Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, H.; Li, F.; Liu, Y.; Zhang, Q.; Wang, M.; Lan, S.; Zheng, Y.; Ma, J.; Gu, L.; Shen, Y.; et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Lan, S.; Xu, S.; Zhang, Q.; Yao, H.; Liu, Y.; Meng, F.; Guo, E.-J.; Gu, L.; Yi, D.; et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 2021, 374, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.B.; Sekhar, K.C.; Pan, H.; MacManus-Driscoll, J.L.; Pereira, M. Advances in Dielectric Thin Films for Energy Storage Applications, Revealing the Promise of Group IV Binary Oxides. ACS Energy Lett. 2021, 6, 2208–2217. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, M.; Zhang, Y.; Yu, Z.; Ouyang, J.; Pan, W. Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling. Acta Mater. 2017, 122, 252–258. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Mao, N.; Meng, L.; Li, Y.; Hu, Z.; Chu, J. Enhanced voltage endurance capability of Ba(Zr0.2Ti0.8)O3 thin films induced by atomic-layer-deposited Al2O3 intercalations and the application in electrostatic energy storage. Ceram. Int. 2021, 47, 7720–7727. [Google Scholar] [CrossRef]
- Ding, J.; Pan, Z.; Chen, P.; Hu, D.; Yang, F.; Li, P.; Liu, J.; Zhai, J. Enhanced energy storage capability of (1-x)Na0.5Bi0.5TiO3-xSr0.7Bi0.2TiO3 free-lead relaxor ferroelectric thin films. Ceram. Int. 2020, 46, 14816–14821. [Google Scholar] [CrossRef]
- Nguyen, M.D. Impact of fatigue behavior on energy storage performance in dielectric thin-film capacitors. J. Eur. Ceram. Soc. 2020, 40, 1886–1895. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Nguyen, C.T.Q.; Vu, H.N.; Rijnders, G. Controlling microstructure and film growth of relaxor-ferroelectric thin films for high break-down strength and energy-storage performance. J. Eur. Ceram. Soc. 2018, 38, 95–103. [Google Scholar] [CrossRef]
- Ahn, C.W.; Amarsanaa, G.; Won, S.S.; Chae, S.A.; Lee, D.S.; Kim, I.W. Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times. ACS Appl. Mater. Interfaces 2015, 7, 26381–26386. [Google Scholar] [CrossRef]
- Ma, B.; Hu, Z.; Koritala, R.E.; Lee, T.H.; Dorris, S.E.; Balachandran, U. PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci. Mater. Electron. 2015, 26, 9279–9287. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.; Li, X.; Dong, G.; Zhao, L. Enhanced energy storage performance in 0.9NBT-0.1BFO thin film. Mater. Lett. 2020, 276, 128266. [Google Scholar] [CrossRef]
- Song, B.; Wu, S.; Yan, H.; Zhu, K.; Xu, L.; Shen, B.; Zhai, J. Fatigue-less relaxor ferroelectric thin films with high energy storage density via defect engineer. J. Mater. Sci. Technol. 2021, 77, 178–186. [Google Scholar] [CrossRef]
- Qi, H.; Xie, A.; Tian, A.; Zuo, R. Superior Energy-Storage Capacitors with Simultaneously Giant Energy Density and Efficiency Using Nanodomain Engineered BiFeO3-BaTiO3-NaNbO3 Lead-Free Bulk Ferroelectrics. Adv. Energy Mater. 2019, 10, 1903338. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R.; Xie, A.; Tian, A.; Fu, J.; Zhang, Y.; Zhang, S. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains. Adv. Funct. Mater. 2019, 29, 1903877. [Google Scholar] [CrossRef]
- Xie, A.; Qi, H.; Zuo, R.; Tian, A.; Chen, J.; Zhang, S. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. J. Mater. Chem. C 2019, 7, 15153–15161. [Google Scholar] [CrossRef]
- Spahr, H.; Nowak, C.; Hirschberg, F.; Reinker, J.; Kowalsky, W.; Hente, D.; Johannes, H.H. Enhancement of the maximum energy density in atomic layer deposited oxide based thin film capacitors. Appl. Phys. Lett. 2013, 103, 042907. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, C.; Liu, M.; Cui, J.; Lu, L.; Lu, J.; Lou, X.; Jin, L.; Wang, H.; Jia, C.L. Ultrahigh Energy Storage Performance of Lead-Free Oxide Multilayer Film Capacitors via Interface Engineering. Adv. Mater. 2017, 29, 1604427. [Google Scholar] [CrossRef]
- Li, Q.; Ji, S.; Wang, D.; Zhu, J.; Li, L.; Wang, W.; Zeng, M.; Hou, Z.; Gao, X.; Lu, X.; et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors. J. Eur. Ceram. Soc. 2021, 41, 387–393. [Google Scholar] [CrossRef]
- Song, D.P.; Yang, J.; Yang, B.B.; Wang, Y.; Chen, L.Y.; Wang, F.; Zhu, X.B. Energy storage in BaBi4Ti4O15 thin films with high efficiency. J. Appl. Phys. 2019, 125, 134101. [Google Scholar] [CrossRef]
- Nguyen, M.D. Ultrahigh energy-storage performance in lead-free BZT thin-films by tuning relaxor behavior. Mater. Res. Bull. 2021, 133, 111072. [Google Scholar] [CrossRef]
- Li, S.; Hu, T.; Nie, H.; Fu, Z.; Xu, C.; Xu, F.; Wang, G.; Dong, X. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Mater. 2021, 34, 417–426. [Google Scholar] [CrossRef]
- Pan, H.; Ma, J.; Ma, J.; Zhang, Q.; Liu, X.; Guan, B.; Gu, L.; Zhang, X.; Zhang, Y.J.; Li, L.; et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 2018, 9, 1813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.H.; Kang, B.S.; Bu, S.D.; Noh, T.W.; Lee, J.; Jo, W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401, 682–684. [Google Scholar] [CrossRef]
- Subbarao, E.C. A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 1962, 23, 665–676. [Google Scholar] [CrossRef]
- Long, C.; Chang, Q.; Fan, H. Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics. Sci. Rep. 2017, 7, 4193. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xie, S.; Wang, H.; Chen, Q.; Wang, Q.; Zhu, J.; Guan, Z. Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles. J. Alloys Compd. 2017, 696, 746–753. [Google Scholar] [CrossRef]
- Sun, J.; Han, Y.; Gao, G.; Yang, J.; Zhang, Y.; Dai, Y.; Song, D. Breakdown field enhancement and energy storage performance in four-layered Aurivillius films. Ceram. Int. 2022, 48, 15780–15784. [Google Scholar] [CrossRef]
- Chang, W.-Y.; Chung, C.-C.; Yuan, Z.; Chang, C.-H.; Tian, J.; Viehland, D.; Li, J.-F.; Jones, J.L.; Jiang, X. Patterned nano-domains in PMN-PT single crystals. Acta Mater. 2018, 143, 166–173. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, P.; Hou, X.; Yao, L.; Zhang, G.; Wang, J.; Liu, J.; Shen, M.; Zhang, Y.; Jiang, S.; et al. Fatigue-Free Aurivillius Phase Ferroelectric Thin Films with Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2020, 10, 2001536. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Jia, T.; Chen, Y.; Dai, W.; Yu, L.; Cai, Y.; Li, T.; Liu, L.; Guo, Q.; Yu, S. Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design. Crystals 2022, 12, 1524. https://doi.org/10.3390/cryst12111524
Yue W, Jia T, Chen Y, Dai W, Yu L, Cai Y, Li T, Liu L, Guo Q, Yu S. Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design. Crystals. 2022; 12(11):1524. https://doi.org/10.3390/cryst12111524
Chicago/Turabian StyleYue, Wenfeng, Tingting Jia, Yanrong Chen, Wenbin Dai, Liang Yu, Yali Cai, Ting Li, Lixia Liu, Quansheng Guo, and Shuhui Yu. 2022. "Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design" Crystals 12, no. 11: 1524. https://doi.org/10.3390/cryst12111524
APA StyleYue, W., Jia, T., Chen, Y., Dai, W., Yu, L., Cai, Y., Li, T., Liu, L., Guo, Q., & Yu, S. (2022). Bi0.5Na0.5TiO3-Bi3.25La0.75Ti3O12 Lead-Free Thin Films for Energy Storage Applications through Nanodomain Design. Crystals, 12(11), 1524. https://doi.org/10.3390/cryst12111524