A Simple and Efficient Way to Directly Synthesize Unsolvated Alkali Metal (M = Na, K) Salts of [CB11H12]−
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Materials
2.2. Synthesis of Na[CB11H12]
2.3. Synthesis of K[CB11H12]
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grimes, R.N. Carboranes, 3rd ed.; Elsevier: Oxford, UK, 2016; Chapter 9; pp. 283–502. [Google Scholar]
- Knoth, W.H. 1-B9H9CH− and B11H11CH−. J. Am. Chem. Soc. 1967, 89, 1274–1275. [Google Scholar] [CrossRef]
- Kim, K.C.; Reed, C.A.; Elliott, D.W.; Mueller, L.J.; Tham, F.; Lin, L.; Lambert, J.B. Crystallographic evidence for a free silylium ion. Science 2002, 297, 825–827. [Google Scholar] [CrossRef] [PubMed]
- Reed, C.A. Carboranes: A New Class of Weakly Coordinating Anions for Strong Electrophiles, Oxidants, and Superacids. Acc. Chem. Res. 1998, 31, 133–139. [Google Scholar] [CrossRef]
- Klare, H.F.T.; Albers, L.; Süsse, L.; Keess, S.; Müller, T.; Oestreich, M. Silylium Ions: From Elusive Reactive Intermediates to Potent Catalysts. Chem. Rev. 2021, 121, 5889–5985. [Google Scholar] [CrossRef]
- Juhasz, M.; Hoffmann, S.; Stoyanov, E.; Kim, K.C.; Reed, C.A. The Strongest Isolable Acid. Angew. Chem. Int. Ed. 2004, 43, 5352–5355. [Google Scholar] [CrossRef]
- Spokoyny, A.M.; Machan, C.W.; Clingerman, D.J.; Rosen, M.S.; Wiester, M.J.; Kennedy, R.D.; Stern, C.L.; Sarjeant, A.A.; Mirkin, C.A. A coordination chemistry dichotomy for icosahedral carborane-based ligands. Nat. Chem. 2011, 3, 590–596. [Google Scholar] [CrossRef]
- Kobr, L.; Zhao, K.; Shen, Y.; Shoemaker, R.K.; Rogers, C.T.; Michl, J. Inclusion Compound Based Approach to Forming Arrays of Artificial Dipolar Molecular Rotors: A Search for Optimal Rotor Structures. Adv. Mater. 2013, 25, 443–448. [Google Scholar] [CrossRef]
- Armstrong, A.F.; Valliant, J.F. The bioinorganic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton Trans. 2007, 38, 4240–4251. [Google Scholar] [CrossRef]
- Cho, Y.-J.; Kim, S.-Y.; Cho, M.; Han, W.-S.; Son, H.-J.; Cho, D.W.; Kang, S.O. Aggregation-induced emission of diarylamino-π-carborane triads: Effects of charge transfer and π-conjugation. Phys. Chem. Chem. Phys. 2016, 18, 9702–9708. [Google Scholar] [CrossRef]
- Carter, T.J.; Mohtadi, R.; Arthur, T.S.; Mizuno, F.; Zhang, R.; Shirai, S.; Kampf, J.W. Boron Clusters as Highly Stable Magnesium-Battery Electrolytes. Angew. Chem. Int. Ed. 2014, 53, 3173–3177. [Google Scholar] [CrossRef] [Green Version]
- Murgia, F.; Brighi, M.; Piveteau, L.; Avalos, C.E.; Gulino, V.; Nierstenhofer, M.C.; Ngene, P.; de Jongh, P.; Cerny, R. Enhanced Room-Temperature Ionic Conductivity of NaCB11H12 via High-Energy Mechanical Milling. ACS Appl. Mater. Interfaces 2021, 13, 61346–61356. [Google Scholar] [CrossRef] [PubMed]
- Dimitrievska, M.; Wu, H.; Stavila, V.; Babanova, O.A.; Skoryunov, R.V.; Soloninin, A.V.; Zhou, W.; Trump, B.A.; Andersson, M.S.; Skripov, A.V.; et al. Structural and Dynamical Properties of Potassium Dodecahydro-monocarba-closo-dodecaborate: KCB11H12. J. Phys. Chem. C 2020, 124, 17992–18002. [Google Scholar] [CrossRef]
- Guo, W.; Guo, C.; Ma, Y.N.; Chen, X. Practical Synthesis of B(9)-Halogenated Carboranes with N-Haloamides in Hexafluoroisopropanol. Inorg. Chem. 2022, 61, 5326–5334. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.N.; Gao, Y.; Ma, Y.; Wang, Y.; Ren, H.; Chen, X. Palladium-Catalyzed Regioselective B(9)-Amination of o-Carboranes and m-Carboranes in HFIP with Broad Nitrogen Sources. J. Am. Chem. Soc. 2022, 144, 8371–8378. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Guo, W.; Zhao, Q.; Ma, Y.N.; Chen, X. Highly selective electrophilic B(9)-amination of o-carborane driven by HOTf and HFIP. Org. Chem. Front. 2022, 9, 4975–4980. [Google Scholar] [CrossRef]
- Körbe, S.; Schreiber, P.J.; Michl, J. Chemistry of the Carba-closo-dodecaborate(−) Anion, CB11H12−. Chem. Rev. 2006, 106, 5208–5249. [Google Scholar] [CrossRef]
- Douvris, C.; Michl, J. Update 1 of: Chemistry of the Carba-closo-dodecaborate(−) Anion, CB11H12−. Chem. Rev. 2013, 113, PR179–PR233. [Google Scholar] [CrossRef]
- Fisher, S.P.; Tomich, A.W.; Lovera, S.O.; Kleinsasser, J.F.; Guo, J.; Asay, M.J.; Nelson, H.M.; Lavallo, V. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage. Chem. Rev. 2019, 119, 8262–8290. [Google Scholar] [CrossRef]
- Plešek, J.; Jelínek, T.; Drdáková, E.; Heřmánek, S.; Štíbr, B. A Convenient Preparation of 1-CB11H12− and its C-Amion Derivatives. Collect. Czech. Chem. C 1984, 49, 1561–1562. [Google Scholar] [CrossRef]
- Franken, A.; Bullen, N.J.; Jelínek, T.; Thornton-Pett, M.; Teat, S.J.; Clegg, W.; Kennedy, J.D.; Hardie, M.J. Structural chemistry of halogenated monocarbaboranes: The extended structures of Cs[1-HCB9H4Br5], Cs[1-HCB11H5Cl6] and Cs[1-HCB11H5Br6]. New J. Chem. 2004, 28, 1499–1505. [Google Scholar] [CrossRef]
- Franken, A.; King, B.T.; Rudolph, J.; Rao, P.; Noll, B.C.; Michl, J. Preparation of [closo-CB11H12]− by Dichlorocarbene Insertion Into [nido-B11H14]−. Collect. Czech. Chem. C 2001, 66, 1238–1249. [Google Scholar] [CrossRef]
- Pecyna, J.; Roncevic, I.; Michl, J. Insertion of Carbenes into Deprotonated nido-Undecaborane, B11H132−. Molecules 2019, 24, 3779. [Google Scholar] [CrossRef]
- Toom, L.; Kutt, A.; Leito, I. Simple and scalable synthesis of the carborane anion CB11H12−. Dalton Trans. 2019, 48, 7499–7502. [Google Scholar] [CrossRef]
- Berger, A.; Buckley, C.E.; Paskevicius, M. Synthesis of closo-CB11H12− Salts Using Common Laboratory Reagents. Inorg Chem. 2021, 60, 14744–14751. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Ma, Y.; Qiu, P.; Chen, X. Improved and Scalable Synthesis of [Et4N][closo-1-CHB9H9]. Organomet 2021, 40, 3480–3485. [Google Scholar] [CrossRef]
- Zhao, Q.; Dewhurst, R.D.; Braunschweig, H.; Chen, X. A New Perspective on Borane Chemistry: The Nucleophilicity of the B−H Bonding Pair Electrons. Angew. Chem. Int. Ed. 2019, 58, 3268–3278. [Google Scholar] [CrossRef]
- Li, H.; Ma, N.; Meng, W.; Gallucci, J.; Qiu, Y.; Li, S.; Zhao, Q.; Zhang, J.; Zhao, J.-C.; Chen, X. Formation Mechanisms, Structure, Solution Behavior, and Reactivity of Aminodiborane. J. Am. Chem. Soc. 2015, 137, 12406–12414. [Google Scholar] [CrossRef]
- Chen, X.-M.; Ma, N.; Zhang, Q.-F.; Wang, J.; Feng, X.; Wei, C.; Wang, L.-S.; Zhang, J.; Chen, X. Elucidation of the Formation Mechanisms of the Octahydrotriborate Anion (B3H8−) through the Nucleophilicity of the B−H Bond. J. Am. Chem. Soc. 2018, 140, 6718–6726. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.-C.; Shore, S.G. The Roles of Dihydrogen Bonds in Amine Borane Chemistry. Acc. Chem. Res. 2013, 46, 2666–2675. [Google Scholar] [CrossRef]
- Chen, X.; Bao, X.; Zhao, J.-C.; Shore, S.G. Experimental and Computational Study of the Formation Mechanism of the Diammoniate of Diborane: The Role of Dihydrogen Bonds. J. Am. Chem. Soc. 2011, 133, 14172–14175. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, J.-C.; Shore, S.G. Facile Synthesis of Aminodiborane and Inorganic Butane Analogue NH3BH2NH2BH3. J. Am. Chem. Soc. 2010, 132, 10658–10659. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, R.-Y.; Kang, J.-X.; Ma, Y.-N.; Xu, C.-Q.; Li, J.; Chen, X. Efficient synthesis of primary and secondary amides via reacting esters with alkali metal amidoboranes. Nat. Commun. 2021, 12, 5964. [Google Scholar] [PubMed]
Entry | K[B11H14]:KH | t/d | Yield (%) |
---|---|---|---|
1 | 1:1 | 3 | no product |
2 | 1:2 | 3 | 58 |
3 | 1:3 | 3 | 66 |
4 | 1:4 | 3 | 65 |
5 | 1:5 | 3 | 64 |
6 | 1:6 | 3 | 66 |
Entry | Na[B11H14]:NaHMDS:NaH | t/d | Yield (%) |
---|---|---|---|
1 | 1:3:0 | 3 | 0 b |
2 | 1:1:0 | 3 | 0 c |
3 | 1:1:1 | 3 | 33 |
4 | 1:1:2 | 3 | 58 |
5 | 1:1:3 | 3 | 68 |
6 | 1:1:4 | 3 | 64 |
7 | 1:1:5 | 3 | 64 |
8 | 1:1:6 | 3 | 66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Wang, Y.-Y.; Yu, X.-C.; Ma, Y.-N.; Chen, X. A Simple and Efficient Way to Directly Synthesize Unsolvated Alkali Metal (M = Na, K) Salts of [CB11H12]−. Crystals 2022, 12, 1339. https://doi.org/10.3390/cryst12101339
Han H, Wang Y-Y, Yu X-C, Ma Y-N, Chen X. A Simple and Efficient Way to Directly Synthesize Unsolvated Alkali Metal (M = Na, K) Salts of [CB11H12]−. Crystals. 2022; 12(10):1339. https://doi.org/10.3390/cryst12101339
Chicago/Turabian StyleHan, Hui, Ying-Ying Wang, Xing-Chao Yu, Yan-Na Ma, and Xuenian Chen. 2022. "A Simple and Efficient Way to Directly Synthesize Unsolvated Alkali Metal (M = Na, K) Salts of [CB11H12]−" Crystals 12, no. 10: 1339. https://doi.org/10.3390/cryst12101339
APA StyleHan, H., Wang, Y. -Y., Yu, X. -C., Ma, Y. -N., & Chen, X. (2022). A Simple and Efficient Way to Directly Synthesize Unsolvated Alkali Metal (M = Na, K) Salts of [CB11H12]−. Crystals, 12(10), 1339. https://doi.org/10.3390/cryst12101339