Silica Nanoparticles-Induced Lysozyme Crystallization: Effects of Particle Sizes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Lysozyme Crystallization
2.3. UV Spectroscopy Experiment
2.4. Fluorescence Spectroscopy Experiment
2.5. Zeta Potentials of Lysozyme and SNP
2.6. Enzyme Activity Experiment
3. Results and Discussion
3.1. Effect of SNP Sizes on Lysozyme Crystal Morphology
3.2. Zeta Potential of Lysozyme and SNP
3.3. Effect of SNP Sizes on the UV Spectroscopy of Lysozyme
3.4. Effect of SNP Sizes on the Fluorescence Spectroscopy Experiment of Lysozyme
3.5. Effect of SNP on Lysozyme Activity
3.6. Mechanism of SNP-Induced Lysozyme Crystallization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stevens, R.C. High-throughput protein crystallization. Curr. Opin. Struct. Biol. 2000, 10, 558–563. [Google Scholar] [CrossRef]
- Dora, G.C. Crystal structure analysis: A primer. Crystallogr. Rev. 2011, 17, 157–160. [Google Scholar] [CrossRef]
- Chayen, N.E. Turning protein crystallisation from an art into a science. Curr. Opin. Struct. Biol. 2004, 14, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Chayen, N.E.; Saridakis, E. Protein crystallization: From purified protein to diffraction-quality crystal. Nat. Methods 2008, 5, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.K.; Govardhan, C.P.; Jung, C.W.; Margolin, A.L. Protein crystals for the delivery of biopharmaceuticals. Expert Opin. Biol. Ther. 2004, 4, 301–317. [Google Scholar] [CrossRef]
- L’vov, P.E.; Umantsev, A.R. Two-Step Mechanism of Macromolecular Nucleation and Crystallization: Field Theory and Simulations. Cryst. Growth Des. 2020, 21, 366–382. [Google Scholar] [CrossRef]
- Sear, R.P. Nucleation: Theory and applications to protein solutions and colloidal suspensions. J. Phys. Condens. Matter 2007, 19, 033101. [Google Scholar] [CrossRef]
- Zhou, R.-B.; Cao, H.-L.; Zhang, C.-Y.; Yin, D.-C. A review on recent advances for nucleants and nucleation in protein crystallization. CrystEngComm 2017, 19, 1143–1155. [Google Scholar] [CrossRef]
- Kordonskaya, Y.V.; Marchenkova, M.A.; Timofeev, V.I.; Dyakova, Y.A.; Pisarevsky, Y.V.; Kovalchuk, M.V. Precipitant ions influence on lysozyme oligomers stability investigated by molecular dynamics simulation at different temperatures. J. Biomol. Struct. Dyn. 2021, 39, 7223–7230. [Google Scholar] [CrossRef]
- Kovalchuk, M.V.; Blagov, A.E.; Dyakova, Y.A.; Gruzinov, A.Y.; Marchenkova, M.A.; Peters, G.S.; Pisarevsky, Y.V.; Timofeev, V.I.; Volkov, V.V. Investigation of the initial crystallization stage in lysozyme solutions by small-angle X-ray scattering. Cryst. Growth Des. 2016, 16, 1792–1797. [Google Scholar] [CrossRef]
- Kovalchuk, M.V.; Boikova, A.S.; Dyakova, Y.A.; Ilina, K.B.; Konarev, P.V.; Kryukova, A.E.; Marchenkova, M.A.; Pisarevsky, Y.V.; Timofeev, V.I. Pre-crystallization phase formation of thermolysin hexamers in solution close to crystallization conditions. J. Biomol. Struct. Dyn. 2019, 37, 3058–3064. [Google Scholar] [CrossRef]
- Ko, S.; Kim, H.Y.; Choi, I.; Choe, J. Gold nanoparticles as nucleation-inducing reagents for protein crystallization. Cryst. Growth Des. 2017, 17, 497–503. [Google Scholar] [CrossRef]
- Takeda, Y.; Mafuné, F. Induction of protein crystallization by platinum nanoparticles. Chem. Phys. Lett. 2016, 647, 181–184. [Google Scholar] [CrossRef]
- Leese, H.S.; Govada, L.; Saridakis, E.; Khurshid, S.; Menzel, R.; Morishita, T.; Clancy, A.J.; White, E.R.; Chayen, N.E.; Shaffer, M.S. Reductively PEGylated carbon nanomaterials and their use to nucleate 3D protein crystals: A comparison of dimensionality. Chem. Sci. 2016, 7, 2916–2923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delmas, T.; Roberts, M.M.; Heng, J.Y.Y. Nucleation and crystallization of lysozyme: Role of substrate surface chemistry and topography. J. Adhes. Sci. Technol. 2011, 25, 357–366. [Google Scholar] [CrossRef]
- Lindberg, R.; Sjöblom, J.; Sundholm, G. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes. Colloids Surf. A Physicochem. Eng. Asp. 1995, 99, 79–88. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. Surface characterization of amorphous silica—A review of work from the former USSR. Colloids Surf. A Physicochem. Eng. Asp. 1993, 74, 71–90. [Google Scholar] [CrossRef]
- Qian, R.; Ding, L.; Ju, H. Switchable fluorescent imaging of intracellular telomerase activity using telomerase-responsive mesoporous silica nanoparticle. J. Am. Chem. Soc. 2013, 135, 13282–13285. [Google Scholar] [CrossRef]
- Ramanaviciene, A.; Zukiene, V.; Acaite, J.; Ramanavicius, A. Influence of caffeine on lysozyme activity in the blood serum of mice. Acta Med. Litu. 2002, 9, 241–244. [Google Scholar]
- Yamazaki, T.; Kimura, Y.; Vekilov, P.G.; Furukawa, E.; Shirai, M.; Matsumoto, H.; Van Driessche, A.E.S.; Tsukamoto, K. Two types of amorphous protein particles facilitate crystal nucleation. Proc. Natl. Acad. Sci. USA 2017, 114, 2154–2159. [Google Scholar] [CrossRef] [Green Version]
- Bhamidi, V.; Skrzypczak-Jankun, E.; Schall, C.A. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength. J. Cryst. Growth 2001, 232, 77–85. [Google Scholar] [CrossRef]
- Cacioppo, E.; Pusey, M.L. The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4. J. Cryst. Growth 1991, 114, 286–292. [Google Scholar] [CrossRef]
- Tsekova, D.S. Formation and Growth of Tetragonal Lysozyme Crystals at Some Boundary Conditions. Cryst. Growth Des. 2009, 9, 1312–1317. [Google Scholar] [CrossRef]
- Müller, C.; Ulrich, J. A more clear insight of the lysozyme crystal composition. Cryst. Res. Technol. 2011, 46, 646–650. [Google Scholar] [CrossRef]
- Kang, M.; Lee, G.; Jang, K.; Jeong, D.W.; Lee, J.-O.; Kim, H.; Kim, Y.J. Graphene Quantum Dots as Nucleants for Protein Crystallization. Cryst. Growth Des. 2022, 22, 269–276. [Google Scholar] [CrossRef]
- Forsythe, E.L.; Nadarajah, A.; Pusey, M.L. Growth of (101) faces of tetragonal lysozyme crystals: Measured growth-rate trends. Acta Crystallogr. Sect. D Biol. Crystallogr. 1999, 55, 1005–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Feng, Z.; Zhang, L.; Hou, T.; Li, Y. The selective interaction between silica nanoparticles and enzymes from molecular dynamics simulations. PLoS ONE 2014, 9, e107696. [Google Scholar] [CrossRef] [PubMed]
- Weichsel, U.; Segets, D.; Janeke, S.; Peukert, W. Enhanced nucleation of lysozyme using inorganic silica seed particles of different Sizes. Cryst. Growth Des. 2015, 15, 3582–3593. [Google Scholar] [CrossRef]
- Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D.T.; Lee, J.Y.; Xie, J. From aggregation-induced emission of Au (I)–thiolate complexes to ultrabright Au (0)@ Au (I)–thiolate core–shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670. [Google Scholar] [CrossRef]
- Zhu, J.; He, K.; Dai, Z.; Gong, L.; Zhou, T.; Liang, H.; Liu, J. Self-assembly of luminescent gold nanoparticles with sensitive pH-stimulated structure transformation and emission response toward lysosome escape and intracellular imaging. Anal. Chem. 2019, 91, 8237–8243. [Google Scholar] [CrossRef]
- Nadarajah, A.; Li, M.; Pusey, M.L. Growth mechanism of the (110) face of tetragonal lysozyme crystals. Acta Crystallogr. Sect. D Biol. Crystallogr. 1997, 53, 524–534. [Google Scholar] [CrossRef] [PubMed]
Particle Size, nm | CSiO2, mg/mL | ρ, g/mL | wt, % | pH |
---|---|---|---|---|
5 | 10 | 1.13 | 20 | 3–5 |
15 | 10 | 1.21 | 30 | 9–10 |
50 | 10 | 1.13 | 20 | 9–10 |
100 | 10 | 1.13 | 20 | 9–10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jiang, X.; Wu, X.; Wang, X.; Huang, F.; Li, K.; Zheng, G.; Lu, S.; Ma, Y.; Zhou, Y.; et al. Silica Nanoparticles-Induced Lysozyme Crystallization: Effects of Particle Sizes. Crystals 2022, 12, 1623. https://doi.org/10.3390/cryst12111623
Zhang Y, Jiang X, Wu X, Wang X, Huang F, Li K, Zheng G, Lu S, Ma Y, Zhou Y, et al. Silica Nanoparticles-Induced Lysozyme Crystallization: Effects of Particle Sizes. Crystals. 2022; 12(11):1623. https://doi.org/10.3390/cryst12111623
Chicago/Turabian StyleZhang, Yuxiao, Xuntao Jiang, Xia Wu, Xiaoqiang Wang, Fang Huang, Kefei Li, Gaoyang Zheng, Shengzhou Lu, Yanxu Ma, Yuyu Zhou, and et al. 2022. "Silica Nanoparticles-Induced Lysozyme Crystallization: Effects of Particle Sizes" Crystals 12, no. 11: 1623. https://doi.org/10.3390/cryst12111623
APA StyleZhang, Y., Jiang, X., Wu, X., Wang, X., Huang, F., Li, K., Zheng, G., Lu, S., Ma, Y., Zhou, Y., & Yu, X. (2022). Silica Nanoparticles-Induced Lysozyme Crystallization: Effects of Particle Sizes. Crystals, 12(11), 1623. https://doi.org/10.3390/cryst12111623