Synthesis, Molecular Docking, and Neuroprotective Effect of 2-Methylcinnamic Acid Amide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—An Induced Parkinson’s Disease Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Methods
2.2. Synthesis of (E)- N-(2-Methylcinnamoyl)-Amantadine (3)
2.3. Single Crystal X-ray Diffraction (SCXRD) of (E)-N-(2-methylcinnamoyl)-amantadine (3)
2.4. Neurobehavioral Studies
2.4.1. Rotarod Test
2.4.2. Passive Avoidance Test
2.4.3. Statistical Analysis
3. Results and Discussion
3.1. Chemistry
3.2. In Vivo Evaluation of Amide 3 in an Experimental Mouse Model of PD
3.2.1. Effect of CA(2-Me)-Am (3) on the Weight of Experimental Animals
3.2.2. Rotarod Test
3.2.3. Passive Avoidance Test
3.3. Molecular Docking
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, W.; Goodkind, D.; Kowal, P.R. An Aging World: 2015; International Population Reports; United States Census Bureau: Suitland-Silver Hill, MD, USA, 2016. [Google Scholar]
- Parkinson Disease: A Public Health Approach: Technical Brief; World Health Organization: Geneva, Switzerland, 2022.
- Mhyre, T.R.; Boyd, J.T.; Hamill, R.W.; Maguire-Zeiss, K.A. Parkinson’s Disease. Subcell. Biochem. 2012, 65, 389–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyss-Coray, T. Ageing, Neurodegeneration and Brain Rejuvenation. Nature 2016, 539, 180–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Obando, D.; Liao, V.; Lifa, T.; Codd, R. The Many Faces of the Adamantyl Group in Drug Design. Eur. J. Med. Chem. 2011, 46, 1949–1963. [Google Scholar] [CrossRef] [PubMed]
- Wanka, L.; Iqbal, K.; Schreiner, P.R. The Lipophilic Bullet Hits the Targets: Medicinal Chemistry of Adamantane Derivatives. Chem. Rev. 2013, 113, 3516–3604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidtke, M.; Zell, R.; Bauer, K.; Krumbholz, A.; Schrader, C.; Suess, J.; Wutzler, P. Amantadine Resistance among Porcine H1N1, H1N2, and H3N2 Influenza A Viruses Isolated in Germany between 1981 and 2001. Intervirology 2006, 49, 286–293. [Google Scholar] [CrossRef]
- Nelson, M.I.; Simonsen, L.; Viboud, C.; Miller, M.A.; Holmes, E.C. The Origin and Global Emergence of Adamantane Resistant A/H3N2 Influenza Viruses. Virology 2009, 388, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Weinstock, D.M.; Zuccotti, G. The Evolution of Influenza Resistance and Treatment. JAMA 2009, 301, 1066–1069. [Google Scholar] [CrossRef]
- Schwab, R.S.; England, A.C.; Poskanzer, D.C.; Young, R.R. Amantadine in the Treatment of Parkinson’s Disease. JAMA 1969, 208, 1168–1170. [Google Scholar] [CrossRef]
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the Treatment of Parkinson’s Disease and Other Movement Disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef]
- Adisakwattana, S. Cinnamic Acid and Its Derivatives: Mechanisms for Prevention and Management of Diabetes and Its Complications. Nutrients 2017, 9, E163. [Google Scholar] [CrossRef]
- Liu, L.; Hudgins, W.R.; Shack, S.; Yin, M.Q.; Samid, D. Cinnamic Acid: A Natural Product with Potential Use in Cancer Intervention. Int. J. Cancer 1995, 62, 345–350. [Google Scholar] [CrossRef]
- Prorok, T.; Jana, M.; Patel, D.; Pahan, K. Cinnamic Acid Protects the Nigrostriatum in a Mouse Model of Parkinson’s Disease via Peroxisome Proliferator-Activated Receptorα. Neurochem. Res. 2019, 44, 751–762. [Google Scholar] [CrossRef]
- Hemmati, A.A.; Alboghobeish, S.; Ahangarpour, A. Effects of Cinnamic Acid on Memory Deficits and Brain Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2018, 22, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. New Coupling Reagents in Peptide Chemistry. Tetrahedron Lett. 1989, 30, 1927–1930. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlis pro. Rigaku Oxford Diffraction, CrysAlis pro CrysAlis Pro. 2015. Available online: https://www.rigaku.com/products/crystallography/crysalis (accessed on 20 October 2022).
- Sheldrick, G.M. SHELXT-Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.S.; Zhao, T.T.; Choi, H.S.; Hwang, B.Y.; Lee, C.K.; Lee, M.K. Effects of Gypenosides on Anxiety Disorders in MPTP-Lesioned Mouse Model of Parkinson׳s Disease. Brain Res. 2014, 1567, 57–65. [Google Scholar] [CrossRef]
- Manna, S.; Bhattacharyya, D.; Mandal, T.K.; Dey, S. Neuropharmacological Effects of Deltamethrin in Rats. J. Vet. Sci. 2006, 7, 133–136. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, S.; Komaki, A.; Mahmoodi, M.; Atrvash, N.; Ghodrati, M. Ascorbic Acid Supplementation Could Affect Passive Avoidance Learning and Memory in Rat. Brain Res. Bull. 2008, 76, 109–113. [Google Scholar] [CrossRef]
- Land, M.A.; Robertson, K.N.; Ylijoki, K.E.O.; Clyburne, J.A.C. Reactivity of 1,3-Dichloro-1,3-Bis(Dimethylamino)-Propenium Salts with Primary Amines. New J. Chem. 2021, 45, 13558–13570. [Google Scholar] [CrossRef]
- Pereira, A.K.d.S.; Manzano, C.M.; Nakahata, D.H.; Clavijo, J.C.T.; Pereira, D.H.; Lustri, W.R.; Corbi, P.P. Synthesis, Crystal Structures, DFT Studies, Antibacterial Assays and Interaction Assessments with Biomolecules of New Platinum(Ⅱ) Complexes with Adamantane Derivatives. New J. Chem. 2020, 44, 11546–11556. [Google Scholar] [CrossRef]
- Perlovich, G.L.; Ryzhakov, A.M.; Tkachev, V.V.; Hansen, L.K.; Raevsky, O.A. Sulfonamide Molecular Crystals: Structure, Sublimation Thermodynamic Characteristics, Molecular Packing, Hydrogen Bonds Networks. Cryst. Growth Des. 2013, 13, 4002–4016. [Google Scholar] [CrossRef]
- Sarcevica, I.; Orola, L.; Veidis, M.V.; Podjava, A.; Belyakov, S. Crystal and Molecular Structure and Stability of Isoniazid Cocrystals with Selected Carboxylic Acids. Cryst. Growth Des. 2013, 13, 1082–1090. [Google Scholar] [CrossRef]
- Swapna, B.; Maddileti, D.; Nangia, A. Cocrystals of the Tuberculosis Drug Isoniazid: Polymorphism, Isostructurality, and Stability. Cryst. Growth Des. 2014, 14, 5991–6005. [Google Scholar] [CrossRef]
- Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-Set Analysis of Hydrogen-Bond Patterns in Organic Crystals. Acta Crystallogr. B 1990, 46, 256–262. [Google Scholar] [CrossRef]
- Etter, M.C. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126. [Google Scholar] [CrossRef]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Jaakola, V.-P.; Griffith, M.T.; Hanson, M.A.; Cherezov, V.; Chien, E.Y.T.; Lane, J.R.; Ijzerman, A.P.; Stevens, R.C. The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist. Science 2008, 322, 1211–1217. [Google Scholar] [CrossRef] [Green Version]
- Bonifácio, M.J.; Archer, M.; Rodrigues, M.L.; Matias, P.M.; Learmonth, D.A.; Carrondo, M.A.; Soares-Da-Silva, P. Kinetics and Crystal Structure of Catechol-o-Methyltransferase Complex with Co-Substrate and a Novel Inhibitor with Potential Therapeutic Application. Mol. Pharmacol. 2002, 62, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Binda, C.; Hubálek, F.; Li, M.; Herzig, Y.; Sterling, J.; Edmondson, D.E.; Mattevi, A. Binding of Rasagiline-Related Inhibitors to Human Monoamine Oxidases: A Kinetic and Crystallographic Analysis. J. Med. Chem. 2005, 48, 8148–8154. [Google Scholar] [CrossRef]
- Chou, T.-H.; Epstein, M.; Michalski, K.; Fine, E.; Biggin, P.C.; Furukawa, H. Structural Insights into Binding of Therapeutic Channel Blockers in NMDA Receptors. Nat. Struct. Mol. Biol. 2022, 29, 507–518. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. Des. Sel. 1995, 8, 127–134. [Google Scholar] [CrossRef]
Empirical formula | C20H25NO |
Formula weight | 295.41 |
Temperature/K | 290.00 |
Crystal system | monoclinic |
Space group | P21/c |
a/Å | 14.692(2) |
b/Å | 11.900(2) |
c/Å | 9.9904(18) |
α/° | 90 |
β/° | 104.943(5) |
γ/° | 90 |
Volume/Å3 | 1687.6(5) |
Z | 4 |
ρcalcg/cm3 | 1.163 |
μ/mm-1 | 0.071 |
F(000) | 640.0 |
Crystal size/mm3 | 0.3 × 0.25 × 0.2 |
Radiation | MoKα (λ = 0.71073) |
2Θ range for data collection/° | 4.466 to 52.842 |
Index ranges | -18 ≤ h ≤ 17, -14 ≤ k ≤ 12, -12 ≤ l ≤ 12 |
Reflections collected | 10,910 |
Independent reflections | 3443 (Rint = 0.0595, Rsigma = 0.0654) |
Data/restraints/parameters | 3443/0/205 |
Goodness-of-fit on F2 | 1.018 |
Final R indexes (I > =2σ (I)) | R1 = 0.0605, wR2 = 0.1171 |
Final R indexes (all data) | R1 = 0.1142, wR2 = 0.1405 |
Largest diff. peak/hole/e Å−3 | 0.17/−0.13 |
Molegro Virtual Docker Score | Detected Hydrogen Bonding Interaction | |
---|---|---|
(E)–N-(2-methylcinnamoyl)-amantadine | ||
NMAD (7SAD) [34] | -80.240 | No |
COMT (1H1D) [32] | -111.957 | No |
A2aAR (3EML) [31] | -83.578 | C=O…O-H Tyr271 D…A 3.38 Å |
MAO-B (2C65) [33] | -119.889 | C=O…N-H Gly58 D…A 3.09 Å |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chochkova, M.; Rusew, R.; Kalfin, R.; Tancheva, L.; Lazarova, M.; Sbirkova-Dimitrova, H.; Popatanasov, A.; Tasheva, K.; Shivachev, B.; Petek, N.; et al. Synthesis, Molecular Docking, and Neuroprotective Effect of 2-Methylcinnamic Acid Amide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—An Induced Parkinson’s Disease Model. Crystals 2022, 12, 1518. https://doi.org/10.3390/cryst12111518
Chochkova M, Rusew R, Kalfin R, Tancheva L, Lazarova M, Sbirkova-Dimitrova H, Popatanasov A, Tasheva K, Shivachev B, Petek N, et al. Synthesis, Molecular Docking, and Neuroprotective Effect of 2-Methylcinnamic Acid Amide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—An Induced Parkinson’s Disease Model. Crystals. 2022; 12(11):1518. https://doi.org/10.3390/cryst12111518
Chicago/Turabian StyleChochkova, Maya, Rusi Rusew, Reni Kalfin, Lyubka Tancheva, Maria Lazarova, Hristina Sbirkova-Dimitrova, Andrey Popatanasov, Krasimira Tasheva, Boris Shivachev, Nejc Petek, and et al. 2022. "Synthesis, Molecular Docking, and Neuroprotective Effect of 2-Methylcinnamic Acid Amide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—An Induced Parkinson’s Disease Model" Crystals 12, no. 11: 1518. https://doi.org/10.3390/cryst12111518
APA StyleChochkova, M., Rusew, R., Kalfin, R., Tancheva, L., Lazarova, M., Sbirkova-Dimitrova, H., Popatanasov, A., Tasheva, K., Shivachev, B., Petek, N., & Štícha, M. (2022). Synthesis, Molecular Docking, and Neuroprotective Effect of 2-Methylcinnamic Acid Amide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)—An Induced Parkinson’s Disease Model. Crystals, 12(11), 1518. https://doi.org/10.3390/cryst12111518