Abuçafy, M.P.; Manaia, E.B.; Junior, J.A.O.; Chiari-Andréo, B.G.; Pietro, R.C.R.; Chiavacci, L.A. Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview. Int. J. Nanomed. 2019, 14, 9395. [Google Scholar] [CrossRef] [Green Version]
- Diez-Pascual, A.M. Antibacterial nanocomposites based on thermosetting polymers derived from vegetable oils and metal oxide nanoparticles. Polymers 2019, 11, 1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazoori, E.S.; Kariminik, A. In vitro evaluation of antibacterial properties of zinc oxide nanoparticles on pathogenic prokaryotes. J. Appl. Biotechnol. Rep. 2018, 5, 162–165. [Google Scholar] [CrossRef]
- Alamdari, S.; Ghamsari, M.S.; Lee, C.; Han, W.; Park, H.; Tafreshi, M.J.; Afarideh, H.; Ara, M.H.M. Preparation and characterization of zinc oxide nanoparticles using leaf extract of sambucus ebulus. Appl. Sci. 2020, 10, 3620. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Menon, S.; Kumar, S.V.; Rajeshkumar, S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem. Biol. Interact. 2018, 286, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 1218. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Manna, S.; Nayak, A.K.; Sen, K.K.; Basu, S.K. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf. B Biointerfaces 2014, 114, 36–44. [Google Scholar] [CrossRef]
- Sareen, R.; Kumar, S.; Gupta, G.D. Meloxicam carbopol-based gels: Characterization and evaluation. Curr. Drug Deliv. 2011, 8, 407–415. [Google Scholar] [CrossRef]
- Bonacucina, G.; Cespi, M.; Misici-Falzi, M.; Palmieri, G.F. Rheological evaluation of silicon/carbopol hydrophilic gel systems as a vehicle for delivery of water insoluble drugs. AAPS J. 2008, 10, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Purwaningsih, S.Y.; Pratapa, S.; Triwikantoro; Darminto. Nano-sized ZnO powders prepared by co-precipitation method with various pH. In Proceedings of the 3rd International Conference on Advanced Materials Science and Technology (ICAMST 2015), Proceedings of the AIP Conference 1725, 020063 (2016); Semarang, Indonesia, 6–7th October 2015, AIP Publishing LLC: Melville, NY, USA, 2016. [Google Scholar] [CrossRef]
- Blanco-Fuente, H.; Esteban-Fernández, B.; Blanco-Méndez, J.; Otero-Espinar, F. Use of β-cyclodextrins to prevent modifications of the properties of carbopol hydrogels due to carbopol–drug interactions. Chem. Pharm. Bull. 2002, 50, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Suhail, M.; Wu, P.-C.; Minhas, M.U. Using carbomer-based hydrogels for control the release rate of diclofenac sodium: Preparation and in vitro evaluation. Pharmaceuticals 2020, 13, 399. [Google Scholar] [CrossRef]
- Lamberti, G.; Caccavo, D.; Cascone, D.I.S. Mathematical Description of Hydrogels’ Behavior for Biomedical Applications; Universita Degli Studi Di Salerno: Fisciano, Italy, 2013. [Google Scholar]
- Viyoch, J.; Klinthong, N.; Siripaisal, W. Development of oil-in-water emulsion containing Tamarind fruit pulp extract I. Physical characteristics and stability of emulsion. Naresuan Univer. J. Sci. Technol. NUJST 2013, 11, 29–44. [Google Scholar]
- Ethier, A.; Bansal, P.; Baxter, J.; Langley, N.; Richardson, N.; Patel, A.M. The role of excipients in the microstructure of Topical semisolid drug products. In The Role of Microstructure in Topical Drug Product Development; Springer: Amsterdam, The Netherlands, 2019; pp. 155–193. [Google Scholar]
- Da Silva Ávila, D.M.; Zanatta, R.F.; Scaramucci, T.; Aoki, I.V.; Torres, C.R.G.; Borges, A.B. Randomized in situ trial on the efficacy of Carbopol in enhancing fluoride/stannous anti-erosive properties. J. Dent. 2020, 101, 103347. [Google Scholar] [CrossRef]
- Abdullah, G.Z.; Abdulkarim, M.F.; Mallikarjun, C.; Mahdi, E.S.; Basri, M.; Abdul Sattar, M.; Noor, A.M. Carbopol 934, 940 and Ultrez 10 as viscosity modifiers of palm olein esters based nano-scaled emulsion containing ibuprofen. Pak. J. Pharm. Sci. 2013, 26, 75–83. [Google Scholar]
- Fevola, M.J.; Walters, R.M.; LiBrizzi, J.J. A new approach to formulating mild cleansers: Hydrophobically-modified polymers for irritation mitigation. In Polymeric Delivery of Therapeutics; ACS Publications: Washington, DC, USA, 2010; pp. 221–242. [Google Scholar]
- Varges, R.P.; Costa, C.M.; Fonseca, B.S.; Naccache, M.F.; Mendes, P.R.D. Rheological characterization of Carbopol® dispersions in water and in water/glycerol solutions. Fluids 2019, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Panzade, P.; Puranik, P.K. Carbopol polymers: A versatile polymer for pharmaceutical applications. Res. J. Pharm. Technol. 2010, 3, 672–675. [Google Scholar]
- Hamdy, A. Experimental Study of the Relationship Between Dissolved Iron, Turbidity, and Removal of Cu(II) Ion from Aqueous Solutions Using Zero-Valent Iron Nanoparticles. Arab. J. Sci. Eng. 2020, 46, 1–23. [Google Scholar] [CrossRef]
- Suntako, R. Effect of zinc oxide nano-gel synthesized by a precipitation method on mechanical and morphological properties of the CR foam. Bull. Mater. Sci. 2015, 38, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Chikkanna, M.M.; Neelagund, S.E.; Rajashekarappa, K.K. Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Appl. Sci. 2019, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mashrai, A.; Khanam, H.; Aljawfi, R.N. Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab. J. Chem. 2017, 10, S1530–S1536. [Google Scholar]
- Muhammad, W.; Ullah, N.; Haroon, M.; Abbasi, B.H. Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv. 2019, 9, 29541–29548. [Google Scholar] [CrossRef] [Green Version]
- Zak, A.K.; Razali, R.; Abd Majid, W.H.; Darroudi, M. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 2011, 6, 1399. [Google Scholar]
- Baruwati, B.; Kumar, D.K.; Manorama, S.V. Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH. Sens. Actuators B Chem. 2006, 119, 676–682. [Google Scholar] [CrossRef]
- Acosta-Humánez, M.; Montes-Vides, L.; Almanza-Montero, O. Sol-gel synthesis of zinc oxide nanoparticle at three different temperatures and its characterization via XRD, IR and EPR. Dyna 2016, 83, 224–228. [Google Scholar] [CrossRef]
- Diallo, A.; Ngom, B.D.; Park, E.; Maaza, M. Green synthesis of ZnO nanoparticles by Aspalathus linearis: Structural & optical properties. J. All. Comp. 2015, 646, 425–430. [Google Scholar]
- Muchuweni, E.; Sathiaraj, T.; Nyakotyo, H. Hydrothermal synthesis of ZnO nanowires on rf sputtered Ga and Al co-doped ZnO thin films for solar cell application. J. Alloy Comp. 2017, 721, 45–54. [Google Scholar] [CrossRef]
- Taziwa, R.; Meyer, E.; Katwire, D.; Ntozakhe, L. Influence of carbon modification on the morphological, structural, and optical properties of zinc oxide nanoparticles synthesized by pneumatic spray pyrolysis technique. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef]
- Jayachandraiah, C.; Krishnaiah, G. Erbium induced raman studies and dielectric properties of Er-doped ZnO nanoparticles. Adv. Mater. Lett. 2015, 6, 743–748. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Kołodziejczak-Radzimska, A.; Markiewicz, E.; Jesionowski, T. Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J. Nanomater. 2012, 2012, 15. [Google Scholar] [CrossRef]
- Umukoro, E.H.; Peleyejua, M.G.; Idrisa, A.O.; Ngilaab, J.C.; Mabubaab, N.; Rhymanac, L.; Ramasami, P.; Arotiba, O.A. Photoelectrocatalytic application of palladium decorated zinc oxide-expanded graphite electrode for the removal of 4-nitrophenol: Experimental and computational studies. RSC Adv. 2018, 8, 10255–10266. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.A.; Taha, K.K.; Modwi, A.; Khezami, L. ZnO nanoparticles: Surface and X-ray profile analysis. J. Ovonic Res. 2018, 14, 381–393. [Google Scholar]
- Thirumavalavan, M.; Huang, K.-L.; Lee, J.-F. Preparation and morphology studies of nano zinc oxide obtained using native and modified chitosans. Materials 2013, 6, 4198–4212. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, P.; Puttaiah, S.H.; Wantala, K.; Shahmoradi, B. Preparation of modified ZnO nanoparticles for photocatalytic degradation of chlorobenzene. Appl. Water Sci. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Ramimoghadam, D.; Hussein, M.Z.B.; Taufiq-Yap, Y.H. Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate. Chem. Central J. 2013, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mustapha, S.; Tijani, J.O.; Ndamitso, M.M.; Abdulkareem, S.A.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. The role of kaolin and kaolin/ZnO nanoadsorbents in adsorption studies for tannery wastewater treatment. Sci. Rep. 2020, 10, 1–22. [Google Scholar] [CrossRef]
- Mittal, H.; Morajkar, P.P.; Al Alili, A.; Alhassan, S.M. In-situ synthesis of ZnO nanoparticles using gum arabic based hydrogels as a self-template for effective malachite green dye adsorption. J. Polym. Environ. 2020, 28, 1637–1653. [Google Scholar] [CrossRef]
- Qin, C.; Li, S.; Jiang, G.; Cao, J.; Guo, Y.; Li, J.; Zhang, B.; Han, S. Preparation of flower-like ZnO nanoparticles in a cellulose hydrogel microreactor. BioResources 2017, 12, 3182–3191. [Google Scholar] [CrossRef] [Green Version]
- Omar, L.; Perret, N.; Daniele, S. Self-Assembled Hybrid ZnO nanostructures as supports for copper-based catalysts in the hydrogenolysis of glycerol. Catalysts 2021, 11, 516. [Google Scholar] [CrossRef]
- Abou Oualid, H.; Amadine, O.; Essamlali, Y.; Dânounb, K.; Zahouily, M. Supercritical CO2 drying of alginate/zinc hydrogels: A green and facile route to prepare ZnO foam structures and ZnO nanoparticles. RSC Adv. 2018, 8, 20737–20747. [Google Scholar] [CrossRef] [Green Version]
- Safavinia, L.; Akhgar, M.R.; Tahamipour, B.; Ahmadi, S.A. Green Synthesis of highly dispersed zinc oxide nanoparticles supported on silica gel matrix by daphne oleoides extract and their antibacterial activity. Iran. J. Biotechnol. 2021, 19, 86–95. [Google Scholar]
- Hasanpour, M.; Motahari, S.; Jing, D.; Hatami, M. Investigation of the different morphologies of zinc oxide (ZnO) in Cellulose/ZnO hybrid aerogel on the photocatalytic degradation efficiency of methyl orange. Topics Catal. 2021, 2021, 1–14. [Google Scholar]
- Wang, Q.; Ji, P.; Yao, Y.; Liu, Y.; Zhang, Y.; Wang, X.; Wang, Y.; Wu, J. Gliadin-mediated green preparation of hybrid zinc oxide nanospheres with antibacterial activity and low toxicity. Sci. Rep. 2021, 11, 1–11. [Google Scholar]
- Jassim, A.N.; Alwan, R.M.; Kadhim, Q.A.; Nsaif, A.A. Preparation and characterization of ZnO/polystyrene nanocomposite films using ultrasound irradiation. Nanosci. Nanotechnol. 2016, 6, 17–23. [Google Scholar]
- Hutera, B.; Kmita, A.; Olejnik, E.; Tokarski, T. Synthesis of ZnO nanoparticles by thermal decomposition of basic zinc carbonate. Arch. Metall. Mater. 2013, 58, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Chai, M.H.H.; Amir, N.; Yahya, N.; Saaid, I.M. Characterization and colloidal stability of surface modified zinc oxide nanoparticle. J. Phys. Conf. Ser. 2018, 1123, 012007. [Google Scholar] [CrossRef]
- Mohammed, W.H.; Ali, W.K.; Al-Awady, M.J. Evaluation of in vitro drug release kinetics and antibacterial activity of vancomycin HCl-loaded nanogel for topical application. J. Pharm. Sci. Res. 2018, 10, 2747–2756. [Google Scholar]
- Al-Awady, M.J.; Fauchet, A.; Greenway, G.M.; Paunov, V.N. Enhanced antimicrobial effect of berberine in nanogel carriers with cationic surface functionality. J. Mater. Chem. B 2017, 5, 7885–7897. [Google Scholar] [CrossRef]
- Punnoose, A.; Dodge, K.; Rasmussen, J.W.; Chess, J.; Wingett, D.; Anders, C. Cytotoxicity of ZnO nanoparticles can be tailored by modifying their surface structure: A green chemistry approach for safer nanomaterials. ACS Sustain. Chem. Eng. 2014, 2, 1666–1673. [Google Scholar] [CrossRef]
- Sapkota, B.B.; Mishra, S.R. Preparation and Photocatalytic Activity Study of p-CuO/n-ZnO composites. MRS Proceedings 2012, 1443, 19–26. [Google Scholar] [CrossRef]
- Weldrick, P.J.; San, S.; Paunov, V.N. Advanced Alcalase-Coated Clindamycin-Loaded Carbopol Nanogels for Removal of Persistent Bacterial Biofilms. ACS Appl. Nano Mater. 2021, 4, 1187–1201. [Google Scholar] [CrossRef]
- Weldrick, P.J.; Iveson, S.; Hardman, M.J.; Paunov, V.N. Breathing new life into old antibiotics: Overcoming antibacterial resistance by antibiotic-loaded nanogel carriers with cationic surface functionality. Nanoscale 2019, 11, 10472–10485. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Daoush, W.M.; Siddique, S.A.; Nadeem, T. Green synthesis and biomedical applications of ZnO nanoparticles: Role of PEGylated-ZnO nanoparticles as doxorubicin drug carrier against MDA-MB-231(TNBC) cells line. Crystals 2021, 11, 344. [Google Scholar] [CrossRef]
- Batool, M.; Khurshid, S.; Qureshi, Z.; Daoush, W.M. Adsorption, antimicrobial and wound healing activities of biosynthesised zinc oxide nanoparticles. Chem. Pap. 2021, 75, 893–907. [Google Scholar] [CrossRef]
- Sadek, A.H.; Asker, M.S.; Abdelhamid, S.A. Bacteriostatic impact of nanoscale zero-valent iron against pathogenic bacteria in the municipal wastewater. Biologia 2021, 76, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Wahid, F.; Zhong, C.; Wang, H.; Hu, X.; Chu, L. Recent advances in antimicrobial hydrogels containing metal ions and metals/metal oxide nanoparticles. Polymers 2017, 9, 636. [Google Scholar] [CrossRef] [Green Version]
- Gokmen, F.O.; Temel, S.; Yaman, E. Enhanced antibacterial property by the synergetic effect of TiO2 and ZnO nano-particles in biodegradable hydrogel. Eur. Sci. J. 2019, 15, 33. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J. Antimicrobial hydrogels: Promising materials for medical application. Int. J. Nanomed. 2018, 13, 2217. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, M.; Orlandi, C.; Simonetti, N.; Cerreto, F. Study of interaction effects of polyacrylic acid polymers (Carbopol 940) on antimicrobial activity of methyl parahydroxybenzoate against some gram-negative, gram-positive bacteria and yeast. J. Pharm. Pharmacol. 1996, 48, 1201–1205. [Google Scholar] [CrossRef]
- Alpaslan, E.; Geilich, B.M.; Yazici, H.; Webster, T.J. pH-controlled cerium oxide nanoparticle inhibition of both gram-positive and gram-negative bacteria growth. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Mahboub, H.H.; Shahin, K.; Zaglool, A.W.; Roushdy, E.M.; Ahmed, S.S.A. Efficacy of nano zinc oxide dietary supplements on growth performance, immunomodulation and disease resistance of African Catfish, Clarias gariepinus. Dis Aquat Org. 2020, 142, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ZnO NPs | Carbopol/ZnO Hybrid Nanoparticles Gel | |||||
---|---|---|---|---|---|---|
Index | d-Value (Å) | 2θ (º) | hkl | d-Value (Å) | 2θ (º) | hkl |
1 | 2.8009 | 31.926 | 100 | 2.8141 | 31.773 | 100 |
2 | 2.5886 | 34.624 | 002 | 2.6027 | 34.430 | 002 |
3 | 2.4635 | 36.442 | 101 | 2.4755 | 36.259 | 101 |
4 | 1.901 | 47.808 | 102 | 1.9107 | 47.551 | 102 |
5 | 1.6171 | 56.894 | 210 | 1.6247 | 56.604 | 210 |
6 | 1.4692 | 63.242 | 103 | 1.4769 | 62.875 | 103 |
7 | 1.4004 | 66.742 | 200 | 1.4070 | 66.388 | 200 |
8 | 1.3715 | 68.34 | 212 | 1.3782 | 67.962 | 212 |
9 | 1.3519 | 69.471 | 201 | 1.3583 | 69.097 | 201 |
10 | 1.2943 | 73.046 | 004 | 1.3013 | 72.591 | 004 |
11 | 1.2317 | 77.422 | 202 | 1.2377 | 76.978 | 202 |
Synthesis Route | Crystal Phase | Lattice Structure | Crystallite Size (nm) | References |
---|---|---|---|---|
Green synthesis by sheep and goat fecal matter | Hexagonal | Wurtzite | 28.50 | [67] |
Biological synthesis of ZnO NPs using C. albicans | Hexagonal | Wurtzite | 25.00 | [68] |
Biogenic synthesis of ZnO NPs using an aqueous extract of Papaver somniferum L | Hexagonal | Wurtzite | 48.00 | [69] |
ZnO NPs synthesized via a solvothermal method in triethanolamine (TEA) media | Hexagonal | Wurtzite | 33.00 | [70] |
Hydrothermal synthesis of highly crystalline ZnO NPs | Hexagonal | Wurtzite | 17.00 | [71] |
Sol-gel synthesis of ZnO NPs at three different calcination temperatures | Hexagonal | Wurtzite | 30.00 | [72] |
Chemical precipitation/ultrasonication synthesis of ZnO NPs | Hexagonal | Wurtzite | 48.70 | This study |
Carbopol Stabilized ZnO NPs | |
---|---|
BET surface area, m2/g | 54.26 |
Average particle size, nm | 5.02 |
Mean pore diameter, nm | 2.33 |
Total pore volume, cm3/g | 0.063 |
Materials | SBET, m2/g | References |
---|---|---|
Bare ZnO NPs Pd–ZnO-EG | 3.29 4.93 | [79] |
ZnO precursor ZnO Xerogel nanostructers annealed at 275 °C 375 °C 475 °C 600 °C | 87.43 25.36 22.81 15.16 8.78 | [80] |
ZnO nanostructures modified chitosan and sodium chloroacetate with isopropyl alcohol ZnO-CTS-450 ZnO-CMC1-450 ZnO-CTS-650 ZnO-CMC1-650 | 23.76 15.44 11.92 5.88 | [81] |
Modified ZnO NPs Ag/ZnO NPs Cd/ZnO NPs Pb/ZnO NPs | 7.75 10.6 106.65 | [82] |
ZnO synthesized without any biotemplate ZnO synthesized at different volumes of palm olein 1 mL PO 2 mL PO | 5 10 13 | [83] |
Kaolin/ZnO nanocomposites | 31.8 | [84] |
Gum arabic-crosslinked-poly(acrylamide)/zinc oxide hydrogels (GA-cl-PAM/ZnO hydrogel) | 39.0 | [85] |
Flower-like ZnO NPs in a cellulose hydrogel microreactor | 39.18 | [86] |
ZnO/PAAH hybrid nanomaterials (PAAH = polyacrylic acid) ZnO/PAA2-350 °C ZnO/PAA5-350 °C | 51 31 | [87] |
Carbopol/ZnO hybrid nanoparticles gel | 54.26 | This study |
Alginate/Zn aerogel beads | 143 | [88] |
Highly dispersed ZnO NPs supported on the silica gel matrix | 245 | [89] |
Cellulose/ZnO hybrid aerogel (CA/ZnO) | 352.82 | [90] |
Wheat gliadin/ZnO hybrid nanospheres | 523.88 | [91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, S.H.; Hamdy, A.; Ismail, T.A.; Mahboub, H.H.; Mahmoud, W.H.; Daoush, W.M. Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals 2021, 11, 1092. https://doi.org/10.3390/cryst11091092
Ismail SH, Hamdy A, Ismail TA, Mahboub HH, Mahmoud WH, Daoush WM. Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals. 2021; 11(9):1092. https://doi.org/10.3390/cryst11091092
Chicago/Turabian StyleIsmail, Sameh H., Ahmed Hamdy, Tamer Ahmed Ismail, Heba H. Mahboub, Walaa H. Mahmoud, and Walid M. Daoush. 2021. "Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel" Crystals 11, no. 9: 1092. https://doi.org/10.3390/cryst11091092
APA StyleIsmail, S. H., Hamdy, A., Ismail, T. A., Mahboub, H. H., Mahmoud, W. H., & Daoush, W. M. (2021). Synthesis and Characterization of Antibacterial Carbopol/ZnO Hybrid Nanoparticles Gel. Crystals, 11(9), 1092. https://doi.org/10.3390/cryst11091092