Epitaxial Lateral Overgrowth of {11-22} InGaN Layers Using Patterned InGaN Template and Improvement of Optical Properties from Multiple Quantum Wells
Abstract
:1. Introduction
2. Experimental Methods
3. Results
3.1. Characterization of the {11-22} InGaN Layer
3.2. Epitaxial Lateral Overgrowth of InGaN on the GaN Template
3.3. Epitaxial Lateral Overgrowth of InGaN on an InGaN Template with a SiO2 Mask
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Narukawa, Y.; Ichikawa, M.; Sanga, D.; Sano, M.; Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D Appl. Phys. 2010, 43, 354002. [Google Scholar] [CrossRef]
- Shioda, T.; Yoshida, H.; Tachibana, K.; Sugiyama, N.; Nunoue, S. Enhanced light output power of green LEDs employing AlGaN interlayer in InGaN/GaN MQW structure on sapphire (0001) substrate. Phys. Stat. Solidi A 2012, 209, 473. [Google Scholar] [CrossRef]
- Hashimoto, R.; Hwang, J.; Saito, S.; Nunoue, S. High-efficiency green-yellow light-emitting diodes grown on sapphire (0001) substrates. Phys. Stat. Solidi C 2013, 10, 1529. [Google Scholar] [CrossRef]
- Krames, M.R.; Shchekin, O.B.; Mach, R.M.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status and future of high-power light-emitting diodes for solid-state lighting. J. Display Tech. 2007, 3, 160. [Google Scholar] [CrossRef]
- Iida, D.; Niwa, K.; Kamiyama, S.; Ohkawa, K. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure. Appl. Phys. Express 2016, 9, 111003. [Google Scholar] [CrossRef]
- Enya, Y.; Yoshizumi, Y.; Kyono, T.; Akita, K.; Ueno, M.; Adachi, M.; Sumitomo, T.; Tokuyama, S.; Ikegami, T.; Katayama, K.; et al. 531 nm green lasing of InGaN based laser diodes on semi-polar {20-21} free-standing GaN substrates. Appl. Phys. Express 2009, 2, 082101. [Google Scholar] [CrossRef]
- Takeuchi, T.; Amano, H.; Akasaki, I. Theoretical study of orientation dependence of piezoelectric effects in wurtzite strained GaInN/GaN heterostructures and quantum wells. Jpn. J. Appl. Phys. 2000, 39, 413. [Google Scholar] [CrossRef]
- Liu, R.; Mei, J.; Srinivasan, S.; Ponce, F.A.; Omiya, H.; Narukawa, Y.; Mukai, T. Generation of misfit dislocations by basal-plane slip in InGaN/GaN heterostructures. Appl. Phys. Lett. 2006, 89, 201911. [Google Scholar] [CrossRef]
- Hirasaki, T.; Asano, K.; Banno, M.; Ishikawa, M.; Sakuma, F.; Murakami, H.; Kumagai, Y.; Koukitu, A. Growth of thick InGaN layers by tri-halide vapor phase epitaxy. Jpn. J. Appl. Phys. 2014, 53, 05FL02. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Hsu, C.-H.; Fu, S.-F.; Lee, F.-W.; Chen, C.-Y.; Chou, W.-C.; Chen, W.-K.; Chang, W.-H. Optical properties associated with strain relaxations in thick InGaN epitaxial films. Opt. Express 2014, 22, A416. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, A.; Hasan, T.M.; Kodama, K.; Shigekawa, N.; Kuzuhara, M. Growth temperature dependent critical thickness for phase separation in thick (~1 μm) InxGa1−xN (x = 0.2–0.4). J. Cryst. Growth 2015, 419, 64. [Google Scholar] [CrossRef]
- Papadomanolaki, E.; Bazioti, C.; Kazazis, S.A.; Androulidaki, M.; Dimitrakopulos, G.P. Molecular beam epitaxy of thick InGaN (0001) films: Effects of substrate temperature on structural and electronic properties. J. Cryst. Growth 2016, 437, 20. [Google Scholar] [CrossRef]
- Hestroffer, K.; Wu, F.; Li, H.; Lund, C.; Keller, S.; Speck, J.S.; Mishra, U.K. Relaxed c-plane InGaN layers for the growth of strain-reduced InGaN quantum wells. Semicond. Sci. Technol. 2015, 30, 105015. [Google Scholar] [CrossRef]
- Sharma, T.K.; Towe, E. A method for evaluating the ground state excitonic band gaps of strained InxGa1−xN/GaN quantum wells. J. Appl. Phys. 2009, 106, 104509. [Google Scholar] [CrossRef]
- Okada, N.; Yamada, Y.; Tadatomo, K. Structural and optical evaluation of InGaN/GaN multi-quantum wells on template consisting of in-plane alternately arranged relaxed InGaN and GaN. J. Appl. Phys. 2012, 111, 043508. [Google Scholar] [CrossRef]
- Däuebler, J.; Passow, T.; Aidam, R.; Köhler, K.; Kirste, L.; Kunzer, M.; Wagner, J. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter. Appl. Phys. Lett. 2014, 105, 111111. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Nishiyama, K.; Motogaito, A.; Miyake, H.; Iyechika, Y.; Maeda, T. Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: Effects of reactor pressure in MOVPE growth. Phys. Status Solidi A 1999, 176, 535. [Google Scholar] [CrossRef]
- Tyagi, A.; Wu, F.; Young, E.C.; Chakraborty, A.; Ohta, H.; Bhat, R.; Fujito, K.; DenBaars, S.P.; Nakamura, S.; Speck, J.S. Partial strain relaxation via misfit dislocation generation at heterointerfaces in (Al, In)GaN epitaxial layers grown on semipolar GaN free standing substrates. Appl. Phys. Lett. 2009, 95, 251905. [Google Scholar] [CrossRef]
- Wu, Z.H.; Tanikawa, T.; Murase, T.; Fang, Y.-Y.; Chen, C.Q.; Honda, Y.; Yamaguchi, M.; Amano, H.; Sawaki, N. Partial strain relaxation by stacking fault generation in InGaN multiple quantum wells grown on (1-101) semipolar GaN. Appl. Phys. Lett. 2011, 98, 051902. [Google Scholar] [CrossRef]
- Kuwahara, T.; Kuwano, N.; Kurisu, A.; Okada, N.; Tadatomo, K. Behavior of misfit dislocations in semipolar InGaN/GaN grown by MOVPE. Phys. Stat. Solidi. C 2012, 9, 488. [Google Scholar] [CrossRef]
- Senda, R.; Miura, A.; Hayakawa, T.; Kawashima, T.; Iida, D.; Nagai, T.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I. Realization of high-crystalline-quality thick m-plane GaInN film on 6H-SiC substrate by epitaxial lateral overgrowth. Jpn. J. Appl. Phys. 2007, 46, L948. [Google Scholar] [CrossRef]
- Senda, R.; Miura, A.; Kawashima, T.; Iida, D.; Nagai, T.; Iwaya, M.; Kamiyama, S.; Amano, H.; Akasaki, I.; Akasaki, I. Improvement in crystalline quality of thick GaInN on m-plane 6H-SiC substrates using sidewall epitaxial lateral overgrowth. Phys. Stat. Solidi C 2008, 5, 3045. [Google Scholar] [CrossRef]
- Ozaki, T.; Takagi, Y.; Nishinaka, J.; Funato, M.; Kawakami, Y. Metalorganic vapor phase epitaxy of GaN and lattice-matched InGaN on ScAlMgO4 (0001) substrates. Appl. Phys. Express 2014, 7, 091001. [Google Scholar] [CrossRef]
- Okada, N.; Inomata, Y.; Ikeuchi, H.; Fujimoto, S.; Itakura, H.; Nakashima, S.; Kawamura, R.; Tadatomo, K. Characterization of high-quality relaxed flat InGaN template fabricated by combination of epitaxial lateral overgrowth and chemical mechanical polishing. J. Cryst. Growth 2019, 512, 147. [Google Scholar] [CrossRef]
- White, R.C.; Khoury, M.; Wu, F.; Keller, S.; Rozhavskaia, M.; Sotta, D.; Nakamura, S.; DenBaars, S.P. MOCVD growth of thick V-pit-free InGaN films on semi-relaxed InGaN substrates. Semicond. Sci. Technol. 2021, 36, 015011. [Google Scholar] [CrossRef]
- White, R.C.; Khoury, M.; Wong, M.S.; Li, H.; Lynsky, C.; Iza, M.; Keller, S.; Sotta, D.; Nakamura, S.; DenBaars, S.P. Realization of III-nitride c-plane microleds emitting from 470 to 645 nm on semi-relaxed substrates enabled by v-defect-free base layers. Crystals 2021, 11, 1168. [Google Scholar] [CrossRef]
- Wong, M.S.; Chan, P.; Lim, N.; Zhang, H.; White, R.C.; Speck, J.S.; Denbaars, S.P.; Nakamura, S. Low forward voltage III-nitride red micro-light-emitting diodes on a strain relaxed template with an InGaN decomposition layer. Crystals 2022, 12, 721. [Google Scholar] [CrossRef]
- White, R.C.; Li, H.; Khoury, M.; Lynsky, C.; Iza, M.; Keller, S.; Sotta, D.; Nakamura, S.; DenBaars, S.P. InGaN-based microLED devices approaching 1% EQE with red 609 nm electroluminescence on semi-relaxed substrates. Crystals 2021, 11, 1364. [Google Scholar] [CrossRef]
- Horng, R.H.; Ye, C.-X.; Chen, P.-W.; Iida, D.; Ohkawa, K.; Wu, Y.-R.; Wuu, D.-S. Study on the effect of size on InGaN red micro-LEDs. Sci. Rep. 2022, 12, 1324. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Wong, M.S.; Chan, P.; Yang, Y.; Zhang, H.; Iza, M.; Speck, J.S.; Nakamura, S.; Denbaars, S.P. Progress of InGaN-based red micro-light emitting diodes. Crystals 2022, 12, 541. [Google Scholar] [CrossRef]
- Wakahara, A.; Sekiguchi, H.; Okada, H.; Takagi, Y. Current status for light-emitting diode with Eu-doped GaN active layer grown by MBE. J. Lumin. 2012, 132, 3113. [Google Scholar] [CrossRef]
- Li, P.; Li, H.; Zhang, H.; Lynsky, C.; Iza, M.; Speck, J.S.; Nakamura, S.; DenBaars, S.P. Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm. Appl. Phys. Lett. 2021, 119, 081102. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, L.; Yang, S.; Li, H.; Wei, H.; Han, D.; Wang, Z. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers. Sci. Rep. 2016, 6, 20787. [Google Scholar] [CrossRef] [PubMed]
- Lotsari, A.; Das, A.; Kehagias, T.; Kotsar, Y.; Monroy, E.; Karakostas, T.; Gladkov, P.; Komninou, P.; Dimitrakopulos, G.P. Morphology and origin of V-defects in semipolar (11–22) InGaN. J. Cryst. Growth 2021, 339, 1. [Google Scholar] [CrossRef]
- Okada, N.; Okamura, Y.; Uchida, K.; Tadatomo, K. Controlling optical polarization of {11–22} semipolar multiple quantum wells using relaxed underlying InGaN buffer layers. Opt. Mater. 2016, 58, 243. [Google Scholar] [CrossRef]
- Tawarazako, Y.; Nishi, N.; Nakata, A.; Okada, N.; Kurai, S.; Yamada, Y.; Tadatomo, K. Long wavelength red to green emissions from {11-22} semipolar multi-quantum wells on fully relaxed InGaN underlayer. Jpn. J. Appl. Phys. 2021; under review. [Google Scholar]
- Lee, S.-N.; Klm, K.K.; Nam, O.H.; Klm, J.H.; Klm, H. Structural and optical characterization of (11–22) semipolar GaN on m-plane sapphire without low temperature buffer layer. Phys. Stat. Solidi C 2010, 7, 2043. [Google Scholar] [CrossRef]
- Wernicke, T.; Netzel, C.; Weyers, M.; Kneissl, M. Semipolar GaN grown on m-plane sapphire using MOVPE. Phys. Stat. Solidi 2008, 5, 1815. [Google Scholar] [CrossRef]
- Kappers, M.J.; Hollander, J.L.; McAleese, C.; Johnston, C.F.; Broom, R.F.; Barnard, J.S.; Vickers, M.E.; Humphreys, C.J. Growth and characterisation of semi-polar ( ) InGaN/GaN MQW structures. J. Cryst. Growth 2007, 300, 155. [Google Scholar] [CrossRef]
- Romanov, A.E.; Young, E.C.; Wu, F.; Tyagi, A.; Gallinat, C.S.; Nakamura, S.; DenBaars, S.P.; Speck, J.S. Basal plane misfit dislocations and stress relaxation in III-nitride semipolar heteroepitaxy. J. Appl. Phys. 2011, 109, 103522. [Google Scholar] [CrossRef]
- Keller, S.; Fichtenbaum, N.A.; Furukawa, M.; Speck, J.S.; DenBaars, S.P.; Mishra, U.K. Growth and characterization of N-polar InGaN/GaN multiquantum wells. Appl. Phys. Lett. 2007, 90, 191908. [Google Scholar] [CrossRef]
- Wernicke, T.; Schade, L.; Netzel, C.; Rass, J.; Hoffmann, V.; Ploch, S.; Knauer, A.; Weyers, M.; Schwarz, U.; Kneissl, M. Indium incorporation and emission wavelength of polar, nonpolar and semipolar InGaN quantum wells. Semicond. Sci. Technol. 2012, 27, 024014. [Google Scholar] [CrossRef]
- Wunder, T.; Feneberg, M.; Lipski, F.; Wang, J.; Leute, R.A.; Schwaiger, S.; Thonke, K.; Chuvilin, A.; Schwarz, U.T.; Dräger, A.D.; et al. Three-dimensional GaN for semipolar light emitters. Phys. Stat. Solidi B 2011, 248, 549. [Google Scholar] [CrossRef]
- Orsal, G.; Gmili, Y.E.; Fressengeas, N.; Streque, J.; Djerboub, R.; Moudakir, T.; Sundaram, S.; Ougazzaden, A.; Salvestrini, J.P. Bandgap energy bowing parameter of strained and relaxed InGaN layers. Opt. Mater. Express 2014, 4, 1030. [Google Scholar] [CrossRef]
- Kurouchi, M.; Araki, T.; Naoi, H.; Yamaguchi, T.; Suzuki, A.; Nanishi, Y. Growth and properties of In-rich InGaN films grown on (0001) sapphire by RF-MBE. Phys. Stat. Solidi B 2004, 241, 2843. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, N.; Tadatomo, K. Epitaxial Lateral Overgrowth of {11-22} InGaN Layers Using Patterned InGaN Template and Improvement of Optical Properties from Multiple Quantum Wells. Crystals 2022, 12, 1373. https://doi.org/10.3390/cryst12101373
Okada N, Tadatomo K. Epitaxial Lateral Overgrowth of {11-22} InGaN Layers Using Patterned InGaN Template and Improvement of Optical Properties from Multiple Quantum Wells. Crystals. 2022; 12(10):1373. https://doi.org/10.3390/cryst12101373
Chicago/Turabian StyleOkada, Narihito, and Kazuyuki Tadatomo. 2022. "Epitaxial Lateral Overgrowth of {11-22} InGaN Layers Using Patterned InGaN Template and Improvement of Optical Properties from Multiple Quantum Wells" Crystals 12, no. 10: 1373. https://doi.org/10.3390/cryst12101373
APA StyleOkada, N., & Tadatomo, K. (2022). Epitaxial Lateral Overgrowth of {11-22} InGaN Layers Using Patterned InGaN Template and Improvement of Optical Properties from Multiple Quantum Wells. Crystals, 12(10), 1373. https://doi.org/10.3390/cryst12101373