Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Synthesis of the Ni(OH)2/NF
2.3. Synthesis of the FFA-Ni(OH)2/NF
2.4. Synthesis of the Ni/FFA(OH)2/NF
2.5. Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tian, J.F.; Yu, L.G.; Xue, R.; Zhuang, S.; Shan, Y.L. Global low-carbon energy transition in the post-COVID-19 era. Appl. Energy 2022, 307, 118205. [Google Scholar] [CrossRef]
- Kittner, N.; Lill, F.; Kammen, D.M. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125. [Google Scholar] [CrossRef] [Green Version]
- Chien, F.S.; Kamran, H.W.; Albashar, G.; Iqbal, W. Dynamic planning, conversion, and management strategy of different renewable energy sources: A sustainable solution for severe energy crises in emerging economies. Int. J. Hydrogen Energy 2021, 46, 7745–7758. [Google Scholar] [CrossRef]
- Lin, Z.M.; Zhang, B.B.; Guo, H.Y.; Wu, Z.Y.; Zou, H.Y.; Yang, J.; Wang, Z.L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Sahu, B.K. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew. Sustain. Energy Rev. 2015, 43, 621–634. [Google Scholar] [CrossRef]
- Wang, X.S.; Zheng, Y.; Sheng, W.C.; Xu, Z.C.; Jaroniec, M.; Qiao, S.Z. Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today 2020, 36, 125–138. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiuiiah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Li, F.T.; Dong, Y.W.; Dai, F.N.; Liu, C.G.; Chai, Y.M. Dynamic anion regulation to construct S-doped FeOOH realizing 1000 mA cm(-2)-level-current-density oxygen evolution over 1000 h. Appl. Catal. B Environ. 2022, 315, 121571. [Google Scholar] [CrossRef]
- Yue, M.L.; Lambert, H.; Pahon, E.; Roche, R.; Jemei, S.; Hissel, D. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renew. Sustain. Energy Rev. 2021, 146, 111180. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zheng, Y.J.; Wang, J.C.; Geng, Y.; Zhang, B.; He, J.J.; Xue, J.M.; Frauenheim, T.; Li, M. Ni/Mo Bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small 2021, 17, 2006730. [Google Scholar] [CrossRef] [PubMed]
- Surendran, S.; Jesudass, S.C.; Janani, G.; Kim, J.Y.; Lim, Y.; Park, J.; Han, M.K.; Cho, I.S.; Sim, U. Sulphur assisted nitrogen-rich CNF for improving electronic interactions in Co-NiO heterostructures toward accelerated overall water splitting. Adv. Mater. Technol. 2022. [Google Scholar] [CrossRef]
- Janani, G.; Surendran, S.; Choi, H.; An, T.Y.; Han, M.K.; Song, S.J.; Park, W.; Kim, J.K.; Sim, U. Anchoring of Ni12P5 microbricks in nitrogen- and phosphorus-enriched carbon frameworks: Engineering bifunctional active sites for efficient water-splitting systems. ACS Sustain. Chem. Eng. 2022, 10, 1182–1194. [Google Scholar] [CrossRef]
- Jiang, Y.Y.; Dong, K.; Lu, Y.Z.; Liu, J.W.; Chen, B.; Song, Z.Q.; Niu, L. Bimetallic oxide coupled with B-doped graphene as highly efficient electrocatalyst for oxygen evolution reaction. Sci. China Mater. 2020, 63, 1247–1256. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Li, F.; Sun, L.C. Metal organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695. [Google Scholar] [CrossRef]
- Radwan, A.; Jin, H.H.; He, D.P.; Mu, S.C. Design Engineering, Synthesis Protocols, and Energy Applications of MOF-Derived Electrocatalysts. Nano-Micro Lett. 2021, 13, 132. [Google Scholar] [CrossRef]
- Fan, R.Y.; Xie, J.Y.; Yu, N.; Chai, Y.M.; Dong, B. Interface design and composition regulation of cobalt-based electrocatalysts for oxygen evolution reaction. Int. J. Hydrogen Energy 2022, 47, 10547–10572. [Google Scholar] [CrossRef]
- Hu, Y.D.; Luo, G.; Wang, L.G.; Liu, X.K.; Qu, Y.T.; Zhou, Y.S.; Zhou, F.Y.; Li, Z.J.; Li, Y.F.; Yao, T.; et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816. [Google Scholar] [CrossRef]
- Zhou, S.Z.; Jang, H.S.; Qin, Q.; Li, Z.J.; Kim, M.G.; Li, C.; Liu, X.E.; Cho, J. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci. China Mater. 2021, 64, 1408–1417. [Google Scholar] [CrossRef]
- Xi, G.G.; Zuo, L.; Li, X.; Jin, Y.; Li, R.; Zhang, T. In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution. J. Mater. Sci. Technol. 2021, 70, 197–204. [Google Scholar] [CrossRef]
- Cai, C.; Wang, M.Y.; Han, S.B.; Wang, Q.; Zhang, Q.; Zhu, Y.M.; Yang, X.M.; Wu, D.J.; Zu, X.T.; Sterbinsky, G.E.; et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2021, 11, 123–130. [Google Scholar] [CrossRef]
- She, L.A.; Zhao, G.Q.; Ma, T.Y.; Chen, J.; Sun, W.P.; Pan, H.G. On the durability of Iridium-based electrocatalysts toward the oxygen evolution reaction under acid environment. Adv. Funct. Mater. 2022, 32, 2108465. [Google Scholar] [CrossRef]
- Shi, Z.X.; Zhao, J.W.; Li, C.F.; Xu, H.; Li, G.R. Fully exposed edge/corner active sites in Fe substituted-Ni(OH)(2) tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Appl. Catal. B Environ. 2021, 298, 120559. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel-Iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef] [PubMed]
- Friebel, D.; Louie, M.W.; Bajdich, M.; Sanwald, K.E.; Cai, Y.; Wise, A.M.; Cheng, M.J.; Sokaras, D.; Weng, T.C.; Alonso-Mori, R.; et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anantharaj, S.; Kundu, S.; Noda, S. “The Fe Effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514. [Google Scholar] [CrossRef]
- Hu, C.J.; Hu, Y.F.; Fan, C.H.; Yang, L.; Zhang, Y.T.; Li, H.X.; Xie, W. Surface-enhanced raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem. Int. Ed. 2021, 60, 19774–19778. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Qiao, M.; Li, Y.F.; Wang, S.Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small 2018, 14, 1800136. [Google Scholar] [CrossRef]
- Fan, R.Y.; Xie, J.Y.; Liu, H.J.; Wang, H.Y.; Li, M.X.; Yu, N.; Luan, R.N.; Chai, Y.M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040. [Google Scholar] [CrossRef]
- Louie, M.W.; Bell, A.T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329–12337. [Google Scholar] [CrossRef] [Green Version]
- Farhat, R.; Dhainy, J.H.; Halaoui, L.I. OER catalysis at activated and codeposited NiFe-oxo/hydroxide thin films is due to postdeposition surface-Fe and is not sustainable without Fe in solution. ACS Catal. 2020, 10, 20–35. [Google Scholar] [CrossRef]
- Chang, J.L.; Chen, L.M.; Zang, S.Q.; Wang, Y.F.; Wu, D.P.; Xu, F.; Gao, Z.Y. The effect of Fe(III) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)(2) electrode. J. Colloid Interface Sci. 2020, 569, 50–56. [Google Scholar] [CrossRef]
- Fan, R.Y.; Zhang, X.Y.; Yu, N.; Wang, F.G.; Zhao, H.Y.; Liu, X.; Lv, Q.X.; Liu, D.P.; Chai, Y.M.; Dong, B. Rapid “self-healing” behavior induced by chloride anions to renew the Fe–Ni(oxy)hydroxide surface for long-term alkaline seawater electrolysis. Inorg. Chem. Front. 2022, 9, 4216–4224. [Google Scholar] [CrossRef]
- Gao, M.R.; Sheng, W.C.; Zhuang, Z.B.; Fang, Q.R.; Gu, S.; Jiang, J.; Yan, Y.S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084. [Google Scholar] [CrossRef]
- Xu, Q.C.; Hua, J.; Zhang, H.X.; Hu, Y.J.; Li, C.Z. Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)(2)/Ni3S2 nanoforests for efficient water splitting. Appl. Catal. B Environ. 2019, 242, 60–66. [Google Scholar] [CrossRef]
- Wang, J.; Gan, L.Y.; Zhang, W.Y.; Peng, Y.C.; Yu, H.; Yan, Q.Y.; Wang, X. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 2018, 4, 7970. [Google Scholar] [CrossRef] [Green Version]
- Yi, L.Y.; Niu, Y.L.; Feng, B.M.; Zhao, M.; Hu, W.H. Simultaneous phase transformation and doping via a unique photochemical–electrochemical strategy to achieve a highly active Fe-doped Ni oxyhydroxide oxygen evolution catalyst. J. Mater. Chem. A 2021, 9, 4213–4220. [Google Scholar] [CrossRef]
- Cheng, X.D.; Yuan, J.X.; Cao, J.H.; Lei, C.J.; Yang, B.; Li, Z.J.; Zhang, X.W.; Yuan, C.; Lei, L.C.; Hou, Y. Strongly coupling of amorphous/crystalline reduced FeOOH/α-Ni(OH)2 heterostructure for extremely efficient water oxidation at ultra-high current density. J. Colloid Interface Sci. 2020, 579, 340–346. [Google Scholar] [CrossRef]
- Liu, Z.R.; Deng, Y.W.; Wang, L.; Tang, J.N. A Facile topochemical preparation of Ni-Fe LDH nanosheets array on nickel foam using in situ generated Ni2+ for electrochemical oxygen evolution. J. Electrochem. Soc. 2020, 167, 046502-9. [Google Scholar] [CrossRef]
- He, W.J.; Ren, G.; Li, Y.; Jia, D.B.; Li, S.Y.; Cheng, J.N.; Liu, C.C.; Hao, Q.Y.; Zhang, J.; Liu, H. Amorphous nickel–iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction. Catal. Sci. Technol. 2020, 10, 1708–1713. [Google Scholar] [CrossRef]
- Liu, Y.K.; Jiang, S.; Li, S.J.; Zhou, L.; Li, Z.H.; Li, J.M.; Shao, M.F. Interface engineering of (Ni, Fe)S2@MoS2 heterostructures for synergetic electrochemical water splitting. Appl. Catal. B 2019, 247, 107–114. [Google Scholar] [CrossRef]
- Liu, G.P.; Wang, B.; Wang, L.; Wei, W.X.; Quan, Y.; Wang, C.T.; Zhu, W.S.; Li, H.M.; Xia, J.X. MOFs derived FeNi3 nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction. Green Energy Environ. 2022, 7, 423–431. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, P.; Li, M.X.; Li, Y.R.; Zhang, X.; Chen, J.; Fang, X.; Liu, Y.J.; Yuan, X.L.; Dai, X.P.; et al. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale 2020, 12, 9669–9679. [Google Scholar] [CrossRef]
- Chandrasekaran, N.; Muthusamy, S. Free-standing porous interconnects of Ni–Fe alloy decorated reduced graphene oxide for oxygen evolution reaction. Langmuir 2017, 33, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.J.; Zhu, Y.A.; Ye, Y.K.; Pan, Y.; Lu, T.; Huang, S.F. Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation. J. Colloid Interface Sci. 2022, 608, 3030–3039. [Google Scholar] [CrossRef] [PubMed]
- Hatami, E.; Toghraei, A.; Darband, G.B. Electrodeposition of Ni–Fe micro/nano urchin-like structure as an efficient electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2021, 46, 9394–9405. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Meng, H.X.; Kong, C.; Yan, S.H.; Ma, W.X.; Zhu, H.; Ma, F.Q.; Wang, C.J.; Hu, Z.A. Heterogeneous Ni3S2@FeNi2S4@NF nanosheet arrays directly used as high efficiency bifunctional electrocatalyst for water decomposition. J. Colloid Interface Sci. 2021, 599, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.S.; Lei, J.L.; Wu, S.M.; Liu, L.; Chen, T.M.; Yuan, Y.; Ding, C. Construction of Fe-Co-Ni-S-x/NF nanomaterial as bifunctional electrocatalysts for water splitting. Mater. Lett. 2022, 311, 131549. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.-P.; Fan, R.-Y.; Dong, B.; Chen, B. Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution. Crystals 2022, 12, 1404. https://doi.org/10.3390/cryst12101404
Shen G-P, Fan R-Y, Dong B, Chen B. Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution. Crystals. 2022; 12(10):1404. https://doi.org/10.3390/cryst12101404
Chicago/Turabian StyleShen, Guo-Ping, Ruo-Yao Fan, Bin Dong, and Bo Chen. 2022. "Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution" Crystals 12, no. 10: 1404. https://doi.org/10.3390/cryst12101404
APA StyleShen, G. -P., Fan, R. -Y., Dong, B., & Chen, B. (2022). Ferrocene Formic Acid Surface Modified Ni(OH)2 for Highly Efficient Alkaline Oxygen Evolution. Crystals, 12(10), 1404. https://doi.org/10.3390/cryst12101404