The Tip of Dendritic Crystal in an Inclined Viscous Flow
Abstract
:1. Introduction
2. The Model
3. Results
4. Conclusions
- (i)
- A numerical simulation of dendritic growth in an inclined liquid flow should be carried out, taking into account the conductive and convective heat and mass transfer on various (with respect to the flow) sides of the dendrite. Such simulations can be done using a direct solution of the heat and mass transfer problem with flow (e.g., the phase-field or enthalpy methods) [53,54,55,56], as well as using the convective boundary integral equation [57,58,59];
- (ii)
- Intense convective currents on the upstream side of the dendrite are a potential source of morphological instability on its surface. It is therefore necessary to study the surface stability of the dendrite crystal to small morphological perturbations on its upstream side. Such a study should be done by following Refs. [60,61,62,63], who developed methods to study the stability induced by fluid currents;
- (iii)
- In future computer simulations in the presence of inclined fluid flow, the real dendritic crystal morphology (e.g., taken from experiments) should be taken into account with allowance for secondary and tertiary branches. Here it is also important to perform simulations of the growth of several dendrites with overlapping branches and to consider the possibility of crystal nucleation ahead of the dendrites, i.e., to study crystallization with a nonequilibrium two-phase region in the presence of convective flow. Such computer simulations should be performed using directional and bulk solidification theories (see, among others, Refs. [64,65,66,67,68,69,70]).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herlach, D.; Galenko, P.; Holland-Moritz, D. Metastable Solids from Undercooled Melts; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Alexandrov, D.V.; Galenko, P.K. A review on the theory of stable dendritic growth. Philos. Trans. R. Soc. A 2021, 379, 20200325. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, D.V.; Titova, E.A.; Galenko, P.K.; Rettenmayr, M.; Toropova, L.V. Dendrite tips as elliptical paraboloids. J. Phys. Condens. Matter 2021, 33, 443002. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, D.V.; Galenko, P.K. Dendrite growth under forced convection: Analysis methods and experimental tests. Physics-Uspekhi 2014, 57, 771–786. [Google Scholar] [CrossRef]
- Kurz, W.; Rappaz, M.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys. Part II: Dendrites from 2001 to 2018. Int. Mater. Rev. 2021, 66, 30–76. [Google Scholar] [CrossRef]
- Kurz, W.; Fisher, D.J.; Trivedi, R. Progress in modelling solidification microstructures in metals and alloys: Dendrites and cells from 1700 to 2000. Int. Mater. Rev. 2019, 64, 311–354. [Google Scholar] [CrossRef]
- Asta, M.; Beckermann, C.; Karma, A.; Kurz, W.; Napolitano, R.; Plapp, M.; Purdy, G.; Rappaz, M.; Trivedi, R. Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 2009, 57, 941–971. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, D.V.; Galenko, P.K. Dendritic growth with the six-fold symmetry: Theoretical predictions and experimental verification. J. Phys. Chem. Solids 2017, 108, 98–103. [Google Scholar] [CrossRef]
- Eckler, K.; Herlach, D.M. Measurements of dendrite growth velocities in undercooled pure Ni-melts—Some new results. Mater. Sci. Eng. A 1994, 178, 159–162. [Google Scholar] [CrossRef]
- Galenko, P.K.; Funke, O.; Wang, J.; Herlach, D.M. Kinetics of dendrities growth under the influence of convective flow in solidification of undercooling droplets. Mater. Sci. Eng. A 2004, 375–377, 488–492. [Google Scholar] [CrossRef]
- Funke, O.; Phanikumar, G.; Galenko, P.K.; Chernova, L.; Reutzel, S.; Kolbe, M.; Herlach, D.M. Dendrite growth velocity in levitated undercooled nickel melts. J. Cryst. Growth 2006, 297, 211–222. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. Thermo-solutal and kinetic regimes of an anisotropic dendrite growing under forced convective flow. Phys. Chem. Chem. Phys. 2015, 17, 19149–19161. [Google Scholar] [CrossRef] [PubMed]
- Kao, A.; Toropova, L.V.; Krastins, I.; Demange, G.; Alexandrov, D.V.; Galenko, P.K. A stable dendritic growth with forced convection: A test of theory using enthalpy-based modeling methods. JOM 2020, 72, 3123–3131. [Google Scholar] [CrossRef]
- Glicksman, M.E.; Koss, M.B. Dendritic growth velocities in microgravity. Phys. Rev. Lett. 1994, 73, 573–576. [Google Scholar] [CrossRef]
- Bouissou, P.; Pelcé, P. Effect of a forced flow on dendritic growth. Phys. Rev. A 1989, 40, 6637–6680. [Google Scholar] [CrossRef]
- Gibbs, J.W.; Mohan, K.A.; Gulsoy, E.B.; Shahani, A.J.; Xiao, X.; Bouman, C.A.; De Graef, M.; Voorhees, P.W. The three-dimensional morphology of growing dendrites. Sci. Rep. 2015, 5, 11824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galenko, P.K.; Reuther, K.; Kazak, O.V.; Alexandrov, D.V.; Rettenmayr, M. Effect of convective transport on dendritic crystal growth from pure and alloy melts. Appl. Phys. Lett. 2017, 111, 031602. [Google Scholar] [CrossRef]
- Mathiesen, R.H.; Arnberg, L.; Bleuet, P.; Somogyi, A. Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy. Metall. Mater. Trans. A 2006, 37, 2515–2524. [Google Scholar] [CrossRef]
- Ruvalcaba, D.; Mathiesen, R.H.; Eskin, D.G.; Arnberg, L.; Katgerman, L. In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy. Acta Mater. 2007, 55, 4287–4292. [Google Scholar] [CrossRef]
- Ramirez, J.C.; Beckermann, C. Examination of binary alloy free dendritic growth theories with a phase-field model. Acta Mater. 2005, 53, 1721–1736. [Google Scholar] [CrossRef]
- Tong, X.; Beckermann, C.; Karma, A.; Li, Q. Phase-field simulations of dendritic crystal growth in a forced flow. Phys. Rev. E 2001, 63, 061601. [Google Scholar] [CrossRef]
- Jeong, J.-H.; Goldenfeld, N.; Dantzig, J.A. Phase field model for three-dimensional dendritic growth with fluid flow. Phys. Rev. E 2001, 64, 041602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouissou, P.; Perrin, B.; Tabeling, P. Influence of an external flow on dendritic crystal growth. Phys. Rev. A 1989, 40, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, A.; Engler, S. The influence of forced convection on solidification interfaces. Comp. Mater. Sci. 1996, 7, 221–227. [Google Scholar] [CrossRef]
- Zhongming, R.; Junze, J.; Keren, G. Effect of fluid flow on dendritic structure of Al-Si alloy. J. Mater. Sci. 1991, 26, 3599–3602. [Google Scholar] [CrossRef]
- Hyers, R.W.; Matson, D.M.; Kelton, K.F.; Rogers, J.R. Convection in containerless processing. Ann. N. Y. Acad. Sci. 2004, 1027, 474–494. [Google Scholar] [CrossRef]
- Matson, D.M.; Hyers, R.W.; Volkmann, T. Peritectic alloy rapid solidification with electromagnetic convection. J. Jpn. Soc. Microgravity Appl. 2010, 27, 238–244. [Google Scholar]
- Herlach, D.M. (Ed.) Phase Transformations in Multicomponent Melts; Wiley-VCH: Weinheim, Germany, 2008; p. 353. [Google Scholar]
- Herlach, D.M.; Galenko, P.K. Rapid solidification: In situ diagnostics and theoretical modelling. Mater. Sci. Eng. A 2007, 449–451, 34–41. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Toropova, L.V. The role of incoming flow on crystallization of undercooled liquids with a two-phase layer. Sci. Rep. 2022, 12, 17857. [Google Scholar] [CrossRef]
- Toropova, L.V.; Galenko, P.K.; Alexandrov, D.V. A stable mode of dendritic growth in cases of conductive and convective heat and mass transfer. Crystals 2022, 12, 965. [Google Scholar] [CrossRef]
- Toropova, L.V.; Alexandrov, D.V.; Galenko, P.K. Convective and conductive selection criteria of a stable dendritic growth and their stitching. Math. Meth. Appl. Sci. 2021, 44, 12139–12151. [Google Scholar] [CrossRef]
- Notz, D.; McPhee, M.G.; Worster, M.G.; Maykut, G.A.; Schlünzen, K.H.; Eicken, H. Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res. 2003, 108, 3223. [Google Scholar] [CrossRef] [Green Version]
- McPhee, M.G.; Maykut, G.A.; Morison, J.H. Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland sea. J. Geophys. Res. 1987, 92, 7017. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Nizovtseva, I.G. To the theory of underwater ice evolution, or nonlinear dynamics of “false bottoms”. Int. J. Heat Mass Trans. 2008, 51, 5204–5208. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Galenko, P.K. The shape of dendritic tips. Philos. Trans. R. Soc. A 2020, 378, 20190243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandrov, D.V.; Toropova, L.V.; Titova, E.A.; Kao, A.; Demange, G.; Galenko, P.K.; Rettenmayr, M. The shape of dendritic tips: A test of theory with computations and experiments. Philos. Trans. R. Soc. A 2021, 379, 20200326. [Google Scholar] [CrossRef] [PubMed]
- Toropova, L.V. Shape functions for dendrite tips of SCN and Si. Eur. Phys. J. Spec. Top. 2022, 231, 1129–1133. [Google Scholar] [CrossRef]
- Huang, S.-C.; Glicksman, M.E. Overview 12: Fundamentals of dendritic solidification—I. Steady-state tip growth. Acta Metall. 1981, 29, 701–715. [Google Scholar] [CrossRef]
- Bisang, U.; Bilgram, J.H. Shape of the tip and the formation of sidebranches of xenon dendrites. Phys. Rev. Lett. 1995, 75, 3898–3901. [Google Scholar] [CrossRef]
- Titova, E.A.; Galenko, P.K.; Alexandrov, D.V. Method of evaluation for the non-stationary period of primary dendritic crystallization. J. Phys. Chem. Solids 2019, 134, 176–181. [Google Scholar] [CrossRef]
- Plapp, M.; Karma, A. Multiscale random-walk algorithm for simulating interfacial pattern formation. Phys. Rev. Lett. 2000, 84, 1740–1743. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Han, M.; Kao, A.; Pericleous, K.; Alexandrov, D.V.; Galenko, P.K. Dendritic growth velocities in an undercooled melt of pure nickel under static magnetic fields: A test of theory with convection. Acta Mat. 2016, 103, 184–191. [Google Scholar] [CrossRef]
- Owen, P.R.; Thomson, W.R. Heat transfer across rough surfaces. J. Fluid Mech. 1963, 15, 321–334. [Google Scholar] [CrossRef]
- Yaglom, A.M.; Kader, B.A. Heat and mass transfer between a rough wall and turbulent flow at high Reynolds and Peclet numbers. J. Fluid Mech. 1974, 62, 601–623. [Google Scholar] [CrossRef]
- Tritton, D.J. Physical Fluid Dynamics; Clarendon Press: Oxford, UK, 1988. [Google Scholar]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Reynolds$_$number (accessed on 1 November 2022).
- Ivantsov, G.P. Temperature field around spherical, cylinder and needle-like dendrite growing in supercooled melt. Dokl. Akad. Nauk SSSR 1947, 58, 567–569. [Google Scholar]
- Ivantsov, G.P. On a growth of spherical and needle-like crystals of a binary alloy. Dokl. Akad. Nauk SSSR 1952, 83, 573–575. [Google Scholar]
- Brener, E. Needle-crystal solution in three-dimensional dendritic growth. Phys. Rev. Lett. 1993, 71, 3653–3656. [Google Scholar] [CrossRef]
- Brener, E. Pattern formation in three-dimensional dendritic growth. Physica A 1999, 263, 338–344. [Google Scholar] [CrossRef]
- Almgren, R.; Dai, W.-S.; Hakim, V. Scaling behavior in anisotropic Hele-Shaw flow. Phys. Rev. Lett. 1993, 71, 3461–3464. [Google Scholar] [CrossRef]
- Toropova, L.V.; Galenko, P.K.; Alexandrov, D.V.; Rettenmayr, M.; Kao, A.; Demange, G. Non-axisymmetric growth of dendrite with arbitrary symmetry in two and three dimensions: Sharp interface model vs. phase-field model. Eur. Phys. J. Spec. Top. 2020, 229, 2899–2909. [Google Scholar] [CrossRef]
- Kao, A.; Toropova, L.V.; Alexandrov, D.V.; Demange, G.; Galenko, P.K. Modeling of dendrite growth from undercooled nickel melt: Sharp interface model versus enthalpy method. J. Phys. Condens. Matter 2020, 32, 194002. [Google Scholar] [CrossRef]
- Demange, G.; Zapolsky, H.; Patte, R.; Brunel, M. Growth kinetics and morphology of snowflakes in supersaturated atmosphere using a three-dimensional phase-field model. Phys. Rev. E 2017, 96, 022803. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Kao, A.; Bojarevics, V.; Pericleous, K.; Galenko, P.K.; Alexandrov, D.V. Modeling of convection, temperature distribution and dendritic growth in glass-fluxed nickel melts. J. Cryst. Growth 2017, 471, 66–72. [Google Scholar] [CrossRef]
- Saville, D.A.; Beaghton, P.J. Growth of needle-shaped crystals in the presence of convection. Phys. Rev. A 1988, 37, 3423–3430. [Google Scholar] [CrossRef] [PubMed]
- Titova, E.A.; Alexandrov, D.V. Analysis of the boundary integral equation for the growth of a parabolic/paraboloidal dendrite with convection. J. Phys. Condens. Matter 2022, 34, 244002. [Google Scholar] [CrossRef] [PubMed]
- Titova, E.A.; Alexandrov, D.V. The boundary integral equation for curved solid/liquid interfaces propagating into a binary liquid with convection. J. Phys. A Math. Theor. 2022, 55, 055701. [Google Scholar] [CrossRef]
- Chiareli, A.O.P.; Worster, M.G. Flow focusing instability in a solidifying mushy layer. J. Fluid Mech. 1995, 297, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Feltham, D.L.; Worster, M.G. Flow-induced morphological instability of a mushy layer. J. Fluid Mech. 1999, 391, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, D.V.; Malygin, A.P. Convective instability of directional crystallization in a forced flow: The role of brine channels in a mushy layer on nonlinear dynamics of binary systems. Int. J. Heat Mass Trans. 2011, 54, 1144–1149. [Google Scholar] [CrossRef]
- Alexandrov, D.V.; Malygin, A.P. Flow-induced morphological instability and solidification with the slurry and mushy layers in the presence of convection. Int. J. Heat Mass Trans. 2012, 55, 3196–3204. [Google Scholar] [CrossRef]
- Galenko, P.K.; Zhuravlev, V.A. Physics of Dendrites; World Scientific: Singapore, 1994. [Google Scholar]
- Worster, M.G. Convection in mushy layers. Ann. Rev. Fluid Mech. 1997, 29, 91–122. [Google Scholar] [CrossRef] [Green Version]
- Kessler, D.A.; Koplik, J.; Levine, H. Pattern selection in fingered growth phenomena. Adv. Phys. 1988, 37, 255–339. [Google Scholar] [CrossRef]
- Brener, E.A.; Mel’nikov, V.I. Pattern selection in two-dimensional dendritic growth. Adv. Phys. 1991, 40, 53–97. [Google Scholar] [CrossRef]
- Toropova, L.V.; Alexandrov, D.V. Dynamical law of the phase interface motion in the presence of crystals nucleation. Sci. Rep. 2022, 12, 10997. [Google Scholar] [CrossRef] [PubMed]
- Makoveeva, E.V.; Alexandrov, D.V. Mathematical simulation of the crystal nucleation and growth at the intermediate stage of a phase transition. Russ. Metall. (Metally) 2018, 2018, 707–715. [Google Scholar] [CrossRef]
- Makoveeva, E.; Alexandrov, D.; Ivanov, A. Mathematical modeling of crystallization process from a supercooled binary melt. Math. Meth. Appl. Sci. 2021, 44, 12244–12251. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
982 | kg/m | |
0.00264 | Pa s | |
0.00015 | m | |
1 | m/s | |
0; 30; 60; 90 | grad | |
1 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starodumov, I.O.; Titova, E.A.; Pavlyuk, E.V.; Alexandrov, D.V. The Tip of Dendritic Crystal in an Inclined Viscous Flow. Crystals 2022, 12, 1590. https://doi.org/10.3390/cryst12111590
Starodumov IO, Titova EA, Pavlyuk EV, Alexandrov DV. The Tip of Dendritic Crystal in an Inclined Viscous Flow. Crystals. 2022; 12(11):1590. https://doi.org/10.3390/cryst12111590
Chicago/Turabian StyleStarodumov, Ilya O., Ekaterina A. Titova, Eugeny V. Pavlyuk, and Dmitri V. Alexandrov. 2022. "The Tip of Dendritic Crystal in an Inclined Viscous Flow" Crystals 12, no. 11: 1590. https://doi.org/10.3390/cryst12111590
APA StyleStarodumov, I. O., Titova, E. A., Pavlyuk, E. V., & Alexandrov, D. V. (2022). The Tip of Dendritic Crystal in an Inclined Viscous Flow. Crystals, 12(11), 1590. https://doi.org/10.3390/cryst12111590