Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn Ferromagnetic Shape Memory Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Planes, A.; Mañosa, L.; Moya, X.; Krenke, T.; Acet, M.; Wassermann, E. Magnetocaloric effect in Heusler shape-memory alloys. J. Magn. Magn. Mater. 2007, 310, 2767–2769. [Google Scholar] [CrossRef]
- Khan, M.; Ali, N.; Stadler, S. Inverse magnetocaloric effect in ferromagnetic Ni 50 Mn 37+ x Sb 13− x Heusler alloys. J. Appl. Phys. 2007, 101, 053919. [Google Scholar] [CrossRef] [Green Version]
- Giri, S.; Patra, M.; Majumdar, S. Exchange bias effect in alloys and compounds. J. Phys. Condens. Matter 2011, 23, 073201. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.M.; Liu, Y.; Xia, B.; Ren, P.; Wang, L. Large exchange bias obtainable through zero-field cooling from an unmagnetized state in Ni-Mn-Sn alloys. J. Appl. Phys. 2012, 111, 43912. [Google Scholar] [CrossRef]
- Xuan, H.C.; Cao, Q.Q.; Zhang, C.L.; Ma, S.C.; Chen, S.Y.; Wang, D.H.; Du, Y.W. Large exchange bias field in the Ni–Mn–Sn Heusler alloys with high content of Mn. Appl. Phys. Lett. 2010, 96, 202502. [Google Scholar] [CrossRef]
- Chandra, L.S.S.; Chattopadhyay, M.K.; Sharma, V.; Roy, S.B.; Pandey, S. Temperature dependence of thermoelectric power and thermal conductivity in ferromagnetic shape memory alloyNi50Mn34In16in magnetic fields. Phys. Rev. B 2010, 81, 195105. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, X.X.; Yu, S.Y.; Chen, J.L.; Cao, Z.X.; Wu, G.H. Giant magnetothermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys. Appl. Phys. Lett. 2007, 91, 012510. [Google Scholar] [CrossRef]
- Ghosh, A.; Mandal, K. Large magnetoresistance associated with large inverse magnetocaloric effect in Ni-Co-Mn-Sn alloys. Eur. Phys. J. B 2013, 86, 1–6. [Google Scholar] [CrossRef]
- Xuan, H.C.; Deng, Y.; Wang, D.H.; Zhang, C.L.; Han, Z.D.; Du, Y.W. Effect of annealing on the martensitic transformation and magnetoresistance in Ni–Mn–Sn ribbons. J. Phys. D Appl. Phys. 2008, 41. [Google Scholar] [CrossRef]
- Ito, W.; Ito, K.; Umetsu, R.Y.; Kainuma, R.; Koyama, K.; Watanabe, K.; Fujita, A.; Oikawa, K.; Ishida, K.; Kanomata, T. Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 2008, 92, 021908. [Google Scholar] [CrossRef]
- Liu, J.; Gong, Y.; Xu, G.; Peng, G.; Shah, I.A.; Ul Hassan, N.; Xu, F. Realization of magnetostructural coupling by modifying structural transitions in MnNiSi-CoNiGe system with a wide Curie-temperature window. Sci. Rep. 2016, 6, 1–8. [Google Scholar]
- Karaca, H.; Karaman, I.; Basaran, B.; Ren, Y.; Chumlyakov, Y.I.; Maier, H.J. Magnetic Field-Induced Phase Transformation in NiMnCoIn Magnetic Shape-Memory Alloys-A New Actuation Mechanism with Large Work Output. Adv. Funct. Mater. 2009, 19, 983–998. [Google Scholar] [CrossRef]
- Liu, J.; Scheerbaum, N.; Kauffmann-Weiss, S.; Gutfleisch, O. NiMn-Based Alloys and Composites for Magnetically Controlled Dampers and Actuators. Adv. Eng. Mater. 2012, 14, 653–667. [Google Scholar] [CrossRef]
- Karaman, I.; Basaran, B.; Karaca, H.E.; Karsilayan, A.I.; Chumlyakov, Y.I. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy. Appl. Phys. Lett. 2007, 90, 172505. [Google Scholar] [CrossRef]
- Hassan, N.U.; Chen, F.; Zhang, M.; Shah, I.A.; Liu, J.; Gong, Y.; Xu, G.; Xu, F. Realisation of magnetostructural coupling and a large magnetocaloric effect in the MnCoGe 1+x system. J. Magn. Magn. Mater. 2017, 439, 120–125. [Google Scholar] [CrossRef]
- Liu, J.; Gong, Y.; Xu, G.; Xu, F. Effect of Sb-doping on martensitic transformation and magnetocaloric effect in Mn-rich Mn50Ni40Sn10-xSbx (x= 1, 2, 3, and 4) alloys. Chin. Phys. B 2017, 26, 448–452. [Google Scholar]
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Guillou, F.; Porcari, G.; Yibole, H.; Van Dijk, N.; Brück, E. Taming the First-Order Transition in Giant Magnetocaloric Materials. Adv. Mater. 2014, 26, 2671–2675. [Google Scholar] [CrossRef] [Green Version]
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 2011, 23, 821–842. [Google Scholar] [CrossRef]
- Lyubina, J.; Nenkov, K.; Schultz, L.; Gutfleisch, O. Multiple Metamagnetic Transitions in the Magnetic RefrigerantLa(Fe, Si)13Hx. Phys. Rev. Lett. 2008, 101, 177203. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Li, Y.; Wu, Y.; Long, Y.; Shen, J.; Hu, F.; Sun, J.; Shen, B. Mechanical properties and magnetocaloric effects in La (Fe, Si) 13 hydrides bonded with different epoxy resins. J. Appl. Phys. 2015, 117, 063902. [Google Scholar] [CrossRef] [Green Version]
- Mandal, K.; Pal, D.; Gutfleisch, O.; Kerschl, P.; Müller, K.H. Magnetocaloric effect in reactively-milled LaFe 11.57 Si 1.43 H y intermetallic compounds. J. Appl. Phys. 2007, 102, 053906. [Google Scholar] [CrossRef]
- Hu, F.-X.; Shen, B.-G.; Sun, J.-R.; Cheng, Z.-H.; Rao, G.-H.; Zhang, X.-X. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Appl. Phys. Lett. 2001, 78, 3675–3677. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494. [Google Scholar] [CrossRef]
- Shah, I.A.; ul Hassan, N.; Riaz, S.; Naseem, S.; Xu, F.; Ullah, Z. Realization of Magnetostructural Transition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys. J. Supercond. Nov. Magn. 2019, 32, 659–665. [Google Scholar] [CrossRef]
- Shah, I.A.; ul Hassan, N.; Rauf, A.; Liu, J.; Gong, Y.; Xu, G.; Xu, F. Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48−xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys. Chin. Phys. B 2017, 26, 097501. [Google Scholar] [CrossRef]
- Hassan, N.U.; Shah, I.A.; Liu, J.; Xu, G.; Gong, Y.; Miao, X.; Xu, F. Magnetostructural Coupling and Giant Magnetocaloric Effect in Off-Stoichiometric MnCoGe Alloys. J. Supercond. Nov. Magn. 2018, 31, 3809–3815. [Google Scholar] [CrossRef]
- Krenke, T.; Acet, M.; Wassermann, E.F.; Moya, X.; Mañosa, L.; Planes, A. Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni−Mn−Sn alloys. Phys. Rev. B 2005, 72, 014412. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.; Shen, F.; Hu, F.; Wang, J.; Bao, L.; Zhang, L.; Liu, Y.; Zhao, Y.; Liang, F.; Zuo, W.; et al. Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn-Fe-Ni-Ge compounds. Sci. Rep. 2016, 6, 1–10. [Google Scholar]
- Chatterjee, S.; Dutta, P.; Singha, P.; Giri, S.; Banerjee, A.; Majumdar, S. Emergence of compensated ferrimagnetic state in Mn2-xRu1+ xGa (x = 0.2, 0.5) alloys. J. Magn. Magn. Mater. 2021, 532, 167956. [Google Scholar] [CrossRef]
- Villa, F.; Nespoli, A.; Passaretti, F.; Villa, E. Microstructural and Thermo-Mechanical Characterization of Cast NiTiCu20 Shape Memory Alloy. Materials 2021, 14, 3770. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, K.; Tan, C.; Guo, E. Influence of Doping Tb on the Mechanical Properties and Martensitic Transformation of Ni-Mn-Sn Magnetic Shape Memory Alloys. Crystals 2018, 8, 247. [Google Scholar] [CrossRef] [Green Version]
- Caron, L.; Ou, Z.; Nguyen, T.; Thanh, D.C.; Tegus, O.; Brück, E. On the determination of the magnetic entropy change in materials with first-order transitions. J. Magn. Magn. Mater. 2009, 321, 3559–3566. [Google Scholar] [CrossRef]
- Hassan, N.U.; Shah, I.A.; Jelani, M.; Naeem, M.; Riaz, S.; Naseem, S.; Xu, F.; Ullah, Z. Effect of Ni-Mn ratio on structural, martensitic and magnetic properties of Ni-Mn-Co-Ti ferromagnetic shape memory alloys. Mater. Res. Express 2018, 5, 086102. [Google Scholar] [CrossRef]
- Planes, A.; Mañosa, L.; Acet, M. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 2009, 21, 233201. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.; Zhang, K.; Tian, X.; Cai, W. Effect of Gd addition on microstructure, martensitic transformation and mechanical properties of Ni50Mn36Sn14 ferromagnetic shape memory alloy. J. Alloy. Compd. 2016, 692, 288–293. [Google Scholar] [CrossRef]
- Ju, J.; Liu, H.; Shuai, L.; Liu, Z.; Kang, Y.; Yan, C.; Li, H. Martensite Transformation and Mechanical Properties of Polycrystalline Co-Ni-Al Alloys with Gd Doping. Metals 2018, 8, 848. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Gao, L.; Liang, Y. Martensitic Transformation and Magnetic Properties of Ni-Co-Mn-In-Gd Ferromagnetic Shape Memory Alloys. Mater. Trans. 2018, 59, 224–229. [Google Scholar] [CrossRef]
- Hassan, N.U.; Shah, I.A.; Khan, T.; Liu, J.; Gong, Y.; Miao, X.; Xu, F. Magnetostructural transformation and magnetocaloric effect in Mn 48− x V x Ni 42 Sn 10 ferromagnetic shape memory alloys. Chin. Phys. B 2018, 27. [Google Scholar] [CrossRef]
- Sharma, J.; Suresh, K. Investigation of multifunctional properties of Mn50Ni40−xCoxSn10 (x = 0–6) Heusler alloys. J. Alloy. Compd. 2015, 620, 329–336. [Google Scholar] [CrossRef]
- Xuan, H.; Chen, F.; Han, P.; Wang, D.; Du, Y. Effect of Co addition on the martensitic transformation and magnetocaloric effect of Ni–Mn–Al ferromagnetic shape memory alloys. Intermetallics 2014, 47, 31–35. [Google Scholar] [CrossRef]
Sample | Atomic Weight Percentage (%) | Electronic Concentration (e/a) | |||
---|---|---|---|---|---|
Ni | Mn | Sn | Sm | ||
x = 0 | 42.96 | 46.09 | 11.05 | 0 | 79.643 |
x = 1 | 42.92 | 45.11 | 10.90 | 1.07 | 79.713 |
x = 2 | 42.90 | 43.96 | 11.03 | 2.11 | 79.772 |
x = 3 | 43.05 | 43.02 | 10.90 | 3.03 | 79.794 |
x | As (K) | Af (K) | Ms (K) | Mf (K) | Tt (Heating) (K) | Tt (Cooling) (K) |
---|---|---|---|---|---|---|
0 | 200 | 214 | 197 | 184 | 207 | 190 |
1 | 269 | 276 | 261 | 247 | 272 | 254 |
2 | 294 | 305 | 292 | 278 | 299 | 285 |
3 | 314 | 327 | 311 | 294 | 320 | 302 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, N.u.; Jelani, M.; Shah, I.A.; Rehman, K.U.; Khan, A.Q.; Rehman, S.; Jamil, M.; Kim, D.-k.; Khan, M.F. Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn Ferromagnetic Shape Memory Alloys. Crystals 2021, 11, 1115. https://doi.org/10.3390/cryst11091115
Hassan Nu, Jelani M, Shah IA, Rehman KU, Khan AQ, Rehman S, Jamil M, Kim D-k, Khan MF. Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn Ferromagnetic Shape Memory Alloys. Crystals. 2021; 11(9):1115. https://doi.org/10.3390/cryst11091115
Chicago/Turabian StyleHassan, Najam ul, Mohsan Jelani, Ishfaq Ahmad Shah, Khalil Ur Rehman, Abdul Qayyum Khan, Shania Rehman, Muhammad Jamil, Deok-kee Kim, and Muhammad Farooq Khan. 2021. "Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn Ferromagnetic Shape Memory Alloys" Crystals 11, no. 9: 1115. https://doi.org/10.3390/cryst11091115
APA StyleHassan, N. u., Jelani, M., Shah, I. A., Rehman, K. U., Khan, A. Q., Rehman, S., Jamil, M., Kim, D. -k., & Khan, M. F. (2021). Tunable Martensitic Transformation and Magnetic Properties of Sm-Doped NiMnSn Ferromagnetic Shape Memory Alloys. Crystals, 11(9), 1115. https://doi.org/10.3390/cryst11091115