Modified Electrode with ZnO Nanostructures Obtained from Silk Fibroin for Amoxicillin Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of ZnO
2.2. Preparation of Modified Glassy Carbon Electrodes
2.3. ZnO Structures and Modified Electrode Characterization
2.4. Amoxicillin Detection
3. Results
3.1. Modified Electrode Characterization
3.2. Selecting Proper Voltametric Method for AMX Detection
3.3. Improving the Electrode Signal for AMX Detection
3.4. Calibration Curve
4. Discussion
4.1. ZnO Structures and Electrode Modification
4.2. Amoxicillin Electrochemical Detection
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, A.; Santos, A.M.; Cincotto, F.H.; Moraes, F.C.; Fatibello-Filho, O.; Sotomayor, M.D.P.T. A new electrochemical platform based on low-cost nanomaterials for sensitive detection of the amoxicillin antibiotic in different matrices. Talanta 2020, 206, 120252. [Google Scholar] [CrossRef] [PubMed]
- Essousi, H.; Barhoumi, H.; Karastogianni, S.; Girousi, S.T. An Electrochemical Sensor Based on Reduced Graphene Oxide, Gold Nanoparticles and Molecular Imprinted Over-oxidized Polypyrrole for Amoxicillin Determination. Electroanalysis 2020, 32, 1546–1558. [Google Scholar] [CrossRef]
- Norouzi, B.; Mirkazemi, T. Electrochemical sensor for amoxicillin using Cu/poly (o-toluidine) (sodium dodecyl sulfate) modified carbon paste electrode. Russ. J. Electrochem. 2016, 52, 37–45. [Google Scholar] [CrossRef]
- Li, S.; Ma, X.; Pang, C.; Li, H.; Liu, C.; Xu, Z.; Luo, J.; Yang, Y. Novel molecularly imprinted amoxicillin sensor based on a dual recognition and dual detection strategy. Anal. Chim. Acta 2020, 1127, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.H.Y.; Mai, T.T.; Nguyen, H.A.; Chu, T.T.H.; Vu, T.T.H.; Le, Q.H. Voltammetric Determination of Amoxicillin Using a Reduced Graphite Oxide Nanosheet Electrode. J. Anal. Methods Chem. 2021, 2021, 8823452. [Google Scholar] [CrossRef]
- Hrioua, A.; Loudiki, A.; Farahi, A.; Bakasse, M.; Lahrich, S.; Saqrane, S.; El Mhammedi, M.A. Recent advances in electrochemical sensors for amoxicillin detection in biological and environmental samples. Bioelectrochemistry 2021, 137, 107687. [Google Scholar] [CrossRef]
- Song, J.; Huang, M.; Jiang, N.; Zheng, S.; Mu, T.; Meng, L.; Liu, Y.; Liu, J.; Chen, G. Ultrasensitive detection of amoxicillin by TiO2-g-C3N4@AuNPs impedimetric aptasensor: Fabrication, optimization, and mechanism. J. Hazard. Mater. 2020, 391, 122024. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef]
- Lefatshe, K.; Muiva, C.M.; Kebaabetswe, L.P. Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity. Carbohydr. Polym. 2017, 164, 301–308. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Hoseinpour, V.; Souri, M.; Ghaemi, N.; Shakeri, A. Optimization of green synthesis of ZnO nanoparticles by Dittrichia graveolens (L.) aqueous extract. Health Biotechnol. Biopharma 2017, 1, 39–49. [Google Scholar] [CrossRef]
- Jin, S.E.; Jin, H.E. Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications. Pharmaceutics 2019, 11, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutul, T.; Rusu, E.; Condur, N.; Ursaki, V.; Goncearenco, E.; Vlazan, P. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles. Beilstein J. Nanotechnol. 2014, 5, 402–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, Y.; Zuo, J.; Hou, Z.; Huang, Y.; Huang, C. Preparation of Electrochemical Sensor Based on Zinc Oxide Nanoparticles for Simultaneous Determination of AA, DA, and UA. Front. Chem. 2020, 8, 592538. [Google Scholar] [CrossRef] [PubMed]
- Weldegebrieal, G.K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review. Inorg. Chem. Commun. 2020, 120, 108140. [Google Scholar] [CrossRef]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour. Effic. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Chen, L.; Xu, X.; Cui, F.; Qiu, Q.; Chen, X.; Xu, J. Au nanoparticles-ZnO composite nanotubes using natural silk fibroin fiber as template for electrochemical non-enzymatic sensing of hydrogen peroxide. Anal. Biochem. 2018, 554, 1–8. [Google Scholar] [CrossRef]
- Bucciarelli, A.; Motta, A. Use of Bombyx mori silk fibroin in tissue engineering: From cocoons to medical devices, challenges, and future perspectives. Biomater. Adv. 2022, 139, 212982. [Google Scholar] [CrossRef]
- Yao, X.; Zou, S.; Fan, S.; Niu, Q.; Zhang, Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater. Today Bio 2022, 16, 100381. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, J.S.; Lee, O.J.; Sheikh, F.A.; Moon, B.M.; Ju, H.W.; Kim, J.-H.; Kim, D.-K.; Park, C.H. Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Macromol. Res. 2014, 22, 592–599. [Google Scholar] [CrossRef]
- Sigwadi, R.; Dhlamini, M.S.; Mokrani, T.; Ṋemavhola, F.; Nonjola, P.F.; Msomi, P.F. The proton conductivity and mechanical properties of Nafion®/ZrP nanocomposite membrane. Heliyon 2019, 5, e02240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhati, V.S.; Hojamberdiev, M.; Kumar, M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Rep. 2020, 6, 46–62. [Google Scholar] [CrossRef]
- Sha, R.; Basak, A.; Maity, P.C.; Badhulika, S. ZnO nano-structured based devices for chemical and optical sensing applications. Sens. Actuators Rep. 2022, 4, 100098. [Google Scholar] [CrossRef]
- Chen, Z.; Patel, R.; Berry, J.; Keyes, C.; Satterfield, C.; Simmons, C.; Neeson, A.; Cao, X.; Wu, Q. Development of Screen-Printable Nafion Dispersion for Electrochemical Sensor. Appl. Sci. 2022, 12, 6533. [Google Scholar] [CrossRef]
- Marie, M.; Mandal, S.; Manasreh, O. An enzymatic glucose detection sensor using ZnO nanostructure. MRS Adv. 2016, 1, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Mandal, S.; Marie, M.; Manasreh, O. Fabrication of an Electrochemical Sensor for Glucose Detection using ZnO Nanorods. MRS Adv. 2016, 1, 861–867. [Google Scholar] [CrossRef]
- Ojani, R.; Raoof, J.-B.; Zamani, S. A novel voltammetric sensor for amoxicillin based on nickel–curcumin complex modified carbon paste electrode. Bioelectrochemistry 2012, 85, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Yen, P.T.H.; Anh, N.H.; Ha, V.T.T.; Hung, L.Q.; Phong, P.H.; Hien, C.T.T. Electrochemical properties of amoxicillin on an economical, simple graphite pencil electrode and the ability of the electrode in amoxicillin detection. Vietnam. J. Chem. 2020, 58, 201–205. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Prentice Hall/Pearson: Hoboken, NJ, USA, 2010. [Google Scholar]
- Pollap, A.; Knihnicki, P.; Kuśtrowski, P.; Kozak, J.; Gołda-Cępa, M.; Kotarba, A.; Kochana, J. Sensitive voltammetric amoxicillin sensor based on tio2 sol modified by cmk-3-type mesoporous carbon and gold ganoparticles. Electroanalysis 2018, 30, 2386–2396. [Google Scholar] [CrossRef]
- Hatamie, A.; Echresh, A.; Zargar, B.; Nur, O.; Willander, M. Fabrication and characterization of highly-ordered Zinc Oxide nanorods on gold/glass electrode, and its application as a voltammetric sensor. Electrochim. Acta 2015, 174, 1261–1267. [Google Scholar] [CrossRef]
- Rezaei, B.; Damiri, S. Electrochemistry and adsorptive stripping voltammetric determination of amoxicillin on a multiwalled carbon nanotubes modified glassy carbon electrode. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2009, 21, 1577–1586. [Google Scholar] [CrossRef]
- Biryol, I.; Uslu, B.; Küçükyavuz, Z. Voltammetric determination of amoxicillin using a carbon paste electrode modified with poly (4-vinyl pyridine). STP Pharma Sci. 1998, 8, 383–386. [Google Scholar]
- Bergamini, M.F.; Teixeira, M.F.; Dockal, E.R.; Bocchi, N.; Cavalheiro, É.T. Evaluation of different voltammetric techniques in the determination of amoxicillin using a carbon paste electrode modified with [N, N′-ethylenebis (salicylideneaminato)] oxovanadium (IV). J. Electrochem. Soc. 2006, 153, E94. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Allafchian, A.R.; Rezaei, B. Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination. J. Nanoparticle Res. 2012, 14, 1244. [Google Scholar] [CrossRef]
- Absalan, G.; Akhond, M.; Ershadifar, H. Highly sensitive determination and selective immobilization of amoxicillin using carbon ionic liquid electrode. J. Solid State Electrochem. 2015, 19, 2491–2499. [Google Scholar] [CrossRef]
No. | 2-Theta [θ] | d [Å] | FWHM [θ] | Crystallite Size [nm] | Phase Name |
---|---|---|---|---|---|
1 | 31.4815 | 2.83945 | 0.1528 | 54 | ZnO (100) |
2 | 34.5518 | 2.59384 | 0.2720 | 30 | ZnO (002) |
3 | 36.3804 | 2.46755 | 0.2991 | 27 | ZnO (101) |
WE 1 | Transduction Method | Linear Range (μM) | LOD (μM) | Reference |
---|---|---|---|---|
Treated GPE 2 | SWV | 1–80 | 0.2 µM | [28] |
TiO2/CMK/AuNPs/ Nafion/GCE 3 | CV | 0.5–2.5 2.5–133.0 | 0.3 | [30] |
ZnO NRs/gold/glass electrode 4 | CV | 5.0–2.5 | 1.9 | [31] |
MWCNT/GCE 5 | CV | 0.6–8 | 0.2 | [32] |
Poly-4-vinylpyridine/CPE 6 | CV | - | 8 | [33] |
[VO(Salen)]/CPE 7 | DPV | 18.3–35.5 | 16.6 | [34] |
FeCr2O4/MWCNTs /GCE 8 | DPV | 0.1–10.0 10.0–70.0 | 0.05 | [35] |
CILE 9 | CV | 5.0–400 | 0.8 | [36] |
ZnO/Nafion/GC | DPV | 5–110 | 0.02 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitriu, C.; Constantinescu, A.; Dumitru, A.; Pȋrvu, C. Modified Electrode with ZnO Nanostructures Obtained from Silk Fibroin for Amoxicillin Detection. Crystals 2022, 12, 1511. https://doi.org/10.3390/cryst12111511
Dumitriu C, Constantinescu A, Dumitru A, Pȋrvu C. Modified Electrode with ZnO Nanostructures Obtained from Silk Fibroin for Amoxicillin Detection. Crystals. 2022; 12(11):1511. https://doi.org/10.3390/cryst12111511
Chicago/Turabian StyleDumitriu, Cristina, Alexandra Constantinescu, Alina Dumitru, and Cristian Pȋrvu. 2022. "Modified Electrode with ZnO Nanostructures Obtained from Silk Fibroin for Amoxicillin Detection" Crystals 12, no. 11: 1511. https://doi.org/10.3390/cryst12111511
APA StyleDumitriu, C., Constantinescu, A., Dumitru, A., & Pȋrvu, C. (2022). Modified Electrode with ZnO Nanostructures Obtained from Silk Fibroin for Amoxicillin Detection. Crystals, 12(11), 1511. https://doi.org/10.3390/cryst12111511