Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis Procedure
2.3. Characterization
3. Results and Discussion
3.1. Formation of the PZT with the Target Zr/Ti = 60/40 (PZT06) through One-Step Precipitation Approach
3.2. Hydrothermal Formation of PZT Using Two-Step Precipitation Approach
3.2.1. Controlling of the PZT Particle Morphology Using Two-Step Precipitation Approach and Initial Zr/Ti = 60/40 (PZT06)
3.2.2. Controlling of the PZT Particle Morphology Using Two-Step Precipitation Approach and Initial Zr/Ti = 70/30 (PZT07) and Zr/Ti = 80/20 (PZT08)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Noheda, B.; Cox, D.E.; Shirane, G.; Guo, R.; Jones, B.; Cross, L.E. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3. Phys. Rev. B 2000, 63, 014103. [Google Scholar] [CrossRef] [Green Version]
- Dong, N.; Zhu, K.; Qiu, J.; Liu, J. Sol-solvothermal synthesis and characterization of fine lead zirconate titanate particles. J. Mater. Sci. Mater. Electron. 2013, 24, 2264–2270. [Google Scholar] [CrossRef]
- Meng, Q.; Zhu, K.; Pang, X.; Qiu, J.; Shao, B.; Ji, H. Sol-hydrothermal synthesis and characterization of lead zirconate titanate fine particles. Adv. Powder Technol. 2013, 24, 212–217. [Google Scholar] [CrossRef]
- Huang, H.L.; Cao, G.Z.; Shen, I.Y. Hydrothermal synthesis of lead zirconate titanate (PZT or Pb(Zr 0.52Ti0.48)O3) nano-particles using controlled ramping and cooling rates. Sens. Actuators A Phys. 2014, 214, 111–119. [Google Scholar] [CrossRef]
- Malic, B.; Arcon, I.; Kodre, A.; Kosec, M. Homogeneity of Pb(Zr,Ti)O3 thin films by chemical solution deposition: Extended x-ray absorption fine structure spectroscopy study of zirconium local environment. J. Appl. Phys. 2006, 100, 051612. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Vilarinho, P.M.; Miranda Salvado, I.M.; Baptista, J.L. Sol-gel preparation of lead zirconate titanate powders and ceramics: Effect of alkoxide stabilizers and lead precursors. J. Am. Ceram. Soc. 2000, 83, 1379–1385. [Google Scholar] [CrossRef]
- Lazar, I.; Majchrowski, A.; Soszyński, A.; Roleder, K. Phase Transitions and Local Polarity above TC in a PbZr0.87Ti0.13O3 Single Crystal. Crystals 2020, 10, 286. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Jiang, W.; Qian, M.; Chen, X.; Li, Z.; Han, G. Hydrothermal synthesis of lead zirconate titanate nearly free-standing nanoparticles in the size regime of about 4 nm. Cryst. Growth Des. 2009, 9, 13–16. [Google Scholar] [CrossRef]
- Chen, J.X.; Li, J.W.; Cheng, C.C.; Chiu, C.W. Piezoelectric Property Enhancement of PZT/Poly(vinylidenefluoride-co-trifluoroethylene) Hybrid Films for Flexible Piezoelectric Energy Harvesters. ACS Omega 2022, 7, 793–803. [Google Scholar] [CrossRef]
- Luk’yanchuk, I.; Tikhonov, Y.; Razumnaya, A.; Vinokur, V.M. Hopfions emerge in ferroelectrics. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B. PZT to lead free piezo ceramics: A review. Ferroelectrics 2015, 474, 128–143. [Google Scholar] [CrossRef]
- Koruza, J.; Bell, A.J.; Frömling, T.; Webber, K.G.; Wang, K.; Rödel, J. Requirements for the transfer of lead-free piezoceramics into application. J. Mater. 2018, 4, 13–26. [Google Scholar] [CrossRef]
- Maček Kržmanc, M.; Klement, D.; Jančar, B.; Suvorov, D. Hydrothermal conditions for the formation of tetragonal BaTiO3 particles from potassium titanate and barium salt. Ceram. Int. 2015, 41, 15128–15137. [Google Scholar] [CrossRef]
- Čontala, A.; Kržmanc, M.M.; Suvorov, D. Plate-like Bi4Ti3O12 particles and their topochemical conversion to SrTiO3 under hydrothermal conditions. Acta Chim. Slov. 2018, 65, 630–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maček Kržmanc, M.; Daneu, N.; Čontala, A.; Santra, S.; Kamal, K.M.; Likozar, B.; Spreitzer, M. SrTiO3/Bi4Ti3O12 Nanoheterostructural Platelets Synthesized by Topotactic Epitaxy as Effective Noble-Metal-Free Photocatalysts for pH-Neutral Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 370–381. [Google Scholar] [CrossRef]
- Maček Kržmanc, M.; Bračko, I.; Budič, B.; Suvorov, D. The morphology control of BaTiO3 particles synthesized in water and a water/ethanol solvent. J. Am. Ceram. Soc. 2013, 96, 3401–3409. [Google Scholar] [CrossRef]
- Kalyani, V.; Vasile, B.S.; Ianculescu, A.; Testino, A.; Carino, A.; Buscaglia, M.T.; Buscaglia, V.; Nanni, P. Hydrothermal Synthesis of SrTiO3: Role of Interfaces. Cryst. Growth Des. 2015, 15, 5712–5725. [Google Scholar] [CrossRef]
- Canu, G.; Buscaglia, V. Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms. CrystEngComm 2017, 19, 3867–3891. [Google Scholar] [CrossRef]
- Cheng, H.; Ma, J.; Zhu, B.; Cui, Y. Reaction Mechanisms in the Formation of Lead Zirconate Titanate Solid Solutions under Hydrothermal Conditions. J. Am. Ceram. Soc. 1993, 76, 625–629. [Google Scholar] [CrossRef]
- Traianidis, M.; Courtois, C.; Leriche, A.; Thierry, B. Hydrothermal synthesis of lead zirconium titanate (PZT) powders and their characteristics. J. Eur. Ceram. Soc. 1999, 19, 1023–1026. [Google Scholar] [CrossRef]
- Piticescu, R.M.; Moisin, A.M.; Taloi, D.; Badilita, V.; Soare, I. Hydrothermal synthesis of ultradisperse PZT powders for polar ceramics. J. Eur. Ceram. Soc. 2004, 24, 931–935. [Google Scholar] [CrossRef]
- Łencka, M.M.; Riman, R.E. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders. Chem. Mater. 1993, 5, 61–70. [Google Scholar] [CrossRef]
- Livage, J.; Henry, M.; Sanchez, C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem. 1988, 18, 259–341. [Google Scholar] [CrossRef]
- Wiberg, V.E.; Wiberg, N.; Holleman, A.F. Inorganic Chemistry; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Jaffe, B.; Cook, W.R.; Jaffe, H. Piezoelectric Ceramics, 1st ed.; Academic Press: Cambridge, MA, USA, 1971; ISBN 978-0-12-379550-2. [Google Scholar]
- Courtois, C.; Crampon, J.; Champagne, P.; Cochrane, C.; Texier, N.; Leriche, A. STEM-X-EDS analysis of morphotropic PZT ceramics. Analysis of Zr/Ti + Zr values fluctuation depending on microstructure and synthesis route of powders. Ceram. Int. 2006, 32, 767–773. [Google Scholar] [CrossRef]
- Noheda, B.; Gonzalo, J.A.; Cross, L.E.; Guo, R.; Park, S.-E.; Cox, D.E.; Shirane, G. Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: The structure of PbZr0.52Ti0.48O3. Phys. Rev. B 2000, 61, 8687–8695. [Google Scholar] [CrossRef] [Green Version]
- Chao, C.; Ren, Z.; Zhu, Y.; Xiao, Z.; Liu, Z.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. Self-templated synthesis of single-crystal and single-domain ferroelectric nanoplates. Angew. Chem. Int. Ed. 2012, 51, 9283–9287. [Google Scholar] [CrossRef] [PubMed]
- Niederberger, M.; Cölfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8, 3271–3287. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Kato, K.; Imai, H.; Wada, S.; Haneda, H.; Kuwabara, M. Oriented aggregation of BaTiO3 nanocrystals and large particles in the ultrasonic-assistant synthesis. CrystEngComm 2010, 12, 3441–3444. [Google Scholar] [CrossRef]
Target Composition (Synthesis Approach) | Concentrations (mol/L) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Concentrations of Initial Solutions (mol/L) | Concentrations in the PTFE Insert before Hydrothermal Reaction (mol/L) | ||||||||||||||
PZT06 (one-step) | TALH * | 0.112 | 0.0112 | ||||||||||||
ZrOCl2·8H2O | 0.168 | 0.0168 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 40:1 | 30:1 | 20:1 | 6:1 | 5:1 | 4:1 | 3:1 | 40:1 | 30:1 | 20:1 | 6:1 | 5:1 | 4:1 | 3:1 | |
KOH (mol/L) | 3.5 | 2.6 | 1.75 | 0.53 | 0.44 | 0.35 | 0.26 | 1.400 | 1.050 | 0.700 | 0.210 | 0.175 | 0.140 | 0.110 | |
PZT06 (two-step) | TALH * | 0.112 | Precipitation Zr-Ti: (KOH:(Zr + Ti) = 7.8:1): pH = 7 | 0.0112 | |||||||||||
ZrOCl2·8H2O | 0.14 | 0.0168 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 3:1 | 2:1 | 1.7:1 | 1.5:1 | 3:1 | 2:1 | 1.7:1 | 1.5:1 | |||||||
KOH (mol/L) | 0.750 | 0.500 | 0.429 | 0.735 | 0.1050 | 0.070 | 0.0600 | 0.053 | |||||||
PZT07 (two-step) | TALH * | 0.084 | Precipitation Zr-Ti: (KOH:(Zr + Ti) = 7.8:1): pH = 7 | 0.0084 | |||||||||||
ZrOCl2·8H2O | 0.163 | 0.0196 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 3:1 | 2:1 | 1.7:1 | 1.5:1 | 3:1 | 2:1 | 1.7:1 | 1.5:1 | |||||||
KOH (mol/L) | 0.750 | 0.500 | 0.429 | 0.735 | 0.105 | 0.070 | 0.060 | 0.053 | |||||||
PZT08 (two-step) | TALH * | 0.056 | Precipitation Zr-Ti: (KOH:(Zr + Ti) = 7.8:1): pH = 7 | 0.0056 | |||||||||||
ZrOCl2·8H2O | 0.187 | 0.0224 | |||||||||||||
Pb(OOCCH3)2·3H2O | 0.175 | 0.035 | |||||||||||||
KOH (OH:Pb) | 3:1 | 2:1 | 1.7:1 | 1.5:1 | 3:1 | 2:1 | 1.7:1 | 1.5:1 | |||||||
KOH (mol/L) | 0.750 | 0.500 | 0.429 | 0.735 | 0.105 | 0.070 | 0.060 | 0.053 |
Proposed PZT Composition (Synthesis Approach) | KOH:Pb | Typical Morphology (Average Composition as Obtained from EDS-Normalized to ABO3 Perovskite Structure) | Average Length of Perovskite Cube Edge (Standard Deviation) |
---|---|---|---|
PZT06 (one-step) | 30:1 | Perovskite-cube-like (Pb0.83K0.06Zr0.39Ti0.68O3) | Cube-like perovskite/1–2 μm |
Zr-rich nanoparticles (Pb0.14K0.42Zr1.12Ti0.2O3) | |||
20:1 | Perovskite cubes (PbZr0.56Ti0.45O3) | Cubes/4 μm (1 μm) | |
6:1 | Perovskite cubes (PbZr0.55Ti0.44O3) | Cubes/649 nm (80 nm) | |
5:1 | Perovskite cubes (PbZr0.5Ti0.5O3) | Cubes/567 nm (72 nm) | |
4:1 | Perovskite cubes (PbZr0.56Ti0.42O3) | Cubes/410 nm (48 nm) | |
3:1 | Perovskite dendrites (PbZr0.31Ti0.69O3) | μm-size | |
Additional phase (Pb0.69Zr0.67Ti0.48O3) | perovskite dendrite | ||
PZT06 (two-step) | 3:1 | Perovskite cubes (PbZr0.55Ti0.43O3) | Cubes/446 nm (54 nm) |
2:1 | Perovskite cubes (PbZr0.52Ti0.48O3) | Cubes/260 nm (31 nm) | |
1.7:1 | Perovskite cubes (PbZr0.46Ti0.54O3) | Cubes/172 nm (36 nm) | |
1.5:1 | Perovskite aggregated and cube-like particles (Pb0.94Zr0.46Ti0.55O3) | Cube-like/182 nm (48 nm) | |
PZT07 (two-step) | 3:01 | Perovskite cubes (PbZr0.58Ti0.41O3 | Cubes/613 nm (132 nm) |
2:01 | Perovskite cubes (PbZr0.53Ti0.47O3) | Cubes/301 nm (61 nm) | |
1.7:1 | Perovskite cubes (PbZr0.51Ti0.49O3) | Cube-like/241 nm (46 nm) | |
1.5:1 | Perovskite (aggregated) cubes (PbZr0.47Ti0.53O3) | Cube-like/185 nm (33 nm) | |
PZT08 (two-step) | 3:01 | Perovskite cubes (PbZr0.59Ti0.4O3 | Cubes/849 nm (117 nm) |
2:01 | Perovskite cubes (PbZr0.5Ti0.5O3) | Cube-like/355 nm (67 nm) | |
1.7:1 | Perovskite cubes (PbZr0.52Ti0.46O3) | Cube-like/350 nm (75 nm) | |
1.5:1 | Perovskite dendrites (Pb0.94Zr0.31Ti0.72O3) | Dendrites (several μm) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kržmanc, M.M.; Kutnjak, Z.; Spreitzer, M. Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions. Crystals 2022, 12, 1514. https://doi.org/10.3390/cryst12111514
Kržmanc MM, Kutnjak Z, Spreitzer M. Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions. Crystals. 2022; 12(11):1514. https://doi.org/10.3390/cryst12111514
Chicago/Turabian StyleKržmanc, Marjeta Maček, Zdravko Kutnjak, and Matjaž Spreitzer. 2022. "Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions" Crystals 12, no. 11: 1514. https://doi.org/10.3390/cryst12111514
APA StyleKržmanc, M. M., Kutnjak, Z., & Spreitzer, M. (2022). Morphology Control of PbZrxTi1-xO3 Crystallites under Alkaline Hydrothermal Conditions. Crystals, 12(11), 1514. https://doi.org/10.3390/cryst12111514