Growth and Characterization of Ce-Doped Luag Single Crystal Fibers from Transparent Ceramics by Laser-Heated Pedestal Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth of Single Crystal Fibers
2.2. Characterization
3. Results and Discussion
3.1. Spectral Properties
3.2. Scintillation Properties of Ce:LuAG SCF
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moszyński, M.; Ludziejewski, T.; Wolski, D.; Klamra, W.; Norlin, L. Properties of the YAG:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 345, 461–467. [Google Scholar] [CrossRef]
- Van Eijk, C.W.E. Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2001, 460, 1–14. [Google Scholar] [CrossRef]
- Djebli, A.; Boudjada, F.; Pauwels, K.; Kononets, V.; Patton, G.; Benaglia, A.; Lucchini, M.; Moretti, F.; Sidletskiy, O.; Dujardin, C.; et al. Growth and characterization of Ce-doped YAG and LuAG fibers. Opt. Mater. 2017, 65, 65–68. [Google Scholar] [CrossRef]
- Witkiewicz-Lukaszek, S.; Mrozik, A.; Gorbenko, V.; Zorenko, T.; Bilski, P.; Fedorov, A.; Zorenko, Y. LPE Growth of composite thermoluminescent detectors based on the Lu3−xGdxAl5O12:Ce single crystalline films and YAG:Ce Crystals. Crystals 2020, 10, 189. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Zhang, L.Y.; Zhu, R.Y.; Demarteau, M.; Wagner, R.; Xia, L.; Xie, J.Q.; Li, X.; Wang, Z.H.; Shih, Y.H.; et al. Ultrafast inorganic scintillator-based front imager for Gigahertz Hard X-ray imaging. Nucl. Instrum. Methods Phys. Res. A 2019, 940, 223–229. [Google Scholar] [CrossRef]
- Kotaki, A.; Yoshino, M.; Yokota, Y.; Hanada, T.; Yamaji, A.; Toyoda, S.; Sato, H.; Ohashi, Y.; Kurosawa, S.; Kamada, K. Yoshikawa, A.Crystal growth and scintillation properties of tube shape-controlled Ce-doped Y3Al5O12 single crystals grown by micro-pulling-down method. Appl. Phys. Express 2020, 13, 125503. [Google Scholar] [CrossRef]
- Jiuping, Z.; Hongbin, L.; Qiang, S.; Guobin, Z.; Pieter, D.; Danang, B.M. Effects of Annealing Treatments on Luminescence and Scintillation Properties of Ce:Lu3Al5O12Crystal Grown by Czochralski Method. J. Rare Earths 2007, 25, 568–572. [Google Scholar] [CrossRef]
- Alshourbagy, M.; Bigotta, S.; Herbert, D.; Del Guerra, A.; Toncelli, A.; Tonelli, M. Optical and scintillation properties of Ce3+ doped YAlO3 crystal fibers grown by mu-pulling down technique. J. Cryst. Growth 2007, 303, 500–505. [Google Scholar] [CrossRef]
- Farhi, H.; Lebbou, K.; Belkahla, S.; Grosvalet, L.; Hautefeuille, B.; Caramanian, A.; Dujardin, C.; Tillement, O.; Pedrini, C. Fiber single crystal growth by LHPG technique and optical characterization of Ce3+-doped Lu2SiO5. Opt. Mater. 2008, 30, 1461–1467. [Google Scholar] [CrossRef]
- Hautefeuille, B.; Lebbou, K.; Dujardin, C.; Fourmigue, J.M.; Grosvalet, L.; Tillement, O.; Pedrini, C. Shaped crystal growth of Ce3+-doped Lu2(1-x)Y2xSiO5 oxyortho silicate for scintillator applications by pulling-down technique. J. Cryst. Growth 2006, 289, 172–177. [Google Scholar] [CrossRef]
- Koschan, M.; Yang, K.; Zhuravleva, M.; Melcher, C. A comparison of the effect of Ca2+ codoping in cerium doped GSO with that of LSO and YSO. J. Cryst. Growth 2012, 352, 133–136. [Google Scholar] [CrossRef]
- Sayyed, M.I.; Askin, A.; Zaid, M.H.M.; Olukotun, S.F.; Khandaker, M.U.; Tishkevich, D.I.; Bradley, D.A. Radiation shielding and mechanical properties of Bi2O3–Na2O–TiO2–ZnO–TeO2 glass system. Radiat. Phys. Chem. 2021, 186, 109556. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Grabchikov, S.S.; Lastovskii, S.B.; Trukhanov, S.V.; Zubar, T.I.; Vasin, D.; Trukhanov, A.V.; Kozlovskiy, A.; Zdorovets, M.M. Effect of the Synthesis Conditions and Microstructure for Highly Effective Electron Shields Production Based on Bi Coatings. ACS Appl. Energy Mater. 2018, 1, 1695–1702. [Google Scholar] [CrossRef]
- Derdzyan, M.V.; Ovanesyan, K.L.; Petrosyan, A.G.; Belsky, A.; Dujardin, C.; Pedrini, C.; Auffray, E.; Lecoq, P.; Lucchini, M.; Pauwels, K. Radiation hardness of LuAG:Ce and LuAG: Pr scintillator crystals. J. Cryst. Growth 2012, 361, 212–216. [Google Scholar] [CrossRef]
- Dujardin, C.; Mancini, C.; Amans, D.; Ledoux, G.; Abler, D.; Auffray, E.; Lecoq, P.; Perrodin, D.; Petrosyan, A.; Ovanesyan, K.L. LuAG:Ce fibers for high energy calorimetry. J. Appl. Phys. 2010, 108, 013510. [Google Scholar] [CrossRef]
- Petrosyan, A.G.; Ovanesyan, K.L.; Sargsyan, R.V.; Shirinyan, G.O.; Abler, D.; Auffray, E.; Lecoq, P.; Dujardin, C.; Pedrini, C. Bridgman growth and site occupation in LuAG:Ce scintillator crystals. J. Cryst. Growth 2010, 312, 3136–3142. [Google Scholar] [CrossRef]
- Di, J.Q.; Xu, X.D.; Xia, C.T.; Li, D.Z.; Zhou, D.H.; Wu, F.; Xu, J. Crystal growth and optical properties of LuYAG:Ce single crystal. J. Cryst. Growth 2012, 351, 165–168. [Google Scholar] [CrossRef]
- Auffray, D.; Abler, S.; Brunner, S.; Frisch, B.; Knapitsch, A.; Lecoq, P.; Mavromanolakis, G.; Poppe, O.; Petrosyan, A. LuAG Material for Dual Readout Calorimetry at Future High Energy Physics Accelerators. In Proceedings of the 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, FL, USA, 24 October–1 November 2009; pp. 2245–2249. [Google Scholar]
- Hu, C.; Li, J.; Yang, F.; Jiang, B.; Zhang, L.; Zhu, R.-Y. LuAG ceramic scintillators for future HEP experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 954, 161723. [Google Scholar] [CrossRef]
- Kamada, K.; Yanagida, T.; Pejchal, J.; Nikl, M.; Endo, T.; Tsutsumi, K.; Usuki, Y.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A. Scintillation properties of Ce doped Gd2Lu(Ga,Al)5O12 single crystal grown by the micro-pulling-down method. J. Cryst. Growth 2012, 352, 35–38. [Google Scholar] [CrossRef]
- Sugiyama, M.; Fujimoto, Y.; Yanagida, T.; Yamaji, A.; Yokota, Y.; Yoshikawa, A. Growth and scintillation properties of Nd-doped Lu3Al5O12 single crystals by Czochralski and micro-pulling-down methods. J. Cryst. Growth 2013, 362, 178–181. [Google Scholar] [CrossRef]
- Tian, T.; Feng, H.; Zhang, Y.; Zhou, D.; Shen, H.; Wang, H.; Xu, J. Crystal Growth and Luminescence Properties of Dy3+ and Ge4+ Co-Doped Bi4Si3O12 Single Crystals for High Power Warm White LED. Crystals 2017, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Petrosyan, A.; Popova, V.; Gusarov, V.; Shirinyan, G.; Pedrini, C.; Lecoq, P. The Lu2O3–Al2O3 system: Relationships for equilibrium-phase and supercooled states. J. Cryst. Growth 2006, 293, 74–77. [Google Scholar] [CrossRef]
- Chani, V.; Lebbou, K.; Hautefeuille, B.; Tillement, O.; Fourmigue, J.-M. Evaporation induced diameter control in fiber crystal growth by micro-pulling-down technique: Bi4Ge3O12. Cryst. Res. Technol. 2006, 41, 972–978. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, J.; Jia, Z.; Ye, S.; Ma, X.; Wu, B.; Wang, S.; Wang, F.; Wang, T.; Zhang, B. Optimized growth and laser application of yb:Luag single-crystal fibers by micro-pulling-down technique. Crystals 2021, 11, 78. [Google Scholar] [CrossRef]
- Benaglia, A.; Lucchini, M.T.; Pauwels, K.; Tully, C.; Medvedeva, T.; Heering, A.; Dujardin, C.; Kononets, V.; Lebbou, K.; Aubry, N.; et al. Test beam results of a high granularity LuAG fibre calorimeter prototype. J. Instrum. 2016, 11, P05004. [Google Scholar] [CrossRef] [Green Version]
- Nikl, M.; Yoshikawa, A. Recent R&D Trends in Inorganic Single-Crystal Scintillator Materials for Radiation Detection. Adv. Opt. Mater. 2015, 3, 463–481. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Z.; Wang, Y.; Su, L.; Li, J.; Lo, C.; Wu, A. Growth of Tm:Lu3Al5O12 single crystal fiber from transparent ceramics by laser-heated pedestal method and its spectral properties. Opt. Mater. 2020, 111, 110674. [Google Scholar] [CrossRef]
- Liu, S.; Feng, X.; Hu, C.; Kou, H.; Li, J.; Mares, J.A.; Babin, V.; Nikl, M.; D’Ambrosio, C.; Pan, Y. Effect of Li+ ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics. Opt. Mater. 2017, 64, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhang, J.; Zhang, N.; Wang, S.; Wu, B.; Jia, Z.; Tao, X. The characteristics of high-quality Yb:YAG single crystal fibers grown by a LHPG method and the effects of their discoloration. RSC Adv. 2019, 9, 22567–22575. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.P.; Mares, J.A.; Feng, X.Q.; Vedda, A.; Fasoli, M.; Shi, Y.; Kou, H.M.; Beitlerova, A.; Wu, L.X.; D’Ambrosio, C.; et al. Towards Bright and Fast Lu3Al5O12:Ce,Mg Optical Ceramics Scintillators. Adv. Opt. Mater. 2016, 4, 731–739. [Google Scholar] [CrossRef]
- Yanagida, T.; Fujimoto, Y.; Yokota, Y.; Kamada, K.; Yanagida, S.; Yoshikawa, A.; Yagi, H.; Yanagitani, T. Comparative study of transparent ceramic and single crystal Ce doped LuAG scintillators. Radiat. Meas. 2011, 46, 1503–1505. [Google Scholar] [CrossRef]
Crystal | Ex (nm) | Em (nm) | Decay Time (ns) | Light Yield (ph/MeV) | Normalized to LYSO | Light Yield in 1st ns (Ph/MeV) |
---|---|---|---|---|---|---|
LYSO/LSO | 358 | 402 | 40 | 30,000 | 100 | 740 |
CsI(TI) | 322 | 540 | 1100 | 60,000 | 200 | 55 |
NaI(TI) | 346 | 410 | 230 | 36,000 | 120 | 160 |
Ce:GAGG | 430 | 550 | 53 | 34,400 | 115 | 640 |
Ce:LuAG | 450 | 520 | 50 | 25,000 | 83 | 240 |
Ce:YAG | 460 | 520 | 70 | 21,000 | 70 | 130 |
BaF2 | X-ray | 220&300 | 0.5&600 | 13,000 | 43 | 1200 |
Ce:YAP | 300 | 370 | 34 | 12,000 | 40 | 390 |
BGO | 304 | 480 | 300 | 8000 | 27 | 27 |
Sapphire:Ti | 500 | 750 | 3200 | 7900 | 26 | 2.5 |
CeF3 | 265 | 301 | 30 | 2600 | 8.7 | 85 |
Y:BaF2 | X-ray | 220&300 | 0.5&600 | 2000 | 6.7 | 1200 |
AFO glass | 335 | 365 | 38 | 450 | 1.5 | 12 |
PWO | 310 | 420&425 | 10&30 | 130 | 0.43 | 6 |
Yb:YAG | 260 | 350 | 2.5 | 110 | 0.37 | 36 |
Yb:YAP | 260 | 350 | 1.1 | 57 | 0.19 | 34 |
SCFs | Growth Speed mm/h | Annealing | Peak | FWHM | Energy Resolution [%] | Fluorescence Lifetime ns |
---|---|---|---|---|---|---|
1 at% Ce:LuAG | 8 | No | 187.64 | 24.75 | 13.19 | 56.35 |
1 at% Ce:LuAG | 8 | Yes | 211.7 | 32.67 | 15.43 | 56.95 |
0.3 at% Ce:LuAG | 8 | No | 169.32 | 22.82 | 13.48 | 56.16 |
0.3 at% Ce:LuAG | 8 | Yes | 209.44 | 29.90 | 14.28 | 55.73 |
0.3 at% Ce:LuAG | 16 | No | 169.88 | 19.41 | 11.43 | 56.25 |
0.3 at% Ce:LuAG | 16 | Yes | 208.51 | 31.49 | 15.10 | 57.14 |
0.1 at% Ce:LuAG | 8 | No | 175.82 | 26.43 | 15.03 | 55.31 |
0.1 at% Ce:LuAG | 8 | Yes | 207.18 | 33.33 | 16.08 | 54.87 |
0.1 at% Ce:LuAG | 16 | No | 190.67 | 24.51 | 12.85 | 55.31 |
0.1 at% Ce:LuAG | 16 | Yes | 200.95 | 30.46 | 15.16 | 54.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Zhang, Z.; Wang, X.; Lu, Z.; Kou, H.; Su, L.; Wu, A. Growth and Characterization of Ce-Doped Luag Single Crystal Fibers from Transparent Ceramics by Laser-Heated Pedestal Method. Crystals 2021, 11, 1149. https://doi.org/10.3390/cryst11091149
Dai Y, Zhang Z, Wang X, Lu Z, Kou H, Su L, Wu A. Growth and Characterization of Ce-Doped Luag Single Crystal Fibers from Transparent Ceramics by Laser-Heated Pedestal Method. Crystals. 2021; 11(9):1149. https://doi.org/10.3390/cryst11091149
Chicago/Turabian StyleDai, Yun, Zhonghan Zhang, Xibin Wang, Zhuowei Lu, Huamin Kou, Liangbi Su, and Anhua Wu. 2021. "Growth and Characterization of Ce-Doped Luag Single Crystal Fibers from Transparent Ceramics by Laser-Heated Pedestal Method" Crystals 11, no. 9: 1149. https://doi.org/10.3390/cryst11091149
APA StyleDai, Y., Zhang, Z., Wang, X., Lu, Z., Kou, H., Su, L., & Wu, A. (2021). Growth and Characterization of Ce-Doped Luag Single Crystal Fibers from Transparent Ceramics by Laser-Heated Pedestal Method. Crystals, 11(9), 1149. https://doi.org/10.3390/cryst11091149