Microstructure and High-Temperature Performance of High K-Doped Tungsten Fibers Used as Reinforcement of Tungsten Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Methods
2.2.1. High-Temperature Performance Test and Microstructure Observation
2.2.2. Tensile Test
3. Results and Discussion
3.1. High-Temperature Performance
3.2. Tensile Properties
3.3. Microstructure Evolution
3.4. Potassium Tube and Bubble Evolution
4. Conclusions
- (1)
- Both optimizing the processing technology and increasing the potassium content can promote the high-temperature performance of a K-doped tungsten wire, and the effect of increasing the potassium content and improving the purity is more obvious. However, it should be noted that an ultra-high potassium content tends to form large potassium bubbles, which need to be avoided using the optimizing processing technology.
- (2)
- Tungsten wire with 98 ppm of K and 61 ppm of impurities prepared using the optimizing processing technology presented the highest tensile strength both at RT and 1800 °C and the lowest sag value and the highest recrystallization start temperature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schade, P.; Ortner, H.M.; Smid, I. Refractory metals revolutionizing the lighting technology: A historical review. Int. J. Refract. Met. Hard Mater. 2015, 50, 23–30. [Google Scholar] [CrossRef]
- Terentyev, D.; Van Renterghem, W.; Tanure, L.; Dubinko, A.; Riesch, J.; Lebediev, S.; Khvan, T.; Verbeken, K.; Coenen, J.W.; Zhurkin, E.E. Correlation of microstructural and mechanical properties of K-doped tungsten fibers used as reinforcement of tungsten matrix for high temperature applications. Int. J. Refract. Met. Hard Mater. 2019, 79, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Veleva, L.; Oksiuta, Z.; Vogt, U.; Baluc, N. Sintering and Characterization of W–Y and W–Y2O3 Materials. Fusion Eng. Des. 2009, 84, 1920–1924. [Google Scholar] [CrossRef]
- Faleschini, M.; Kreuzer, H.; Kiener, D.; Pippan, R. Fracture Toughness Investigations of Tungsten Alloys and SPD Tungsten Alloys. J. Nucl. Mater. 2007, 367–370, 800–805. [Google Scholar] [CrossRef]
- Schade, P. 100 years of doped tungsten wire. Int. J. Refract. Met. Hard Mater. 2010, 28, 648–660. [Google Scholar] [CrossRef]
- Webb, J.; Gollapudi, S.; Charit, I. An overview of creep in tungsten and its alloys. Int. J. Refract. Met. Hard Mater. 2019, 82, 69–80. [Google Scholar] [CrossRef]
- Zinkle, S.J. Challenges in Developing Materials for Fusion Technology—Past, Present and Future. Fusion Sci. Technol. 2013, 64, 65–75. [Google Scholar] [CrossRef]
- Lässer, R.; Baluc, N.; Boutard, J.L.; Diegele, E.; Dudarev, S.; Gasparotto, M.; Möslang, A.; Pippan, R.; Riccardi, B.; Van Der Schaaf, B. Structural materials for DEMO: The EU development, strategy, testing and modelling. Fusion Eng. Des. 2007, 82, 511–520. [Google Scholar] [CrossRef]
- Mao, Y.; Coenen, J.; Sistla, S.; Liu, C.; Terra, A.; Tan, X.; Riesch, J.; Hoeschen, T.; Wu, Y.; Broeckmann, C.; et al. Design of tungsten fiber-reinforced tungsten composites with porous matrix. Mater. Sci. Eng. A 2021, 817, 141361. [Google Scholar] [CrossRef]
- Briant, C.L. Potassium bubbles in tungsten wire. Met. Trans. 1993, 24A, 1073–1084. [Google Scholar] [CrossRef]
- Briant, C.L.; Walter, J.L. Void growth in tungsten wire. Acta Met. 1988, 36, 2503–2514. [Google Scholar] [CrossRef]
- Pintsuk, G.; Uytdenhouwen, I. Thermo-mechanical and thermal shock characterization of potassium doped tungsten. Int. J. Refract. Met. Hard Mater. 2010, 28, 661–668. [Google Scholar] [CrossRef]
- Horacsek, O.; Bartha, L. Influence of surface particles of AKS-doped TBO on the NS-structure of tungsten wires. Int. J. Refract. Met. Hard Mater. 2002, 20, 271–276. [Google Scholar] [CrossRef]
- Huang, B.; Xiao, Y.; He, B.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N.; Lian, Y.; Liu, X.; Tang, J. Effect of potassium doping on the thermal shock behavior of tungsten. Int. J. Refract. Met. Hard Mater. 2015, 51, 19–24. [Google Scholar] [CrossRef]
- Berlec, I. The Effects of Impurities and Heat Treatment on the Internal Friction of Tungsten at High Temperatures. Met. Trans. 1970, 1, 2670–2683. [Google Scholar]
- Tu, Q.J. Study on the Industrialized Production Technology of Tungsten Wire for Exposure Lamp of High Performance copier. Master Thesis, Xiamen University, Xiamen, China, 2017. [Google Scholar]
- Briant, C.L.; Hall, E.L. The microstructure of rolled and annealed tungsten rod. Met. Trans. A 1989, 20, 1669–1686. [Google Scholar] [CrossRef]
- Huang, B.; Chen, L.Q.; Qiu, W.B.; Yang, X.L.; Shi, K.; Lian, Y.Y.; Liu, X.; Tang, J. Correlation between the microstructure, mechanical/thermal properties, and thermal shock resistance of K-doped tungsten alloys. J. Nucl. Mater. 2019, 520, 6–18. [Google Scholar] [CrossRef]
- Tanoue, K.; Watanibe, K. Abnormal Grain Growth in P/M Tungsten Fine Wires. J. Jpn. Inst. Met. 2002, 66, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Schade, P. Potassium bubble growth in doped tungsten. Int. J. Refract. Met. Hard Mater. 1998, 16, 77–87. [Google Scholar] [CrossRef]
- Nikolić, V.; Riesch, J.; Pippan, R. The effect of heat treatments on pure and potassium doped drawn tungsten wires: Part I—Microstructural characterization. Mater. Sci. Eng. A 2018, 737, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Briant, C.L.; Horacsek, O.; Horacsek, K. The effect of wire history on the coarsened substructure and secondary recrystallization of doped tungsten. Met. Trans. A 1993, 24, 843–851. [Google Scholar] [CrossRef]
- JISC. JIS H 4460:2002: General Rules for Test of Tungsten and Molybdenum Materials for Lighting and Electronic Equipments. Available online: http://www.simop.com.cn/detail-95-75319ba26f804d9d.html (accessed on 30 October 2021).
- Lied, P.; Pantleon, W.; Bonnekoh, C.; Bonk, S.; Hoffmann, A.; Reisera, J.; Rieth, M. Comparison of K-doped and pure cold-rolled tungsten sheets: Tensile properties and brittle-to-ductile transition temperatures. J. Nucl. Mater. 2021, 544, 152664. [Google Scholar] [CrossRef]
- Nogami, S.; Guan, W.H.; Hattori, T.; James, K.; Hasegawa, A. Improved structural strength and lifetime of monoblock divertor targets by using doped tungsten alloys under cyclic high heat flux loading. Phys. Scr. 2017, 2017, 014011. [Google Scholar] [CrossRef]
- Xia, F.Z. Study on annealing behavior of doped tungsten ribbons. Master Thesis, Central South University, Changsha, China, 2012. [Google Scholar]
- Snow, D.B. The Recrystallization of Commercially Pure and Doped Tungsten Wire Drawn to High Strain. Met. Trans. A 1979, 10, 815–821. [Google Scholar] [CrossRef]
- Horacsek, O.; Bartha, L. Development of the bubble structure from selectively deforming potassium-pores in doped tungsten wires. Int. J. Refract. Met. Hard Mater. 2004, 22, 9–15. [Google Scholar] [CrossRef]
- Gaal, I.; Tόth, C.L. Microstructural evolution upon thermomechanical processing of non-sag tungsten. Int. J. Refract. Met. Hard Mater. 1998, 16, 59–70. [Google Scholar] [CrossRef]
- Zhong, C.C.; Tieyong, Z.; Meiling, Z. The recrystallization mechanism of doped tungsten wire. J. Mater. Sci. Lett. 1990, 9, 782–784. [Google Scholar]
- Jones, A.R.; Howell, P.R.; Ralph, B. Changes in Grain boundary structure during the initial stages of recrystallization. Philos. Mag. 1977, 35, 603–611. [Google Scholar] [CrossRef]
- Walter, J.L.; Briant, C.L. Tungsten wire for incandescent lamps. J. Mater. Res. 1990, 5, 2004–2022. [Google Scholar] [CrossRef]
- Schade, P. Bubble evolution and effects during tungsten processing. Int. J. Refract. Met. Hard Mater. 2002, 20, 301–309. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Deng, A.H.; Tian, X.F.; Tang, J. Study of defects in potassium-doped tungsten alloy by positron annihilation technique. Acta Phys. Sin. 2020, 69, 220–228. [Google Scholar] [CrossRef]
Wire | W, % | K, ppm | Main Impurity, ppm | Process (from Φ 3.1 mm to Φ 0.39 mm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Al | Si | Fe | Na | Mo | Cr | O | ||||
1#-0 | ≥99.95 | 83 | 11 | 8 | 9 | 5 | 20 | 4 | 14 | traditional process 1 |
1#-1 | ≥99.95 | 83 | 11 | 8 | 9 | 5 | 20 | 4 | 14 | optimized process 2 |
2#-0 | ≥99.95 | 98 | 6 | 5 | 9 | 5 | 20 | 2 | 5 | traditional process |
2#-1 | ≥99.95 | 98 | 6 | 5 | 9 | 5 | 20 | 2 | 5 | optimized process |
Wire | Sag Value | Grain Length-to-Width Ratio | Recrystallization Start Temperature | Recrystallization End Temperature |
---|---|---|---|---|
1#-0 | 2.3 | 9 | 1850 °C | 2180 °C |
1#-1 | 1.27 | 12 | 1910 °C | 2230 °C |
2#-0 | 1.28 | 18 | 1960 °C | 2450 °C |
2#-1 | 0.8 | 18 | 2020 °C | 2450 °C |
Wire | K Bubble Size, nm | K Bubble Number Density, m−2 | Length of K Bubble String, μm |
---|---|---|---|
1#-0 | 20–410 | 3–4 × 1012 | 1–3 |
1#-1 | 20–290 | 3–4 × 1012 | 3–6 |
2#-0 | 20–830 | 3–4 × 1012 | 1–5 |
2#-1 | 20–285 | 4–5 × 1012 | 3–8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Song, J.; Peng, F.; Guo, D.; Fang, Y.; Dai, S.; Zhu, B. Microstructure and High-Temperature Performance of High K-Doped Tungsten Fibers Used as Reinforcement of Tungsten Matrix. Crystals 2022, 12, 63. https://doi.org/10.3390/cryst12010063
Jiang X, Song J, Peng F, Guo D, Fang Y, Dai S, Zhu B. Microstructure and High-Temperature Performance of High K-Doped Tungsten Fibers Used as Reinforcement of Tungsten Matrix. Crystals. 2022; 12(1):63. https://doi.org/10.3390/cryst12010063
Chicago/Turabian StyleJiang, Xiangcao, Jiupeng Song, Fusheng Peng, Donghong Guo, Yijin Fang, Shaowei Dai, and Bingcan Zhu. 2022. "Microstructure and High-Temperature Performance of High K-Doped Tungsten Fibers Used as Reinforcement of Tungsten Matrix" Crystals 12, no. 1: 63. https://doi.org/10.3390/cryst12010063
APA StyleJiang, X., Song, J., Peng, F., Guo, D., Fang, Y., Dai, S., & Zhu, B. (2022). Microstructure and High-Temperature Performance of High K-Doped Tungsten Fibers Used as Reinforcement of Tungsten Matrix. Crystals, 12(1), 63. https://doi.org/10.3390/cryst12010063