Optical Properties of InGaN/GaN QW with the Same Well-Plus-Barrier Thickness
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, X.; Fan, S.; Iida, D.; Mei, Y.; Zhang, B.; Ohkawa, K. Photoluminescence of InGaN-based red multiple quantum wells. Opt. Express 2021, 29, 30237–30243. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, D.G.; Jiang, D.S.; Chen, P.; Liu, Z.S.; Zhu, J.J.; Li, X.; Shi, M.; Zhao, D.M.; Liu, J.P. Effect of localization states on the electroluminescence spectral width of blue–green light emitting InGaN/GaN multiple quantum wells. J. Vac. Sci. Technol. A Vac. Surf. Film. 2015, 33, 061502. [Google Scholar] [CrossRef]
- Younghoon, K.; Changsoo, K.; Samkyu, N.; Jaeyoung, L.; Keeyoung, L.; Byungsung, O. Structural and optical properties of InGaN/GaN multi-quantum well structures with different well widths. MRS Online Proc. Libr. Arch. 2002, 722, 193–198. [Google Scholar]
- Shim, H.; Choi, R.; Jeong, S.; Van Vinh, L.; Hong, C.-H.; Suh, E.-K.; Lee, H.; Kim, Y.-W.; Hwang, Y. Influence of the quantum-well shape on the light emission characteristics of InGaN/GaN quantum-well structures and light-emitting diodes. Appl. Phys. Lett. 2002, 81, 3552–3554. [Google Scholar] [CrossRef]
- Steele, A.; Liu, H.; Buchanan, M.; Wasilewski, Z. Influence of the number of wells in the performance of multiple quantum well intersubband infrared detectors. J. Appl. Phys. 1992, 72, 1062–1064. [Google Scholar] [CrossRef]
- Chen, P.; Park, Y.J.; Liu, Y.S.; Detchprohm, T.; Dupuis, R.D. Epitaxial Growth and Optically Pumped Stimulated Emission in AlGaN/InGaN Ultraviolet Multi-Quantum-Well Structures. J. Electron. Mater. 2020, 49, 2326–2331. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ryou, J.-H.; Dupuis, R.; Han, J.; Shen, G.; Wang, H. Barrier effect on hole transport and carrier distribution in InGaN/GaN multiple quantum well visible light-emitting diodes. Appl. Phys. Lett. 2008, 93, 021102. [Google Scholar] [CrossRef]
- Xiao-Long, H.; Jiang-Yong, Z.; Jing-Zhi, S.; Wen-Jie, L.; Bao-Ping, Z. The exciton-longitudinal-optical-phonon coupling in InGaN/GaN single quantum wells with various cap layer thicknesses. Chin. Phys. B 2010, 19, 117801. [Google Scholar]
- Li, Y.L.; Huang, Y.R.; Lai, Y.H. Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Appl. Phys. Lett. 2007, 91, 181113. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Liu, W.; Yi, L.; Zhou, M.; Zhao, D.; Jiang, D. The influence of well thickness on the photoluminescence properties of blue-violet light emitting InGaN/GaN multiple quantum wells. Superlattices Microstruct. 2018, 113, 534–540. [Google Scholar] [CrossRef]
- Romanov, I.S.; Prudaev, I.A.; Brudnyi, V.N.; Kopyev, V.V.; Mazalov, A.V. Effect of the Barrier Thickness on the Optical Properties of InGaN/GaN/Al2O3 (0001) LED Heterostructures. Russ. Phys. J. 2015, 58, 996–1000. [Google Scholar] [CrossRef]
- Liu, W.; Liang, F.; Zhao, D.; Yang, J.; Jiang, D.; Zhu, J.J.; Liu, Z. Effects of photogenerated carriers in GaN layers on the photoluminescence characteristics of violet light-emitting InGaN/GaN multiple quantum wells. Mater. Res. Express 2019, 24, 076203. [Google Scholar] [CrossRef]
- Jia, Z.; Hao, X.; Lu, T.; Dong, H.; Jia, Z.; Ma, S.; Liang, J.; Jia, W.; Xu, B. Improving the internal quantum efficiency of QD/QW hybrid structures by increasing the GaN barrier thickness. RSC Adv. 2020, 10, 41443–41452. [Google Scholar] [CrossRef]
- Klymenko, M.V.; Sukhoivanov, I.A.; Shulika, O.V. Impact of Indium Surface Segregation on Optical Properties of Ultrathin InGaN/GaN Quantum Wells; SPIE: Bellingham, WA, USA, 2012. [Google Scholar]
- Lin, Y.-S.; Ma, K.-J.; Hsu, C.; Feng, S.-W.; Cheng, Y.-C.; Liao, C.-C.; Yang, C.; Chou, C.-C.; Lee, C.-M.; Chyi, J.-I. Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 2000, 77, 2988–2990. [Google Scholar] [CrossRef]
- Grandjean, N.; Massies, J.; Dalmasso, S.; Vennegues, P.; Siozade, L.; Hirsch, L. GaInN/GaN multiple-quantum-well light-emitting diodes grown by molecular beam epitaxy. Appl. Phys. Lett. 1999, 74, 3616–3618. [Google Scholar] [CrossRef]
- Fan, W.; Ji, Z.; Qiang, W.; Wang, X.; Shuang, Q.; Xu, X.; Lv, Y.; Feng, Z. Green and blue emissions in phase-separated InGaN quantum wells. J. Appl. Phys. 2013, 114, 171103. [Google Scholar]
- Cho, Y.-H.; Schmidt, T.; Bidnyk, S.; Gainer, G.; Song, J.; Keller, S.; Mishra, U.; DenBaars, S. Linear and nonlinear optical properties of InxGa1−xN/GaN heterostructures. Phys. Rev. B 2000, 61, 7571. [Google Scholar] [CrossRef]
- Schömig, H.; Halm, S.; Forchel, A.; Bacher, G.; Off, J.; Scholz, F. Probing individual localization centers in an InGaN/GaN quantum well. Phys. Rev. Lett. 2004, 92, 106802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xiong, C.; Liu, J.; Quan, Z.; Wang, L.; Jiang, F. High brightness InGaN-based yellow light-emitting diodes with strain modulation layers grown on Si substrate. Appl. Phys. A 2014, 114, 1049–1053. [Google Scholar] [CrossRef]
- Ming-Ming, L.; Guo-En, W.; Jiang-Yong, Z.; Xiao-Mei, C.; Xue-Qin, L.; Lei-Ying, Y.; Bao-Ping, Z. Influence of barrier thickness on the structural and optical properties of InGaN/GaN multiple quantum wells. Chin. Phys. B 2014, 23, 054211. [Google Scholar]
- Liu, W.; Zhao, D.; Jiang, D.; Chen, P.; Liu, Z.; Zhu, J.; Shi, M.; Zhao, D.; Li, X.; Liu, J. Localization effect in green light emitting InGaN/GaN multiple quantum wells with varying well thickness. J. Alloy. Compd. 2015, 625, 266–270. [Google Scholar] [CrossRef]
- Eliseev, P.G.; Perlin, P.; Lee, J.; Osiński, M. “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources. Appl. Phys. Lett. 1997, 71, 569–571. [Google Scholar] [CrossRef]
- Eliseev, P. The red σ 2/kT spectral shift in partially disordered semiconductors. J. Appl. Phys. 2003, 93, 5404–5415. [Google Scholar] [CrossRef]
- Bai, J.; Wang, T.; Sakai, S. Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures. J. Appl. Phys. 2000, 88, 4729–4733. [Google Scholar] [CrossRef]
- Reynolds, D.; Hoelscher, J.; Litton, C.W.; Collins, T.C. Temperature dependence of free excitons in GaN. J. Appl. Phys. 2002, 92, 5596–5598. [Google Scholar] [CrossRef]
- Hammersley, S.; Kappers, M.J.; Massabuau, C.P.; Sahonta, S.L.; Dawson, P.; Oliver, R.A.; Humphreys, C.J. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions. Appl. Phys. Lett. 2015, 252, 940–945. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Ji, Z.; Wang, H.; Xiao, H.; Qu, S.; Xu, X.; Jin, A.; Yang, H. Transfer and recombination mechanism of carriers in phase-separated InGaN quantum wells. J. Appl. Phys. 2013, 114, 093508. [Google Scholar] [CrossRef]
- Na, J.H.; Taylor, R.A.; Lee, K.H.; Tao, W.; Tahraoui, A.; Parbrook, P.; Fox, A.M.; Yi, S.N.; Park, Y.S.; Choi, J.W. Dependence of carrier localization in InGaN/GaN multiple-quantum wells on well thickness. Appl. Phys. Lett. 2006, 89, L309. [Google Scholar] [CrossRef] [Green Version]
- Leem, S.J.; Shin, Y.C.; Kim, E.H.; Kim, C.M.; Lee, B.G.; Moon, Y.; Lee, I.H.; Kim, T.G. Optimization of InGaN/GaN multiple quantum well layers by a two-step varied-barrier-growth temperature method. Semicond. Sci. Technol. 2008, 23, 125039. [Google Scholar] [CrossRef]
- Weng, G.-E.; Zhao, W.-R.; Chen, S.-Q.; Akiyama, H.; Li, Z.-C.; Liu, J.-P.; Zhang, B.-P. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett. 2015, 10, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nag, D.; Sarkar, R.; Bhunia, S.; Aggarwal, T.; Ghosh, K.; Sinha, S.; Ganguly, S.; Saha, D.; Horng, R.-H.; Laha, A. Role of defect saturation in improving optical response from InGaN nanowires in higher wavelength regime. Nanotechnology 2020, 31, 495705. [Google Scholar] [CrossRef]
- Gerard, J.M.; Weisbuch, C. Semiconductor structure for optoelectronic components with inclusions. United States Patent 5075742, 24 December 1991. [Google Scholar]
- Deng, Z.; Jiang, Y.; Ma, Z.; Wang, W.; Jia, H.; Zhou, J.; Chen, H. Correction: Corrigendum: A novel wavelength-adjusting method in InGaN-based light-emitting diodes. Sci. Rep. 2013, 4, 4150. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.H.; Gil, B.; Valvin, P.; Damilano, B.; Lekhal, K.; Mierry, P.D. Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures. Appl. Phys. Lett. 2015, 107, 141. [Google Scholar] [CrossRef]
- Weng, G.-E.; Zhang, B.-P.; Liang, M.-M.; Lv, X.-Q.; Zhang, J.-Y.; Ying, L.-Y.; Qiu, Z.R.; Yaguchi, H.; Kuboya, S.; Onabe, K. Optical properties and carrier dynamics in asymmetric coupled InGaN multiple quantum wells. Funct. Mater. Lett. 2013, 6, 1350021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Hou, X.; Chen, L.; Mei, Y.; Zhang, B. Optical Properties of InGaN/GaN QW with the Same Well-Plus-Barrier Thickness. Crystals 2022, 12, 114. https://doi.org/10.3390/cryst12010114
Xu H, Hou X, Chen L, Mei Y, Zhang B. Optical Properties of InGaN/GaN QW with the Same Well-Plus-Barrier Thickness. Crystals. 2022; 12(1):114. https://doi.org/10.3390/cryst12010114
Chicago/Turabian StyleXu, Huan, Xin Hou, Lan Chen, Yang Mei, and Baoping Zhang. 2022. "Optical Properties of InGaN/GaN QW with the Same Well-Plus-Barrier Thickness" Crystals 12, no. 1: 114. https://doi.org/10.3390/cryst12010114
APA StyleXu, H., Hou, X., Chen, L., Mei, Y., & Zhang, B. (2022). Optical Properties of InGaN/GaN QW with the Same Well-Plus-Barrier Thickness. Crystals, 12(1), 114. https://doi.org/10.3390/cryst12010114