A Review on Ultrafast-Laser Power Bed Fusion Technology
Abstract
:1. Introduction
2. Theoretical Research on the Interaction between Ultrashort Pulse Laser and Solid Materials
2.1. Mechanisms of Ultrafast Laser–Matter Interaction
2.2. Numercial Simulation of Ultrafast Laser–Matter Interaction
3. Specialty Materials Manufacturing and Analysis
3.1. Refractory Metal
3.2. Transparent Material
3.3. Multi-Material Layered Structure
3.4. High Thermal Conductivity Material
4. Summary and Conclusions
- (1)
- The fs laser-based melting process enhances the material processing library of traditional techniques based on CW or short pulse lasers by adding full control over the processing parameters. In particular, challenging materials such as copper, YSZ and tungsten have been reported to produce standard functional parts that meet the requirements of many applications. In addition to the current material, materials with high melting points or brittleness that are difficult to manufacture by traditional methods, such as high-entropy alloys and ceramics, are also worth a try. The potential benefits of fs-AM can be exploited in a wide range of applications due to its high power and low HAZ. Guiding experiments and production through numerical simulation is the focus of future research. The rapid development and application of big data and large-scale parallel computing provide possibilities for process modeling and analysis. With the development of artificial intelligence technology, in the future, through data collection, data processing, machine learning and neural network methods to obtain a reliable process-structure-performance relationship for the SLM process is also an effective way to shorten the calculation time and improve the accuracy of the calculation.
- (2)
- At present, systematic experiments are mainly carried out on laser power, scanning speed, scanning method, etc. to obtain the process parameters for the best target performance. The parameters involved are numerous, as they are related to materials, laser and the process itself, all of which can affect the performance and quality of the processed parts. This method is time-consuming and labor intensive, and the acquisition of ideal parameters depends on the setting of windows and gradients, which may not suitable as global optimal results. It may only be the local optimum in the set parameters, which also shows that the performance of manufactured parts has the potential for further improvement. As tungsten parts have been successfully fabricated with fs laser sources, microcracks are still prevalent. The next step is to continue to strengthen the process optimization research of fs SLM, especially the intelligent process optimization based on computer numerical calculation technology. While the rapid heating and cooling associated with ultrafast laser processing helps to homogenize the composition and prevent segregation, it also creates residual stress and affects the performance of the fabricated part, and SLM-based products still suffer from surface finish defects, so post-processing is needed. At the same time, expensive powder preparation and other costs are also factors that must be considered for the use of this technique.
- (3)
- Although the current rapid development of AM, there are still problems in actual experimental operations, such as limited size of printed samples and long printing time. At the same time, there are problems such as complex and expensive powder preparation. It is also necessary to speed up the research and development of additive manufacturing equipment. At present, many of fs-SLM are based on the transformation and upgrading of traditional CW laser SLM equipment. There are many limitations, and there is still a lack of market-oriented mature printing equipment sales. The next step is to accelerate the research in this area, especially the research and development of high-performance lasers and optical path systems suitable for the fs SLM process.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, L. Mesoscopic-scale numerical investigation including the influence of scanning strategy on selective laser melting process. Comput. Mater. Sci. 2021, 189, 110263. [Google Scholar] [CrossRef]
- Lonergan, J.; Fahrenholtz, W.; Hilmas, G. Zirconium Diboride with High Thermal Conductivity. J. Am. Ceram. Soc. 2014, 97, 1689–1691. [Google Scholar] [CrossRef]
- Gieseke, M.; Senz, V.; Vehse, M.; Fiedler, S.; Irsig, R.; Hustedt, M.; Sternberg, K.; Noelke, C.; Kaierle, S.; Wesling, V.; et al. Additive Manufacturing of Drug Delivery Systems. Biomed. Technik. Biomed. Eng. 2012, 57, 398–401. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Noël, S.; Hermann, J.; Itina, T. Investigation of nanoparticle generation during femtosecond laser ablation of metals. Appl. Surf. Sci. 2007, 253, 6310–6315. [Google Scholar] [CrossRef]
- Chowdhury, I.; Xu, X. Heat Transfer in Femtosecond Laser Processing of Metal. Numer. Heat Transf. Part A-Appl. 2003, 44, 219–232. [Google Scholar] [CrossRef]
- Lei, S.; Zhao, X.; Yu, X.; Hu, A.; Vukelic, S.; Jun, M.; Joe, H.-E.; Yao, Y.; Shin, Y. Ultrafast Laser Applications in Manufacturing Processes: A State of the Art Review. J. Manuf. Sci. Eng. 2020, 142, 031005. [Google Scholar] [CrossRef]
- Birnbaum, M. Semiconductor Surface Damage Produced by Ruby Lasers. J. Appl. Phys. 1965, 36, 3688–3689. [Google Scholar] [CrossRef]
- Hodgson, N.; Laha, M.; Lee, T.; Haloui, H.; Heming, S.; Steinkopff, A. Industrial Ultrafast Lasers Systems, Processing Fundamentals, and Applications. In Proceedings of the 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019. [Google Scholar]
- Xiao, K.; Li, M.; Li, M.; Dai, R.; Hou, Z.; Qiao, J. Femtosecond laser ablation of AZ31 magnesium alloy under high repetition frequencies. Appl. Surf. Sci. 2022, 594, 153406. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, F.; Zhang, Y.; Xiong, X.; Ju, B.-F.; Cui, H.; Chen, Y.-L. Single-pulse femtosecond laser ablation of monocrystalline silicon: A modeling and experimental study. Appl. Surf. Sci. 2022, 576, 151722. [Google Scholar] [CrossRef]
- Roth, G.-L.; Rung, S.; Hellmann, R. Welding of transparent polymers using femtosecond laser. Appl. Phys. A-Mater. Sci. Process. 2016, 122, 86. [Google Scholar] [CrossRef]
- Tamaki, T.; Watanabe, W.; Nishii, J.; Itoh, K. Welding of transparent materials using femtosecond laser pulses. Jpn. J. Appl. Phys. Part 2-Lett. Express Lett. 2005, 44, L687–L689. [Google Scholar] [CrossRef]
- Li, X.; Jing, F.; Fan, J.; Yong, P.; Wang, K. Parametric investigation of femtosecond laser welding on alumina using Taguchi technique. Optik 2021, 225, 165891. [Google Scholar] [CrossRef]
- Ullsperger, T.; Liu, D.; Yürekli, B.; Matthäus, G.; Schade, L.; Seyfarth, B.; Kohl, H.; Ramm, R.; Rettenmayr, M.; Nolte, S. Ultra-short pulsed laser powder bed fusion of Al-Si alloys: Impact of pulse duration and energy in comparison to continuous wave excitation. Addit. Manuf. 2021, 46, 102085. [Google Scholar] [CrossRef]
- Aversa, A.; Marchese, G.; Saboori, A.; Bassini, E.; Manfredi, D.; Biamino, S.; Ugues, D.; Fino, P.; Lombardi, M. New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review. Materials 2019, 12, 1007. [Google Scholar] [CrossRef] [Green Version]
- Raciukaitis, G. Ultra-Short Pulse Lasers for Microfabrication: A Review. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–12. [Google Scholar] [CrossRef]
- von der Linde, D.; Sokolowski-Tinten, K.; Bialkowski, J. Laser–solid interaction in the femtosecond time regime. Appl. Surf. Sci. 1997, 109–110, 1–10. [Google Scholar] [CrossRef]
- Kabotu, K.; Samuel, G.L.; Shunmugam, M.s. Theoretical and experimental Investigations of Ultra-short Pulse Laser Interaction on Ti6Al4V alloy. J. Mater. Process. Technol. 2018, 263, 266–275. [Google Scholar] [CrossRef]
- Wu, B.; Shin, Y. A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 2007, 253, 4079–4084. [Google Scholar] [CrossRef]
- Wellershoff, S.; Hohlfeld, J.; Güdde, J.; Matthias, E. The role of electron-phonon coupling in femtosecond laser damage of metals. Appl. Phys. A 1999, 69, S99–S107. [Google Scholar] [CrossRef]
- Li, X.; Guan, Y. Theoretical fundamentals of short pulse laser–metal interaction: A review. Nanotechnol. Precis. Eng. 2020, 3, 105–125. [Google Scholar] [CrossRef]
- Corkum, P.B.; Brunel, F.; Sherman, N.K.; Srinivasan-Rao, T. Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett. 1988, 61, 2886–2889. [Google Scholar] [CrossRef] [PubMed]
- Gusarov, A.V.; Yadroitsev, I.; Bertrand, P.; Smurov, I. Model of Radiation and Heat Transfer in Laser-Powder Interaction Zone at Selective Laser Melting. J. Heat Transf. 2009, 131, 072101. [Google Scholar] [CrossRef]
- Le Harzic, R.; Breitling, D.; Weikert, M.; Sommer, S.; Föhl, C.; Valette, S.; Donnet, C.; Audouard, E.; Dausinger, F. Pulse width and energy influence on laser micromachining of metals in a range of 100 fs to 5 ps. Appl. Surf. Sci. 2005, 249, 322–331. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zhu, X. Theoretical studies of ultrafast ablation of metal targets dominated by phase explosion. Appl. Phys. A 2007, 89, 571–578. [Google Scholar] [CrossRef]
- Rethfeld, B.; Ivanov, D.S.; Garcia, M.E.; Anisimov, S.I. Modelling ultrafast laser ablation. J. Phys. D: Appl. Phys. 2017, 50, 193001. [Google Scholar] [CrossRef]
- Anisimov, S.I.; Relhfeld, B. On the theory of ultrashort laser pulse interaction with a metal. Nauk Fiz 1997, 61, 1642–1655. [Google Scholar]
- Wang, X.L.; Wu, H.; Chang, Y.X.; Zhu, W.H.; Chen, Z.Y.; Lu, P.X. Influence of thermophysical parameters by femtosecond laser ablation of metals: Molecular dynamics simulation. Guangzi Xuebao/Acta Photonica Sin. 2009, 38, 3052–3056. [Google Scholar]
- Iartsev, B.; Vichev, I.; Tsygvintsev, I.; Sidelnikov, Y.; Krivokorytov, M.; Medvedev, V. On experimental and numerical study of the dynamics of a liquid metal jet hit by a laser pulse. Exp. Fluids 2020, 61, 119. [Google Scholar] [CrossRef]
- Zhu, G.; Xu, Z.; Jin, Y.; Chen, X.; Yang, L.; Xu, J.; Shan, D.; Chen, Y.; Guo, B. Mechanism and application of laser cleaning: A review. Opt. Lasers Eng. 2022, 157, 107130. [Google Scholar] [CrossRef]
- Kerse, C.; Kalaycioglu, H.; Elahi, P.; Cetin, B.; Kesim, D.K.; Akcaalan, O.; Yavas, S.; Asik, M.D.; Oktem, B.; Hoogland, H.; et al. Ablation-cooled material removal with ultrafast bursts of pulses. NATURE 2016, 537, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, B.; Schade, L.; Ullsperger, T.; Matthäus, G.; Tünnermann, A.; Nolte, S. Selective Laser Melting of Borosilicate Glass Using Ultrashort Laser Pulses. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/10523/105230C/Selective-laser-melting-of-glass-using-ultrashort-laser-pulses/10.1117/12.2289614.short?SSO=1 (accessed on 13 October 2022).
- Stuart, B.C.; Feit, M.D.; Herman, S.; Rubenchik, A.M.; Shore, B.W.; Perry, M.D. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics. PHYSICAL REVIEW B 1996, 53, 1749–1761. [Google Scholar] [CrossRef] [PubMed]
- Lizunov, S.A.; Bulgakov, A.V.; Campbell, E.E.B.; Bulgakova, N.M. Melting of gold by ultrashort laser pulses: Advanced two-temperature modeling and comparison with surface damage experiments. Appl. Phys. A 2022, 128, 602. [Google Scholar] [CrossRef]
- Xie, J.; Yan, J.; Zhu, D. Atomic simulation of irradiation of Cu film using femtosecond laser with different pulse durations. J. Laser Appl. 2020, 32, 022016. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Wu, D.; Luo, G.; Hu, Y.; Qin, Y. Efficient modeling of metal ablation irradiated by femtosecond laser via simplified two-temperature model coupling molecular dynamics. J. Manuf. Process. 2022, 77, 783–793. [Google Scholar] [CrossRef]
- Colombier, J.P.; Combis, P.; Bonneau, F.; Le Harzic, R.; Audouard, E. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys. Rev. B 2005, 71, 165406. [Google Scholar] [CrossRef] [Green Version]
- Qiu, T.Q.; Tien, C.L. Heat-Transfer Mechanisms during Short-Pulse Laser-Heating of Metals. J. Heat Transf. -Trans. Same 1993, 115, 835–841. [Google Scholar] [CrossRef]
- Zhu, D.; Yan, J.; Xie, J.; Liang, Z.; Bai, H. Ultrafast Laser-Induced Atomic Structure Transformation of Au Nanoparticles with Improved Surface Activity. ACS Nano 2021, 15, 13140–13147. [Google Scholar] [CrossRef]
- Xie, J.; Yan, J.; Zhu, D.; He, G. Atomic-Level Insight into the Formation of Subsurface Dislocation Layer and Its Effect on Mechanical Properties During Ultrafast Laser Micro/Nano Fabrication. Adv. Funct. Mater. 2022, 32, 2108802. [Google Scholar] [CrossRef]
- Meng, Y.; Ji, P.; Jiang, L.; Lin, G.; Guo, J. Spatiotemporal insights into the femtosecond laser homogeneous and heterogeneous melting aluminum by atomistic-continuum modeling. Appl. Phys. A 2022, 128, 520. [Google Scholar] [CrossRef]
- Panwisawas, C.; Qiu, C.; Anderson, M.J.; Sovani, Y.; Turner, R.P.; Attallah, M.M.; Brooks, J.W.; Basoalto, H.C. Mesoscale modelling of selective laser melting: Thermal fluid dynamics and microstructural evolution. Comput. Mater. Sci. 2017, 126, 479–490. [Google Scholar] [CrossRef]
- Khairallah, S.; Anderson, A.; Rubenchik, A.; King, W. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [Google Scholar] [CrossRef]
- Yang, M.; Wang, L.; Yan, W. Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles. Addit. Manuf. 2021, 47, 102286. [Google Scholar] [CrossRef]
- Kruth, J.-P.; Froyen, L.; Vaerenbergh, J.; Mercelis, P.; Rombouts, M.; Lauwers, B. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 2004, 149, 616–622. [Google Scholar] [CrossRef]
- Lassner, E. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. 2000. Available online: https://onlinelibrary.wiley.com/doi/10.1002/14356007.a27_229 (accessed on 13 October 2022).
- Duriagina, Z.; Kulyk, V.; Kovbasiuk, T.; Vasyliv, B.; Kostryzhev, A. Synthesis of Functional Surface Layers on Stainless Steels by Laser Alloying. Metals 2021, 11, 434. [Google Scholar] [CrossRef]
- Zhou, Z.; Pintsuk, G.; Linke, J.; Hirai, T.; Rödig, M.; Ma, Y.; Ge, C. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure. Fusion Eng. Des. 2010, 85, 115–121. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, J.; Liu, W.; Shen, Z. Suppressing pore-boundary separation during spark plasma sintering of tungsten. J. Nucl. Mater. 2013, 438, 199–203. [Google Scholar] [CrossRef]
- Wang, D.; Yu, C.; Zhou, X.; Ma, J.; Liu, W.; Shen, Z. Dense Pure Tungsten Fabricated by Selective Laser Melting. Appl. Sci. 2017, 7, 430. [Google Scholar] [CrossRef]
- Ebert, R.; Ullmann, F.; Hildebrandt, D.; Schille, J.; Hartwig, L.; Klötzer, S.; Streek, A.; Exner, H. Laser Processing of Tungsten Powder with Femtosecond Laser Radiation. JLMN-J. Laser Micro/Nanoeng. 2012, 7, 38–43. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, Q.; Liu, J. Formation of Nanocrystalline Tungsten by Selective Laser Melting of Tungsten Powder. Mater. Manuf. Process. 2012, 27, 1267–1270. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, X.; Zhang, D.; Shen, Z.; Liu, W. Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 2015, 222, 33–42. [Google Scholar] [CrossRef]
- Bai, S.; Liu, J.; Yang, P.; Huang, H.; Yang, L.-M. Femtosecond fiber laser additive manufacturing of tungsten. Laser 3d Manuf. III 2016, 9738, 96–105. [Google Scholar]
- Bai, S.; Yang, L.; Liu, J. Manipulation of microstructure in laser additive manufacturing. Appl. Phys. A 2016, 122, 495. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Huang, S.; Zhu, S.; Wang, F. Manufacturing and Analysis of High-Performance Refractory High-Entropy Alloy via Selective Laser Melting (SLM). Materials 2019, 12, 720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, T.; Honma, T. Laser patterning and growth mechanism of orientation designed crystals in oxide glasses: A review. J. Solid State Chem. 2019, 275, 210–222. [Google Scholar] [CrossRef]
- Minghui, H.; Koji, S.; Yongfeng, L.; Katsumi, M.; Tow Chong, C. Optical Diagnostics in Laser-Induced Plasma-Assisted Ablation of Fused Quartz. Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4088/0000/Optical-diagnostics-in-laser-induced-plasma-assisted-ablation-of-fused/10.1117/12.405763.short?SSO=1 (accessed on 13 October 2022).
- Xia, Y.; Jing, X.; Zhang, D.; Wang, F.; Jaffery, S.; Li, H. A comparative study of direct laser ablation and laser-induced plasma-assisted ablation on glass surface. Infrared Phys. Technol. 2021, 115, 103737. [Google Scholar] [CrossRef]
- Seyfarth, B.; Schade, L.; Matthäus, G.; Ullsperger, T.; Heidler, N.; Hilpert, E.; Nolte, S. Laser powder bed fusion of glass: A comparative study between CO2 lasers and ultrashort laser pulses. Laser 3D Manuf. VII 2020, 11271, 87–92. [Google Scholar]
- Liu, J.; Deng, C.; Bai, S. Glass surface metal deposition with high-power femtosecond fiber laser. Appl. Phys. A 2016, 122, 1064. [Google Scholar] [CrossRef]
- Huang, W.L.; Zhu, Q.; Xie, Z. Gel-cast anode substrates for solid oxide fuel cells. J. Power Sources 2006, 162, 464–468. [Google Scholar] [CrossRef]
- Liu, J.; Bai, S. Femtosecond laser additive manufacturing of YSZ. Appl. Phys. A 2017, 123, 293. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Z.; Wang, C.; Zhang, Q.; Zheng, S.; Xu, W. Mechanisms of femtosecond laser ablation of Ni3Al: Molecular dynamics study. Opt. Laser Technol. 2021, 133, 106505. [Google Scholar] [CrossRef]
- Huang, S.; Liu, P.; Mokasdar, A.; Liang, H. Additive manufacturing and its societal impact: A literature review. Int. J. Adv. Manuf. Technol. 2012, 67, 1191–1203. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Heer, B. Additive manufacturing of multi-material structures. Mater. Sci. Eng. R Rep. 2018, 129, 1–16. [Google Scholar] [CrossRef]
- Cui, J.; Ren, L.; Mai, J.; Zheng, P.; Zhang, L. 3D Printing in the Context of Cloud Manufacturing. Robot. Comput. -Integr. Manuf. 2022, 74, 102256. [Google Scholar] [CrossRef]
- Heemsbergen, L.; Daly, A.; Lu, J.; Birtchnell, T. 3D-printed Futures of Manufacturing, Social Change and Technological Innovation in China and Singapore: The Ghost of a Massless Future? Sci. Technol. Soc. 2019, 24, 254–270. [Google Scholar] [CrossRef]
- Ullsperger, T.; Matthäus, G.; Kaden, L.; Engelhardt, H.; Rettenmayr, M.; Risse, S.; Tünnermann, A.; Nolte, S. Selective laser melting of hypereutectic Al-Si40-powder using ultra-short laser pulses. Appl. Phys. A 2017, 123, 798. [Google Scholar] [CrossRef] [Green Version]
- Gorsse, S.; Hutchinson, C.; Goune, M.; Banerjee, R. Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. 2017, 18, 584–610. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Liu, J. Femtosecond Laser Additive Manufacturing of Multi-Material Layered Structures. Appl. Sci. 2020, 10, 979. [Google Scholar] [CrossRef] [Green Version]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminium alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Grigoriev, S.; Tarasova, T.; Gvozdeva, G. Optimization of Parameters of Laser Surfacing of Alloys of the Al–Si System. Met. Sci. Heat Treat. 2016, 57, 589–595. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, J. Femtosecond laser sintering of copper nanoparticles. Appl. Phys. A 2016, 122, 289. [Google Scholar] [CrossRef]
- Kaden, L.; Matthäus, G.; Ullsperger, T.; Engelhardt, H.; Rettenmayr, M.; Tünnermann, A.; Nolte, S. Selective laser melting of copper using ultrashort laser pulses. Appl. Phys. A 2017, 123, 596. [Google Scholar] [CrossRef]
- Kaden, L.; Seyfarth, B.; Ullsperger, T.; Matthäus, G.; Nolte, S. Selective Laser Melting of Copper Using Ultrashort Laser Pulses at Different Wavelengths. 2018, p. 41. Available online: https://www.semanticscholar.org/paper/Selective-laser-melting-of-copper-using-ultrashort-Kaden-Matth%C3%A4us/073040f72798f8047864da3ee38cd1769c61319f#citing-papers (accessed on 13 October 2022). [CrossRef]
- Nie, B.; Huang, H.; Bai, S.; Liu, J. Femtosecond laser melting and resolidifying of high-temperature powder materials. Appl. Phys. A 2015, 118, 37–41. [Google Scholar] [CrossRef]
- Nie, B.; Yang, L.; Huang, H.; Bai, S.; Wan, P.; Liu, J. Femtosecond laser additive manufacturing of iron and tungsten parts. Appl. Phys. A 2015, 119, 1075–1080. [Google Scholar] [CrossRef]
Hardness (HRC) | Fs | 20 ps | 200 ps | CW | Tungsten Substrate |
---|---|---|---|---|---|
Top | 45.4 | 44.1 | 42.4 | 44.7 | 44.9 |
Cross section | 47.7 | 41.8 | 45.1 | 44.9 | 45.8 |
Material | Power (W) | Pulse Repetition Frequency (MHZ) | Energy (µJ) | Pulse Width (fs) | Scan Speed (mm/s) | Peak Power (MW) | Melting Point (°C) | Thermal Conductivity (W/(m × k)) |
---|---|---|---|---|---|---|---|---|
rhenium [78] | 50 | 1 | 22.5 | 400 | 20 | 56.25 | 3250 | |
Tungsten [79] | 50 | 1 | 50 | 400 | 25 | 125 | 3422 | 174 |
iron [64] | 50 | 80 | 0.625 | 350 | 50 | 1.79 | 1538 | 173 |
Borosilicateglass [33] | 11 | 20 | 0.55 | 900 | 20 | 0.575 | 0.8–1 | |
YSZ [64] | 131 | 80 | 1.638 | 800 | 300 | 2.05 | 1.8 | |
YSZ layer on substrate [72] | 78 | 80 | 0.975 | 800 | 100 | 1.22 | ||
Al-Si alloy [12] | 25 | 20 | 1.25 | 500 | 2.5 | 121–151 | ||
copper [76] | 20 | 20 | 1 | 500 | 666 | 2 | 1084 | 400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Chen, Y.; Kong, L.; Jing, Z.; Liang, X. A Review on Ultrafast-Laser Power Bed Fusion Technology. Crystals 2022, 12, 1480. https://doi.org/10.3390/cryst12101480
Wu Y, Chen Y, Kong L, Jing Z, Liang X. A Review on Ultrafast-Laser Power Bed Fusion Technology. Crystals. 2022; 12(10):1480. https://doi.org/10.3390/cryst12101480
Chicago/Turabian StyleWu, Yuxiang, Yongxiong Chen, Lingchao Kong, Zhiyuan Jing, and Xiubing Liang. 2022. "A Review on Ultrafast-Laser Power Bed Fusion Technology" Crystals 12, no. 10: 1480. https://doi.org/10.3390/cryst12101480
APA StyleWu, Y., Chen, Y., Kong, L., Jing, Z., & Liang, X. (2022). A Review on Ultrafast-Laser Power Bed Fusion Technology. Crystals, 12(10), 1480. https://doi.org/10.3390/cryst12101480