Structure and Bonding in CsNa2Hg18, a New Ternary Amalgam with Strong Coulombic Bonding Contributions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of CsNaHg
Atom | Wyckoff Letter | Site Symmetry | x | y | z | |
---|---|---|---|---|---|---|
Cs1 | 2a | 4/mmm | 0 | 0 | 0 | 0.0325(6) |
Na1 | 4e | 4mm | 0 | 0 | 0.3002(7) | 0.033(3) |
Hg1 | 16n | .m. | 0 | 0.29638(11) | 0.42906(3) | 0.0405(3) |
Hg2 | 16m | ..m | 0.20003(6) | x | 0.17161(4) | 0.0380(3) |
Hg3 | 4d | m2 | 0 | 1/2 | 1/4 | 0.0409(4) |
Atom | U | U | U | U | U | U |
---|---|---|---|---|---|---|
Cs1 | 0.0322(8) | U | 0.0331(13) | 0 | 0 | 0 |
Na1 | 0.030(4) | U | 0.038(7) | 0 | 0 | 0 |
Hg1 | 0.0365(4) | 0.0479(4) | 0.0370(4) | −0.0032(3) | 0 | 0 |
Hg2 | 0.0337(3) | U | 0.0465(4) | 0.0047(2) | U | −0.0018(2) |
Hg3 | 0.0397(5) | U | 0.0432(7) | 0 | 0 | 0 |
Atom 1 | Atom 2 | Distance | Label | Atom 1 | Atom 2 | Distance | Label |
---|---|---|---|---|---|---|---|
Cs1 | Hg2 | 4.0132(9) (8x) | Hg2 | Hg2 | 2.9226(10) (2x) | I | |
Hg1 | 4.1925(5) (16x) | Hg1 | 2.9792(8) (2x) | II | |||
Na1 | Hg2 | 3.150(3) (4x) | Hg3 | 3.0670(5) (2x) | VI | ||
Hg2 | 3.304(11) (4x) | Na1 | 3.150(3) (1x) | ||||
Hg1 | 3.370(11) (4x) | Na1 | 3.304(11) (1x) | ||||
Hg3 | 3.789(4) (4x) | Hg2 | 3.3079(15) (1x) | ||||
Hg1 | Hg1 | 2.8443(14) (1x) | V | Cs1 | 4.0132(9) (1x) | ||
Hg1 | 2.9759(16) (1x) | IV | Hg3 | Hg2 | 3.0670(5) (8x) | VI | |
Hg2 | 2.9792(8) (2x) | II | Na1 | 3.789(4) (4x) | |||
Hg1 | 3.0621(12) (2x) | III | Hg1 | 3.8854(9) (4x) | VII | ||
Na1 | 3.370(11) (1x) | ||||||
Cs1 | 4.1925(5) (2x) |
2.2. Chemical Bonding in CsNaHg
3. Materials and Methods
3.1. Synthesis
3.2. Powder Diffractometry
3.3. Single Crystal Diffractometry
3.4. DFT Calculations
3.5. Measurement of the Specific Resistivity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deiseroth, H.J. Discrete and extended metal clusters in alloys with mercury and other group 12 elements. In Molecular Clusters of the Main Group Elements; Driess, M., Nöth, H., Eds.; Wiley-VCH: Weinheim, Germany, 2004; pp. 169–187. [Google Scholar]
- Wendorff, M.; Röhr, C. Alkaline-earth tri-mercurides AIIHg3 (AII = Ca, Sr, Ba): Binary intermetallic compounds with a common and a new structure type. Z. Kristallogr. 2018, 223, 515–529. [Google Scholar] [CrossRef]
- Simons, J.H.; Seward, R.P. Slow electron scattering and the apparent electron affinity of mercury. J. Chem. Phys. 1938, 6, 790–794. [Google Scholar] [CrossRef]
- Biehl, E.; Deiseroth, H.J. Crystal structure of potassiumamalgam, KHg. Z. Kristallogr. 1996, 630, 211. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Strunck, A.; Bauhofer, W. CsHg, eine ungewöhnliche Variante der CsCl-Struktur. Darstellung, Kristallstruktur und physikalische Eigenschaften. Z. Anorg. Allg. Chem. 1989, 575, 31–38. [Google Scholar] [CrossRef]
- Tkachuk, A.V.; Mar, A. Redetermination of Na3Hg2. Acta Crystallogr. 2006, E62, i129–i130. [Google Scholar] [CrossRef] [Green Version]
- Deiseroth, H.J.; Strunck, A. Hg8 (Mercubane) Clusters in Rb15Hg16. Angew. Chem. Int. Ed. 1989, 28, 1251–1252. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Stupperich, A.; Pankaluoto, R.; Christensen, N.E. NaHg: A variant of the cesiumchloride structure structural relations and electronic structure. Z. Anorg. Allg. Chem. 1991, 597, 41–50. [Google Scholar] [CrossRef]
- Lihl, F. Über den Aufbau des Systems Quecksilber-Mangan. Monatsh. Chem. 1955, 86, 186–191. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3204. [Google Scholar] [CrossRef]
- Hoch, C.; Simon, A. Na11Hg52: Complexity in a polar metal. Angew. Chem. Int. Ed. 2012, 51, 3262–3265. [Google Scholar] [CrossRef]
- Tambornino, F.; Sappl, J.; Hoch, C. The Gd14Ag51 structure type and its relation to some complex amalgam structures. J. Alloys Compd. 2015, 618, 326–335. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Biehl, E. NaK29Hg48: A contradiction to or an extension of theoretical concepts to rationalize the structures of complex intermetallics. J. Solid State Chem. 1999, 147, 177–184. [Google Scholar] [CrossRef]
- Pauly, H.; Weiss, A.; Witte, H. Kubisch flächenzentrierte Legierungen der Zusammensetzung Li2MgX mit raumzentrierter Unterstruktur. Z. Metallkd. 1968, 59, 414–418. [Google Scholar]
- Tkachuk, A.V.; Mar, A. Li6A17Hg9 (A = Ca, Sr, Yb): Intermetallic compounds of mercury with a zeolite-like topology of cubic networks. Chem. Eur. J. 2009, 15, 10348–10351. [Google Scholar] [CrossRef]
- Villars, P.; Cenzual, K. Pearson’s Crystal Data—Crystal Structure Database for Inorganic Compounds; ASM International: Materials Park, OH, USA, 2017. [Google Scholar]
- Vogel, R.; Schuster, H.U. KHgAs (Sb) und KZnAs—Ternäre Verbindungen mit modifizierter Ni2In-Struktur. Z. Naturforsch. 1980, B 35, 114–116. [Google Scholar] [CrossRef] [Green Version]
- Schuster, H.U. Ternäre Lithiumverbindungen vom Typ Li2MeGe (Me = Zn, Cd, Hg). Z. Anorg. Allg. Chem. 1969, 370, 149–159. [Google Scholar] [CrossRef]
- Lagrange, P.; Makrini, M.E.; Hérold, A. Structure cristalline du mercurographiture KHgC4. Rev. Chim. Minér. 1983, 20, 229–246. [Google Scholar]
- Kaltzoglou, A.; Ponou, S.; Fässler, T.F. A4Ge9 (A = K, Rb) as precursors for Hg-substituted clathrate-I synthesis: Crystal structure of A8Hg3Ge43. Eur. J. Inorg. Chem. 2008, 2008, 4507–4510. [Google Scholar] [CrossRef]
- Pauly, H.; Weiss, A.; Witte, H. Phasenbreite und Valenzelektronenkonzentration (VEK) in den ternären kubischen Zintlphasen vom NaTl-Typ. Z. Metallkd. 1968, 59, 554–558. [Google Scholar]
- Kaltzoglou, A.; Ponou, S.; Fässler, T.F. Synthesis and crystal structure of mercury-substituted type-I clathrates A8Hg4Sn42 (A = K, Rb, Cs). Eur. J. Inorg. Chem. 2008, 2008, 538–542. [Google Scholar] [CrossRef]
- Matthes, R.; Schuster, H.U. Ternäre Natriumphasen mit Cadmium bzw. Quecksilber und Zinn bzw. Blei. Z. Naturforsch. 1980, B 35, 778–780. [Google Scholar] [CrossRef]
- Sevov, S.C.; Ostenon, J.E.; Corbett, J.D. K8In10Hg: A Zintl phase with isolated In10Hg clusters. J. Alloys Compd. 1993, 202, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Ponou, S.; Kim, S.J.; Fässler, T.F. Synthesis and characterization of Na5M2+xSn10-x (x ≈ 0.5, M = Zn, Hg) - A doped tetrahedral framework structure. J. Am. Chem. Soc. 2009, 131, 10246–10252. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, P.C.; Baden, W.; Weiden, N.; Weiss, A. The Intermetallic System NaHg1-xTlx. X-ray Investigations and Measurements of the Knight Shift of Na, Hg, and Tl. Phys. Status Solidi 1985, A92, 205–212. [Google Scholar] [CrossRef]
- Fox, J.M.; Henry, P.F.; Rosseinsky, M.J. Na2+xHgyC60: Post-transition metal intercalation chemistry of a C60 host. Chem. Commun. 1996, 1996, 2299–2300. [Google Scholar] [CrossRef]
- Wendorff, M.; Röhr, C. Barium-Triel-Mercuride BaMxHg4-x und Ba3MxHg11-x (M = Ga, In, Cd). Z. Naturforsch. 2013, B68, 307–322. [Google Scholar] [CrossRef]
- Zheng, L.; Feng, Y.; Wang, R.; Chen, Y. Crystal structure and properties of the new ternary compound Mg21Ga5Hg3. Intermetallics 2009, 17, 873–877. [Google Scholar] [CrossRef]
- Daams, J.L.C.; Vucht, J.H.N.V. Contribution to the system Mg-Au-Hg. Philips J. Res. 1984, 39, 275–292. [Google Scholar]
- Dai, J.C.; Corbett, J.D. Substitution of Au or Hg into BaTl2 and BaIn2. New ternary examples of smaller CeCu2-type intermetallic phases. Inorg. Chem. 2006, 45, 2104–2111. [Google Scholar] [CrossRef]
- Wendorff, M.; Schwarz, M.R.; Röhr, C. The new Hg-rich barium indium mercurides BaInxHg7-x (x = 3.1) and BaInxHg11-x (x = 0–2.8). Synthesis, crystal and electronic structure. J. Solid State Chem. 2013, 203, 297–303. [Google Scholar] [CrossRef]
- Merlo, F.; Pani, M.; Fornasini, M.L. RMX compounds formed by alkaline earths, europium and ytterbium. III. Ternary phases with M = Mg, Hg and X = Si, Ge, Sn, Pb. J. Alloys Compd. 1993, 196, 145–148. [Google Scholar] [CrossRef]
- Wendorff, M.; Röhr, C. The new barium mercuride BaHg6 and ternary indium and gallium derivatives. J. Alloys Compd. 2013, 546, 320–328. [Google Scholar] [CrossRef]
- Puselj, M.; Ban, Z. Ternäre Gamma-Messing Phasen in den Systemen Calcium-M(Ib/IIb)-Quecksilber. Z. Naturforsch. 1980, B35, 1594–1595. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.C.; Gupta, S.; Gourdon, O.; Kim, H.J.; Corbett, J.D. BaHg2Tl2. An unusual polar intermetallic phase with strong differentiation between the neighboring elements mercury and thallium. J. Am. Chem. Soc. 2009, 131, 8677–8682. [Google Scholar] [CrossRef]
- Dai, J.C.; Gupta, S.; Corbett, J.D. Synthesis, structure, and bonding of BaTl4. Size effects on encapsulation of cations in electron-poor metal networks. Inorg. Chem. 2011, 50, 238–244. [Google Scholar] [CrossRef]
- Melnychenko, N.O. Solid solution based clathrate Ba8Ge43()3 (() = vacancy) with transition elements. Nauk. Visn. Uzhhorod. Univ. Ser. Khim. 2013, 30, 46–49. [Google Scholar]
- Schwarz, M.R.; Wendorff, M.; Röhr, C. The new barium zinc mercurides Ba3ZnHg10 and BaZn0.6Hg3.4—Synthesis, crystal and electronic structure. J. Solid State Chem. 2012, 196, 416–424. [Google Scholar] [CrossRef]
- Wendorff, M.; Röhr, C. Strontium metallides along the section SrIn4-SrHg4. Z. Naturforsch. 2014, B69, 388–408. [Google Scholar] [CrossRef]
- Wendorff, M.; Röhr, C. The new complex barium mercuride Ba20Hg103 and its ternary zinc and cadmium variants. Z. Naturforsch. 2012, B67, 893–906. [Google Scholar] [CrossRef]
- Iandelli, A. The structure of some ternary intermetallic compounds of the rare earths. J. Alloys Compd. 1994, 203, 137–138. [Google Scholar] [CrossRef]
- Weitzer, F.; Leithe-Jasper, A.; Rogl, P.; Hiebl, K.; Rainbacher, A.; Wiesinger, G.; Steiner, W.; Friedl, J.; Wagner, F.E. Magnetism of ternary compounds RE6Fe13X; RE = Pr, Nd; X = Cu, Ag, Au, Zn, Cd, and Hg. J. Appl. Phys. 1994, 75, 7745–7751. [Google Scholar] [CrossRef]
- Tambornino, F.; Hoch, C. Bad metal behaviour in the new Hg-rich amalgam KHg6 with polar metallic bonding. J. Alloys Compd. 2015, 618, 299–304. [Google Scholar] [CrossRef]
- Tambornino, F.; Schwärzer, K.; Hoch, C. Synthesis and characterization of La11+xHg45-x and RE11Hg45.5 (RE = Sm, Nd) as hettotypes of the Sm11Cd45 structure type. J. Solid StateChem. 2016, 242, 162–169. [Google Scholar] [CrossRef]
- Stoe & Cie. X-SHAPE v. 2.07; Stoe & Cie: Darmstadt, Germany, 2005. [Google Scholar]
- Stoe & Cie. X-RED v. 1.31; Stoe & Cie: Darmstadt, Germany, 2005. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambornino, F.; Sappl, J.; Pultar, F.; Cong, T.M.; Hübner, S.; Giftthaler, T.; Hoch, C. Electrocrystallization—A synthetic method for intermetallic phases with polar metal-metal bonding. Inorg. Chem. 2016, 55, 11551–11559. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Toelstede, D. Na3Hg: Das natriumreichste Amalgam im System Natrium-Quecksilber. Z. Anorg. Allg. Chem. 1992, 615, 43–48. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Toelstede, D. Na8Hg3: Ein alkalimetallreiches Amalgam mit isolierten Quecksilberanionen? Z. Anorg. Allg. Chem. 1990, 587, 103–109. [Google Scholar] [CrossRef]
- Nielsen, J.W.; Baenziger, N.C. The crystal structures of NaHg2, NaHg and Na3Hg2. Acta Crystallogr. 1954, 7, 277–282. [Google Scholar] [CrossRef]
- Deiseroth, H.J.; Strunck, A.; Bauhofer, W. RbHg2 und CsHg2, Darstellung, Kristallstruktur, elektrische Leitfaehigkeit. Z. Anorg. Allg. Chem. 1988, 558, 128–136. [Google Scholar] [CrossRef]
- Todorov, E.; Sevov, S.C. Synthesis and structure of the alkali metal amalgams A3Hg20 (A = Rb, Cs), K3Hg11, Cs5Hg19, and A7Hg31 (A = K, Rb). J. Solid State Chem. 2000, 149, 419–427. [Google Scholar] [CrossRef]
- Hoch, C.; Simon, A. Cs2Hg27, the mercury-richest amalgam with close relationship to the Bergman phases. Z. Anorg. Allg. Chem. 2008, 634, 853–856. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Gelato, L.M.; Parthé, E. Structure Tidy—A computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143. [Google Scholar] [CrossRef]
- Gunnarsson, O.; Calandra, M.; Han, J.E. Saturation of electrical resistivity. Rev. Mod. Phys. 2003, 75, 1085. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, A.F.; Regel, A.R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond. 1960, 4, 237–291. [Google Scholar]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl.Cryst. 2018, 51, 210–218. [Google Scholar] [CrossRef]
- Spek, A.L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 2002, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Alcock, N.W. Crystal measurements for absorption correction. Acta Crystallogr. 1970, A26, 437–439. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Tran, F.; Laskowski, R.; Madsen, G.K.H.; Marks, L.D. WIEN2k: An APW-lo program for calculating the properties of solids. J. Chem. Phys. 2020, 152, 074101. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient aproximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Hohl, T.; Kremer, R.; Ebbinghaus, S.; Hoch, C. Influence of disorder on the ’bad metal behaviour’ in polar amalgams. Manuscript in preparation.
Phase | Space Group | Structure Type | Lit. | Phase | Space Group | Structure Type | Lit. |
---|---|---|---|---|---|---|---|
Ternary amalgams with alkali metals | |||||||
LiMgHg | Fmm | CuMnAl | [14] | KAsHg | P6/mmc | BeZrSi | [17] |
LiGeHg | Fmm | CuMnAl | [18] | KSbHg | P6/mmc | BeZrSi | [17] |
LiCaHg | Imm | own | [15] | KCHg | Fddd | own | [19] |
LiSrHg | Imm | LiCaHg | [15] | KGeHg | Pmn | NaSi | [20] |
LiYbHg | Imm | LiCaHg | [15] | KGeHg | Pmn | NaSi | [20] |
LiTlHg | Pmm | CsCl | [21] | KSnHg | Pmn | NaSi | [22] |
NaSnHg | F3m | LiAgSb | [23] | KInHg | P6/m | own | [24] |
NaPbHg | F3m | LiAgSb | [23] | RbGeHg | Pmn | NaSi | [20] |
NaSnHg | Pbcn | own | [25] | RbGeHg | Pmn | NaSi | [20] |
NaTlHg | Fd3m | NaTl | [26] | RbSnHg | Pmn | NaSi | [22] |
NaCHg | Pa | own | [27] | CsSnHg | Pmn | NaSi | [22] |
NaCHg | Pa | NaRbC | [27] | ||||
NaKHg | Pmn | own | [13] | ||||
Ternary amalgams with alkaline earth metals | |||||||
MgLiHg | Fmm | CuMnAl | [14] | BaGaHg | Cmcm | own | [28] |
MgGaHg | I4/a | PtAl | [29] | BaGaHg | I4/amd | own | [28] |
MgAuHg | Pnma | CoSi | [30] | BaGaHg | Pmmn | BaZnHg | [28] |
MgAuHg | Pmm | CsCl | [30] | BaInHg | Imma | KHg | [31] |
MgAuHg | P6/mmc | NaAs | [30] | BaInHg | I4/mmm | BaAl | [28] |
CaLiHg | Imm | own | [15] | BaInHg | Pmm | BaHg | [32] |
CaSnHg | P6/mmm | UHg | [33] | BaInHg | Pnma | BaHg | [34] |
CaSnHg | P6mc | LiGaGe | [33] | BaInHg | Cmmm | own | [32] |
CaPbHg | P6/mmc | BeZrSi | [33] | BaInHg | Immm | LaAl | [28] |
CaZnHg | P3m | CuAl | [35] | BaTlHg | P4/mnm | own | [36] |
CaCuHg | P3m | CuAl | [35] | BaTlHg | C2/m | EuIn | [37] |
CaAuHg | P3m | CuAl | [35] | BaGeHg | Pmn | NaSi | [38] |
SrSnHg | P6mc | LiGaGe | [33] | BaSnHg | P6/mmc | BeZrSi | [33] |
SrPbHg | P6mc | LiGaGe | [33] | BaPbHg | Imma | KHg | [33] |
SrTlHg | P4/mnm | BaTlHg | [36] | BaZnHg | Pmmn | own | [39] |
SrLiHg | Imm | CaLiHg | [15] | BaZnHg | I3d | own | [39] |
SrInHg | Immm | LaAl | [40] | BaZnHg | F3m | own | [41] |
SrInHg | C2/m | EuIn | [40] | BaCdHg | Immm | LaAl | [28] |
SrInHg | C2/m | EuIn | [40] | BaCdHg | F3m | own | [41] |
SrInHg | C2/m | EuIn | [40] | ||||
SrInHg | C2/m | SrInHg | [40] | ||||
SrInHg | I4/mmm | CeAlGa | [40] | ||||
SrInHg | I4/mmm | CeAlGa | [40] | ||||
SrInHg | I4/mmm | CeAlGa | [40] | ||||
Ternary amalgams with lanthanoid metals | |||||||
CePdHg | P2m | ZrNiAl | [42] | EuSnHg | P6mc | LiGaGe | [33] |
PrPdHg | P2m | ZrNiAl | [42] | EuPbHg | P6mc | LiGaGe | [33] |
PrFeHg | I4/mcm | PrFeGe | [43] | GdPdHg | P2m | ZrNiAl | [42] |
NdFeHg | I4/mcm | PrFeGe | [43] | YbSnHg | P6mc | LiGaGe | [33] |
SmPdHg | P2m | ZrNiAl | [42] | YbPbHg | P6/mmc | BeZrSi | [33] |
YbLiHg | Imm | LiCaHg | [15] |
Composition | CsNaHg |
Crystal system | tetragonal |
Space group | I4/mmm, No. 139 |
Lattice parameters a, c (Å) | 7.3054(7), 20.046(3) |
V (Å) | 1069.8(3) |
Z | 2 |
Density (X-ray) (g·cm) | 11.76 |
Diffractometer | STOE IPDS 1 |
Ag-K radiation, = 0.56086 Å | |
Absorption coeff. (mm) | 71.24 |
range (°) | 2.34–26.24 |
Index range | −9 ≤ h, k ≤ 9, |
−27 ≤ l ≤ 27 | |
No. of collected refl. | 5786 |
No. of independent refl. | 448 |
No. of indep. refl. (I ≥ 2(I)) | 363 |
0.1694 | |
0.0571 | |
F(000) | 3034 |
Corrections | Lorentz, polarisation, absorption effects |
Absorption correction | numerical, indexed crystal faces [46,47] |
Structure solution | direct methods [48] |
Structure refinement | full-matrix least-squares on [48] |
No. of L.S. parameters | 21 |
GooF | 1.015 |
R values (I ≥ 2(I)) | R1 = 0.0325, wR2 = 0.0649 |
R values (all data) | R1 = 0.0453, wR2 = 0.0679 |
Res. (e) min/max (eÅ) | −3.108/+2.331 |
Extinction coefficient | 0.0029(2) |
CCDC deposition No. | 2031829 |
Calculation details | |||
R (all atoms) | 132.3 pm (2.5 a.u.) | ||
R · K | 8.0 | ||
k-points/BZ | 1000 | ||
k-points/IBZ | 99 | ||
Monkhorst-Pack grid | 10 × 10 × 10 | ||
Bader charges | |||
Na | +0.819 | ||
Cs | +0.763 | ||
Hg1 | −0.113 | ||
Hg2 | −0.169 | ||
Hg3 | −0.074 | ||
Bond critical points | |||
(eÅ) | Bond | dist. (Å) | label |
0.0312 | Cs–Hg1 | 4.1925(5) | |
0.0395 | Cs–Hg2 | 4.0132(9) | |
0.0581 | Na–Hg2 | 3.150(3) | |
0.0488 | Na–Hg2 | 3.304(11) | |
0.3041 | Hg1–Hg1 | 2.8443(14) | V |
0.2414 | Hg1–Hg1 | 2.9759(16) | IV |
0.2429 | Hg1–Hg2 | 2.9792(8) | II |
0.2081 | Hg1–Hg1 | 3.0621(12) | III |
0.2670 | Hg2–Hg2 | 2.9226(10) | I |
0.2061 | Hg2–Hg3 | 3.0670(5) | VI |
Crystal system | tetragonal | ||
Space group | I4/mmm, No. 139 | ||
Lattice parameters a, c (Å) | 7.3169(3), 20.058(1) | ||
V (Å) | 1073.9(1) | ||
Z | 2 | ||
Calc. density (g·cm) | 11.719(1) | ||
Radiation/wavelength (Å) | Mo-K1, 0.70932 | ||
Step size (°) | 0.015 | ||
Data points | 3600 | ||
Diffractometer | STOE Stadi P | ||
Detector | Dectris MYTHEN 2K | ||
Sample geometry | capillary (⌀ = 0.5 mmm) | ||
range (°) | 1.0–28.0 | ||
Refined parameters | 35 | ||
Background function | shifted Chebyshev | ||
Background parameters | 20 | ||
Peak shape function | fundamental parameter approach | ||
R/% | 1.521 | ||
R/% | 2.020 | ||
R/% | 1.220 | ||
R/% | 1.557 | ||
GooF on | 1.656 | ||
Atom | x | y | z |
Cs1 | 0 | 0 | 0 |
Na1 | 0 | 0 | 0.309(3) |
Hg1 | 0 | 0.2956(5) | 0.4291(2) |
Hg2 | 0.1987(3) | x | 0.1720(2) |
Hg3 | 0 | 2/4 | 1/4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hohl, T.; Tambornino, F.; Hoch, C. Structure and Bonding in CsNa2Hg18, a New Ternary Amalgam with Strong Coulombic Bonding Contributions. Crystals 2022, 12, 1679. https://doi.org/10.3390/cryst12111679
Hohl T, Tambornino F, Hoch C. Structure and Bonding in CsNa2Hg18, a New Ternary Amalgam with Strong Coulombic Bonding Contributions. Crystals. 2022; 12(11):1679. https://doi.org/10.3390/cryst12111679
Chicago/Turabian StyleHohl, Timotheus, Frank Tambornino, and Constantin Hoch. 2022. "Structure and Bonding in CsNa2Hg18, a New Ternary Amalgam with Strong Coulombic Bonding Contributions" Crystals 12, no. 11: 1679. https://doi.org/10.3390/cryst12111679
APA StyleHohl, T., Tambornino, F., & Hoch, C. (2022). Structure and Bonding in CsNa2Hg18, a New Ternary Amalgam with Strong Coulombic Bonding Contributions. Crystals, 12(11), 1679. https://doi.org/10.3390/cryst12111679