Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Macro and Microstructure Analysis
3.2. Mechanical Properties
4. Conclusions
- The cladding of low-carbon steel/pure aluminum with a limited intermixing layer was successfully performed through friction stir processing without noticeable defects or cracks and at rotational speeds of more than 500 rpm.
- The pure copper backing plate significantly aided in reducing/eliminating the formation of intermetallic compounds in the cladding interface.
- Using a tool pin length equal to the upper plate (3 mm) produces a sound cladding interface that appears as laminated layers at more than 500 rpm rotation speeds. A limited number of Fe2Al5 intermetallics were formed at a rotation speed of 1500 rpm, while no intermetallics were detected at 1000 rpm. The rotation speed of 500 rpm was not enough to mix the two mating metals and form a sound cladding interface.
- When the tool pin length was longer than the upper plate (3.2 mm), many steel fragments were scattered within the aluminum side, forming a laminated sandwich structure. Some Fe2Al5 intermetallics were formed, especially at a rotation speed of 1500 rpm.
- The tensile shear load decreases when decreasing the rotation speed and increasing the tool pin length. The maximum tensile shear load was obtained at a rotation speed of 1500 rpm and a tool pin length of 3.2 mm.
- The hardness values of the interface were higher than the aluminum base metal for all the investigated samples. Decreasing the rotation speed and increasing the tool pin length will lead to a hardness increment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mori, K.I.; Abe, Y. A Review on Mechanical Joining of Aluminium and High Strength Steel Sheets by Plastic Deformation. Int. J. Light. Mater. Manuf. 2018, 1, 1–11. [Google Scholar] [CrossRef]
- Sun, J.; Yan, Q.; Gao, W.; Huang, J. Investigation of Laser Welding on Butt Joints of Al/Steel Dissimilar Materials. Mater. Des. 2015, 83, 120–128. [Google Scholar] [CrossRef]
- Schubert, E.; Klassen, M.; Zerner, I.; Walz, C.; Sepold, G. Light-Weight Structures Produced by Laser Beam Joining for Future Applications in Automobile and Aerospace Industry. J. Mater. Process. Technol. 2001, 115, 2–8. [Google Scholar] [CrossRef]
- Hartley, W.D.; Garcia, D.; Yoder, J.K.; Poczatek, E.; Forsmark, J.H.; Luckey, S.G.; Dillard, D.A.; Yu, H.Z. Solid-State Cladding on Thin Automotive Sheet Metals Enabled by Additive Friction Stir Deposition. J. Mater. Process. Technol. 2021, 291, 117045. [Google Scholar] [CrossRef]
- P.J. Honda Develops New Technology to Weld Together Steel and Aluminum and Achieves World’s First Application to the Frame of a Mass-production Vehicle-Hybrid-Structured Front Subframe Achieves Both Weight Reduction and Increased Rigidity. 2012. Available online: https://www.thefreelibrary.com/Honda+Develops+New+Technology+to+Weld+Together+Steel+and+Aluminum+and...-a0302006358 (accessed on 16 September 2022).
- Ahmet Efe, A.I. A General View of Industry 4.0 Revolution from Cybersecurity Perspective. Int. J. Intell. Syst. Appl. Eng. 2020, 8, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Li, J.; Xu, G. Bonding Process and Interfacial Reaction in Horizontal Twin-Roll Casting of Steel/Aluminum Clad Sheet. J. Mater. Process. Technol. 2017, 246, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Gullino, A.; Matteis, P.; Aiuto, F.D. Review of Aluminum-to-Steel Welding Technologies for Car-Body Applications. Metals 2019, 9, 315. [Google Scholar] [CrossRef] [Green Version]
- Corigliano, P.; Crupi, V.; Guglielmino, E. Non Linear Finite Element Simulation of Explosive Welded Joints of Dissimilar Metals for Shipbuilding Applications. Ocean Eng. 2018, 160, 346–353. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Formation of Intermetallic Structures at the Interface of Steel-to-Aluminium Explosive Welds. Mater. Charact. 2018, 142, 432–442. [Google Scholar] [CrossRef]
- Title of Dissertation: Effect of Microstructure on the Room. Science.
- Dehghani, M.; Amadeh, A.; Akbari Mousavi, S.A.A. Investigations on the Effects of Friction Stir Welding Parameters on Intermetallic and Defect Formation in Joining Aluminum Alloy to Mild Steel; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; Volume 49, ISBN 9821820840. [Google Scholar]
- Sharma, A.; Morisada, Y.; Fujii, H. Influence of Aluminium-Rich Intermetallics on Microstructure Evolution and Mechanical Properties of Friction Stir Alloyed Al–Fe Alloy System. J. Manuf. Process. 2021, 68, 668–682. [Google Scholar] [CrossRef]
- Wang, T.; Sidhar, H.; Mishra, R.S.; Hovanski, Y.; Upadhyay, P.; Carlson, B. Evaluation of Intermetallic Compound Layer at Aluminum/Steel Interface Joined by Friction Stir Scribe Technology. Mater. Des. 2019, 174, 107795. [Google Scholar] [CrossRef]
- Liu, W.; Ma, J.; Mazar Atabaki, M.; Kovacevic, R. Joining of Advanced High-Strength Steel to AA 6061 Alloy by Using Fe/Al Structural Transition Joint. Mater. Des. 2015, 68, 146–157. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, F.; He, J.; Qin, Y.; Liu, B.; Yang, M.; Yin, F. Microstructure, Growth Kinetics and Mechanical Properties of Interface Layer for Roll Bonded Aluminum-Steel Clad Sheet Annealed under Argon Gas Protection. Vacuum 2018, 151, 189–196. [Google Scholar] [CrossRef]
- Su, S.; Chen, S.; Mao, Y.; Xiao, J.; Vivek, A.; Daehn, G. Joining Aluminium Alloy 5A06 to Stainless Steel 321 by Vaporizing Foil Actuators Welding with an Interlayer. Metals 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Nagai, K.; Yin, F. Progress in Cold Roll Bonding of Metals. Sci. Technol. Adv. Mater. 2008, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.Y.; Zhang, Z.Y.; Jin, L.; Dong, J. Effects of Annealing Process on Sagging Resistance of Cold-Rolled Three-Layer Al Alloy Clad Sheets. Trans. Nonferrous Met. Soc. China 2016, 26, 2542–2551. [Google Scholar] [CrossRef]
- Grydin, O.; Gerstein, G.; Nürnberger, F.; Schaper, M.; Danchenko, V. Twin-Roll Casting of Aluminum-Steel Clad Strips. J. Manuf. Process. 2013, 15, 501–507. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.T.; Yu, H.L.; Su, L.H.; Xu, G.M.; Pan, J.S.; You, T.; Zhang, G.; Sun, K.M.; He, L.Z. Investigation on Bonding Strength of Steel/Aluminum Clad Sheet Processed by Horizontal Twin-Roll Casting, Annealing and Cold Rolling. Mater. Des. 2016, 112, 263–274. [Google Scholar] [CrossRef]
- Akramifard, H.R.; Mirzadeh, H.; Parsa, M.H. Cladding of Aluminum on AISI 304L Stainless Steel by Cold Roll Bonding: Mechanism, Microstructure, and Mechanical Properties. Mater. Sci. Eng. A 2014, 613, 232–239. [Google Scholar] [CrossRef]
- Wu, B.; Li, L.; Xia, C.; Guo, X.; Zhou, D. Effect of Surface Nitridingtreatment in a Steel Plate on the Interfacial Bonding Strength of the Aluminum/Steel Clad Sheets by the Cold Roll Bonding Process. Mater. Sci. Eng. A 2017, 682, 270–278. [Google Scholar] [CrossRef]
- Carvalho, G.H.S.F.L.; Galvão, I.; Mendes, R.; Leal, R.M.; Loureiro, A. Explosive Welding of Aluminium to Stainless Steel. J. Mater. Process. Technol. 2018, 262, 340–349. [Google Scholar] [CrossRef]
- Findik, F. Recent Developments in Explosive Welding. Mater. Des. 2011, 32, 1081–1093. [Google Scholar] [CrossRef]
- Sun, X.J.; Tao, J.; Guo, X.Z. Bonding Properties of Interface in Fe/Al Clad Tube Prepared by Explosive Welding. Trans. Nonferrous Met. Soc. China 2011, 21, 2175–2180. [Google Scholar] [CrossRef]
- Mohammad Kazem Besharati Givi and Parviz Asadi 1- General Introduction. In Advances in Friction-Stir Welding and Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–19.
- Padhy, G.K.; Wu, C.S.; Gao, S. Friction Stir Based Welding and Processing Technologies—Processes, Parameters, Microstructures and Applications: A Review. J. Mater. Sci. Technol. 2018, 34, 1–38. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Ibrahim, A.B.; Al-Badour, F.A.; Adesina, A.Y.; Merah, N. Effect of Process Parameters on Microstructural and Mechanical Properties of Friction Stir Diffusion Cladded ASTM A516-70 Steel Using 5052 Al Alloy. J. Manuf. Process. 2018, 34, 451–462. [Google Scholar] [CrossRef]
- Zhang, G.; Su, W.; Zhang, J.; Wei, Z. Friction Stir Brazing: A Novel Process for Fabricating Al/Steel Layered Composite and for Dissimilar Joining of Al to Steel. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2011, 42, 2850–2861. [Google Scholar] [CrossRef]
- Mahmoud, E.R.I.; Al-qozaim, A.M.A. Fabrication of In-Situ Al–Cu Intermetallics on Aluminum Surface by Friction Stir Processing. Arab. J. Sci. Eng. 2016, 41, 1757–1769. [Google Scholar] [CrossRef]
- Mahmoud, E.R.I.; Takahashi, M.; Shibayanagi, T.; Ikeuchi, K. Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing. Wear 2010, 268, 1111–1121. [Google Scholar] [CrossRef]
- Lee, C.Y.; Choi, D.H.; Yeon, Y.M.; Jung, S.B. Dissimilar Friction Stir Spot Welding of Low Carbon Steel and Al-Mg Alloy by Formation of IMCs. Sci. Technol. Weld. Join. 2009, 14, 216–220. [Google Scholar] [CrossRef]
- Mirzadeh, H. High Strain Rate Superplasticity via Friction Stir Processing (FSP): A Review. Mater. Sci. Eng. A 2021, 819, 141499. [Google Scholar] [CrossRef]
- Mahmoud, E.R.I.; Takahashi, M.; Shibayanagi, T.; Dceuchi, K. Fabrication of Surface-Hybrid-MMCs Layer on Aluminum Plate by Friction Stir Processing and Its Wear Characteristics. Mater. Trans. 2009, 50, 1824–1831. [Google Scholar] [CrossRef] [Green Version]
- Ritti, L.; Bhat, T. Design and Numerical Analysis of Tool for FSP Simulation of Magnesium Alloys. Mater. Today Proc. 2021, 46, 2489–2497. [Google Scholar] [CrossRef]
- Chen, Y.C.; Nakata, K. Effect of the Surface State of Steel on the Microstructure and Mechanical Properties of Dissimilar Metal Lap Joints of Aluminum and Steel by Friction Stir Welding. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2008, 39, 1985–1992. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, E.R.I.; Khan, S.Z.; Aljabri, A.; Almohamadi, H.; Elkotb, M.A.; Gepreel, M.A.; Ebied, S. Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing. Crystals 2022, 12, 1413. https://doi.org/10.3390/cryst12101413
Mahmoud ERI, Khan SZ, Aljabri A, Almohamadi H, Elkotb MA, Gepreel MA, Ebied S. Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing. Crystals. 2022; 12(10):1413. https://doi.org/10.3390/cryst12101413
Chicago/Turabian StyleMahmoud, Essam R. I., Sohaib Z. Khan, Abdulrahman Aljabri, Hamad Almohamadi, Mohamed Abdelghany Elkotb, Mohamed A. Gepreel, and Saad Ebied. 2022. "Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing" Crystals 12, no. 10: 1413. https://doi.org/10.3390/cryst12101413
APA StyleMahmoud, E. R. I., Khan, S. Z., Aljabri, A., Almohamadi, H., Elkotb, M. A., Gepreel, M. A., & Ebied, S. (2022). Free Intermetallic Cladding Interface between Aluminum and Steel through Friction Stir Processing. Crystals, 12(10), 1413. https://doi.org/10.3390/cryst12101413