Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors
Abstract
:1. Introduction
2. Computational Model
3. Results and Discussion
3.1. Electronic Properties
3.2. Sensing Properties
3.3. I-V Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, C.; Lin, F.; Suenaga, K.; Iijima, S. Fabrication of a Freestanding Boron Nitride Single Layer and Its Defect Assignments. Phys. Rev. Lett. 2009, 102, 195505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, J.C.; Chuvilin, A.; Algara-Siller, G.; Biskupek, J.; Kaiser, U. Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes. Nano Lett. 2009, 9, 2683–2689. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.K.; Hsu, A.; Jia, X.; Kim, S.M.; Shi, Y.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J.F.; Dresselhaus, M.; Palacios, T.; et al. Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices. Nano Lett. 2012, 6, 8583–8590. [Google Scholar] [CrossRef]
- Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2013, 43, 934–959. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.M.; et al. High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 2014, 7, 1232–1240. [Google Scholar] [CrossRef]
- Kostoglou, N.; Polychronopoulou, K.; Rebholz, C. Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 2015, 112, 42–45. [Google Scholar] [CrossRef]
- Gao, X.; Wang, S.; Lin, S. Defective Hexagonal Boron Nitride Nanosheet on Ni(111) and Cu(111): Stability, Electronic Structures, and Potential Applications. ACS Appl. Mater. Interfaces 2016, 8, 24238–24247. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef]
- Haubner, R.; Wilhelm, M.; Weissenbacher, R.; Lux, B. Boron Nitrides—Properties, Synthesis and Applications. In High Performance Non-Oxide Ceramics II; Springer: Berlin/Heidelberg, Germany, 2002; pp. 1–45. [Google Scholar]
- Eichler, J.; Lesniak, C. Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 2008, 28, 1105–1109. [Google Scholar] [CrossRef]
- Dean, C.R.; Young, A.F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K.L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.I.-J.; Yamoah, M.A.; Li, Q.; Karamlou, A.H.; Dinh, T.; Kannan, B.; Braumüller, J.; Kim, D.; Melville, A.J.; Muschinske, S.E.; et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 2022, 21, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Bray, K.; Ford, M.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2015, 11, 37–41. [Google Scholar] [CrossRef]
- Kim, S.; Fröch, J.E.; Christian, J.; Straw, M.; Bishop, J.; Totonjian, D.; Watanabe, K.; Taniguchi, T.; Toth, M.; Aharonovich, I. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 2018, 9, 2623. [Google Scholar] [CrossRef] [Green Version]
- Fröch, J.E.; Kim, S.; Mendelson, N.; Kianinia, M.; Toth, M.; Aharonovich, I. Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities. ACS Nano 2020, 14, 7085–7091. [Google Scholar] [CrossRef]
- White, S.; Stewart, C.; Solntsev, A.S.; Li, C.; Toth, M.; Kianinia, M.; Aharonovich, I. Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride. Optica 2021, 8, 1153. [Google Scholar] [CrossRef]
- Caldwell, D.J.; Kretinin, V.A.; Chen, Y.; Giannini, V.; Fogler, M.M.; Francescato, Y.; Ellis, T.C.; Tischler, G.J.; Woods, R.C.; Giles, J.A.; et al. Sub-diffractional volume-confined polaritons in the naural hyperbolic material hexagonal boron nitride. Nat. Commun. 2014, 5, 5221. [Google Scholar] [CrossRef] [Green Version]
- Giles, A.J.; Dai, S.; Vurgaftman, I.; Hoffman, T.; Liu, S.; Lindsay, L.; Ellis, C.T.; Assefa, N.; Chatzakis, I.; Reinecke, T.L.; et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 2018, 17, 134–139. [Google Scholar] [CrossRef]
- Li, J.; Zhou, G.; Chen, Y.; Gu, B.-L.; Duan, W. Magnetism of C Adatoms on BN Nanostructures: Implications for Functional Nanodevices. J. Am. Chem. Soc. 2009, 131, 1796–1801. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Lett. 2010, 10, 5049–5055. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, H.; Atta, M.M.; Osman, W.; Zhang, Q. Two-dimensional quantum dots for highly efficient heterojunction solar cells. J. Colloid Interface Sci. 2021, 603, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Alem, N.; Ramasse, Q.M.; Seabourne, C.R.; Yazyev, O.V.; Erickson, K.; Sarahan, M.C.; Kisielowski, C.; Scott, A.J.; Louie, S.G.; Zettl, A. Subangstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride. Phys. Rev. Lett. 2012, 109, 205502. [Google Scholar] [CrossRef] [Green Version]
- Chernozatonskii, L.A.; Demin, V.; Bellucci, S. Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: Modeling of structures and electronic properties. Sci. Rep. 2016, 6, 38029. [Google Scholar] [CrossRef]
- Payod, R.B.; Saroka, V.A. Ab Initio Study of Absorption Resonance Correlations between Nanotubes and Nanoribbons of Graphene and Hexagonal Boron Nitride. Semiconductors 2019, 53, 1929–1934. [Google Scholar] [CrossRef] [Green Version]
- Barone, V.; Peralta, J.E. Magnetic Boron Nitride Nanoribbons with Tunable Electronic Properties. Nano Lett. 2008, 8, 2210–2214. [Google Scholar] [CrossRef] [Green Version]
- Li, L.L.; Yu, X.F.; Yang, X.J.; Zhang, X.H.; Xu, X.W.; Jin, P.; Zhao, J.L.; Wang, X.X.; Tang, C.C. Electronic properties and relative stabilities of heterogeneous edge-decorated zigzag boron nitride nanoribbons. J. Alloys Compd. 2015, 649, 1130–1135. [Google Scholar] [CrossRef]
- Chopra, N.G.; Luyken, R.J.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Boron Nitride Nanotubes. Science 1995, 269, 966–967. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Tang, C.C.; Zhi, C.Y. Boron Nitride Nanotubes. Adv. Mater. 2007, 19, 2413–2432. [Google Scholar] [CrossRef]
- Lei, Z.; Xu, S.; Wan, J.; Wu, P. Facile preparation and multifunctional applications of boron nitride quantum dots. Nanoscale 2015, 7, 18902–18907. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Singh, R.K.; Yadav, S.K.; Savu, R.; Moshkalev, S.A. Mechanical pressure induced chemical cutting of boron nitride sheets into boron nitride quantum dots and optical properties. J. Alloys Compd. 2016, 683, 38–45. [Google Scholar] [CrossRef]
- Thangasamy, P.; Santhanam, M.; Sathish, M. Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS Appl. Mater. Interfaces 2016, 8, 18647–18651. [Google Scholar] [CrossRef]
- Huo, B.; Liu, B.; Chen, T.; Cui, L.; Xu, G.; Liu, M.; Liu, J. One-Step Synthesis of Fluorescent Boron Nitride Quantum Dots via a Hydrothermal Strategy Using Melamine as Nitrogen Source for the Detection of Ferric Ions. Langmuir 2017, 33, 10673–10678. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Zhang, L.; Li, F.-F.; Cui, W.-R.; Liang, R.-P.; Qiu, J.-D. Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. ACS Appl. Mater. Interfaces 2018, 10, 7315–7323. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Hu, C.; Wang, X. One-pot solvothermal synthesis of water-soluble boron nitride nanosheets and fluorescent boron nitride quantum dots. Mater. Lett. 2018, 234, 306–310. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Park, J.H.; Neupane, R.; Reyes, C.A.D.L.; Sudeep, P.M.; Paulose, M.; Martí, A.A.; Tiwary, C.S.; Khabashesku, V.N.; Varghese, O.K.; et al. Fluorinated Boron Nitride Quantum Dots: A New 0D Material for Energy Conversion and Detection of Cellular Metabolism. Part. Part. Syst. Charact. 2019, 36, 1800346. [Google Scholar] [CrossRef]
- Ahmad, P.; Khandaker, M.U.; Jamil, S.; Rehman, F.; Muhammad, N.; Ullah, Z.; Khan, M.A.R.; Khan, G.; Alotaibi, M.A.; Alharthi, A.I.; et al. Dual role of Magnesium as a catalyst and precursor with enriched boron in the synthesis of Magnesium diboride nanoparticles. Ceram. Int. 2020, 46, 26809–26812. [Google Scholar] [CrossRef]
- Lin, L.; Xu, Y.; Zhang, S.; Ross, I.M.; Ong, A.C.M.; Allwood, D.A. Fabrication and Luminescence of Monolayered Boron Nitride Quantum Dots. Small 2013, 10, 60–65. [Google Scholar] [CrossRef]
- Liu, B.; Yan, S.; Song, Z.; Liu, M.; Ji, X.; Yang, W.; Liu, J. One-Step Synthesis of Boron Nitride Quantum Dots: Simple Chemistry Meets Delicate Nanotechnology. Chem.—A Eur. J. 2016, 22, 18899–18907. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, Y.; Hou, X.; Yang, T.; Liang, T.; Zheng, J. A wide range photoluminescence intensity-based temperature sensor developed with BN quantum dots and the photoluminescence mechanism. Sens. Actuators B Chem. 2020, 304, 127353. [Google Scholar] [CrossRef]
- Zhang, X.; An, L.; Bai, C.; Chen, L.; Yu, Y. Hexagonal boron nitride quantum dots: Properties, preparation and applications. Mater. Today Chem. 2021, 20, 100425. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Elhaes, H.; Ibrahim, M. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations. Chem. Phys. Lett. 2018, 695, 138–148. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Saroka, V.A.; Ali, M.; Teleb, N.H.; Elhaes, H.; Ibrahim, M.A. Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study. Phys. E Low-Dimens. Syst. Nanostructures 2018, 108, 339–346. [Google Scholar] [CrossRef]
- Nguyen, V.; Yan, L.; Zhao, N.; van Canh, N.; Hang, N.T.N.; Le, P.H. Tuning photoluminescence of boron nitride quantum dots via surface functionalization by femtosecond laser ablation. J. Mol. Struct. 2021, 1244, 130922. [Google Scholar] [CrossRef]
- Krepel, D.; Kalikhman-Razvozov, L.; Hod, O. Edge Chemistry Effects on the Structural, Electronic, and Electric Response Properties of Boron Nitride Quantum Dots. J. Phys. Chem. C 2014, 118, 21110–21118. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Bhowmick, S.; Yakobson, B.I. BN White Graphene with “Colorful” Edges: The Energies and Morphology. Nano Lett. 2011, 11, 3113–3116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, W.; Zhu, J. Missing links towards understanding the equilibrium shapes of hexagonal boron nitride: Algorithm, hydrogen passivation, and temperature effects. Nanoscale 2018, 10, 17683–17690. [Google Scholar] [CrossRef] [Green Version]
- Xi, Y.; Zhao, M.; Wang, X.; Li, S.; He, X.; Wang, Z.; Bu, H. Honeycomb-Patterned Quantum Dots beyond Graphene. J. Phys. Chem. C 2011, 115, 17743–17749. [Google Scholar] [CrossRef]
- Xu, P.; Yu, S.S.; Qiao, L. Electronic properties of a patchwork of armchair graphene nanoribbon and triangular boron nitride nanoflake. Mol. Simul. 2013, 39, 487–494. [Google Scholar] [CrossRef]
- Xi, Y.; Zhao, X.; Wang, A.; Wang, X.; Bu, H.; Zhao, M. Tuning the electronic and magnetic properties of triangular boron nitride quantum dots via carbon doping. Phys. E Low-Dimens. Syst. Nanostructures 2013, 49, 52–60. [Google Scholar] [CrossRef]
- Yamijala, S.S.; Bandyopadhyay, A.; Pati, S.K. Structural Stability, Electronic, Magnetic, and Optical Properties of Rectangular Graphene and Boron Nitride Quantum Dots: Effects of Size, Substitution, and Electric Field. J. Phys. Chem. C 2013, 117, 23295–23304. [Google Scholar] [CrossRef] [Green Version]
- Yamijala, S.S.; Bandyopadhyay, A.; Pati, S.K. Electronic properties of zigzag, armchair and their hybrid quantum dots of graphene and boron-nitride with and without substitution: A DFT study. Chem. Phys. Lett. 2014, 603, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, D.; Chattaraj, P.K. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties. J. Physics Condens. Matter 2017, 29, 425201. [Google Scholar] [CrossRef] [PubMed]
- Degheidy, A.R.; Elkenany, E.B. Pressure and composition dependence of electronic, optical and mechanical properties of GaP Sb1− alloys. Thin Solid Films 2016, 599, 113–118. [Google Scholar] [CrossRef]
- Pan, C.; Long, M.; He, J. Enhanced thermoelectric properties in boron nitride quantum-dot. Results Phys. 2017, 7, 1487–1491. [Google Scholar] [CrossRef]
- Xie, B.; Liu, H.; Hu, R.; Wang, C.; Hao, J.; Wang, K.; Luo, X. Targeting Cooling for Quantum Dots in White QDs-LEDs by Hexagonal Boron Nitride Platelets with Electrostatic Bonding. Adv. Funct. Mater. 2018, 28, 1801407. [Google Scholar] [CrossRef]
- Zhou, S.; Ma, Y.; Zhang, X.; Lan, W.; Yu, X.; Xie, B.; Wang, K.; Luo, X. White-Light-Emitting Diodes from Directional Heat-Conducting Hexagonal Boron Nitride Quantum Dots. ACS Appl. Nano Mater. 2019, 3, 814–819. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Yamijala, S.S.R.K.C.; Pati, S.K. Tuning the electronic and optical properties of graphene and boron-nitride quantum dots by molecular charge-transfer interactions: A theoretical study. Phys. Chem. Chem. Phys. 2013, 15, 13881–13887. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, D.; Chattaraj, P.K. Sequestration and Activation of Small Gas Molecules on BN-Flakes and the Effect of Various Metal Oxide Molecules therein. J. Phys. Chem. C 2016, 120, 27782–27799. [Google Scholar] [CrossRef]
- Neek-Amal, M.; Beheshtian, J.; Sadeghi, A.; Michel, K.H.; Peeters, F.M. Boron Nitride Monolayer: A Strain-Tunable Nanosensor. J. Phys. Chem. C 2013, 117, 13261–13267. [Google Scholar] [CrossRef] [Green Version]
- Matsoso, J.B.; Garcia-Martinez, C.; Mongwe, H.T.; Toury, B.; Serbena, M.P.J.; Journet, C. Room temperature ammonia vapour detection on hBN flakes. J. Phys. Mater. 2021, 4, 044007. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Younis, W.O.; Saroka, V.A.; Teleb, N.H.; Yunoki, S.; Zhang, Q. Interaction of hydrated metals with chemically modified hexagonal boron nitride quantum dots: Wastewater treatment and water splitting. Phys. Chem. Chem. Phys. 2020, 22, 2566–2579. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Dai, P.; Jiang, X.; Wang, X.; Zhang, C.; Tang, D.; Weng, Q.; Wang, X.; Pakdel, A.; Tang, C.; et al. Template-free synthesis of boron nitride foam-like porous monoliths and their high-end applications in water purification. J. Mater. Chem. A 2016, 4, 1469–1478. [Google Scholar] [CrossRef]
- Ikram, M.; Hassan, J.; Imran, M.; Haider, J.; Ul-Hamid, A.; Shahzadi, I.; Ikram, M.; Raza, A.; Qumar, U.; Ali, S. 2D chemically exfoliated hexagonal boron nitride (hBN) nanosheets doped with Ni: Synthesis, properties and catalytic application for the treatment of industrial wastewater. Appl. Nanosci. 2020, 10, 3525–3528. [Google Scholar] [CrossRef]
- Osman, W.; Abdelsalam, H.; Ali, M.; Teleb, N.; Yahia, I.; Ibrahim, M.; Zhang, Q. Electronic and magnetic properties of graphene quantum dots doped with alkali metals. J. Mater. Res. Technol. 2021, 11, 1517–1533. [Google Scholar] [CrossRef]
- Abdelsalam, H.; Zhang, Q.F. Properties and applications of quantum dots derived from two-dimensional materials. Adv. Phys. X 2022, 7, 2048966. [Google Scholar] [CrossRef]
- Park, H.; Wadehra, A.; Wilkins, J.W.; Neto, A.H.C. Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride. Appl. Phys. Lett. 2012, 100, 253115. [Google Scholar] [CrossRef] [Green Version]
- Tan, B.; Wu, Y.; Gao, F.; Yang, H.; Hu, Y.; Shang, H.; Zhang, X.; Zhang, J.; Li, Z.; Fu, Y.; et al. Engineering the Optoelectronic Properties of 2D Hexagonal Boron Nitride Monolayer Films by Sulfur Substitutional Doping. ACS Appl. Mater. Interfaces 2022, 14, 16453–16461. [Google Scholar] [CrossRef]
- Hayee, F.; Yu, L.; Zhang, J.L.; Ciccarino, C.J.; Nguyen, M.; Marshall, A.F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T.F.; et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539. [Google Scholar] [CrossRef]
- Mendelson, N.; Chugh, D.; Reimers, J.R.; Cheng, T.S.; Gottscholl, A.; Long, H.; Mellor, C.J.; Zettl, A.; Dyakonov, V.; Beton, P.H.; et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.E.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.P.G.A.; Petersson, G.A.; Nakatsuji, H.J.R.A.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1998, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104–154119. [Google Scholar] [CrossRef] [Green Version]
- Abdelsalam, H.; Osman, W.; Elkader, O.H.A.; Zhang, Q. Vibrationally-resolved absorption and fluorescence spectra of chemically modified 2D hexagonal boron nitride quantum dots. Chem. Phys. Lett. 2022, 806, 140025. [Google Scholar] [CrossRef]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef] [Green Version]
- Szarek, P.; Suwannawong, S.; Doi, K.; Kawano, S. Theoretical Study on Physicochemical Aspects of a Single Molecular Junction: Application to the Bases of ssDNA. J. Phys. Chem. C 2013, 117, 10809–10817. [Google Scholar] [CrossRef]
- El-Mansy, M.A.M.; Osman, W.; Abdelsalam, H. The electronic and optical absorption properties of pristine, homo and hetero Bi-nanoclusters. Chem. Phys. 2021, 544, 111113. [Google Scholar] [CrossRef]
- Donarelli, M.; Ottaviano, L. 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors 2018, 18, 3638. [Google Scholar] [CrossRef] [PubMed]
Struct. | Ea (eV) | d (Å) | Q (e) | Eg (eV) |
---|---|---|---|---|
shBN (reference) | -- | -- | -- | |
shBN-NO2-a | 0.32 | 2.88 | −0.34 | 3.07 α, 1.95 β |
shBN-NO2-b | 0.32 | 3.07 | −0.39 | 2.98 α, 1.85 β |
shBN-acet | 0.68 | 2.91 | −0.02 | 5.61 |
shBN-P-NO2-a | 0.38 | 2.91 | −0.25 | 3.35 α, 2.16 β |
shBN-P-NO2-b | 0.28 | 2.93 | −0.17 | 3.55 α, 2.37 β |
shBN-P-acet | 0.61 | 2.93 | 0.002 | 5.49 |
shBN-vac-NO2-a | 2.07 | 1.57 | −0.54 | 4.29 |
shBN-vac-NO2-b | 4.07 | 1.43 | −0.40 | 3.17 |
shBN-vac-acet. | 2.30 | 1.39 | −0.14 | 3.51 |
shBN-O-NO2-a | 4.95 | 1.57 | −0.53 | 4.62 |
shBN-O-NO2-b | 1.53 | 1.53 | −0.61 | 4.22 |
shBN-O-acet | 2.94 | 1.46 | −0.38 | 3.75 α, 5.67 β |
shBN-Si-NO2-a | 2.42 | 1.90 | −0.52 | 4.34 |
shBN-Si-NO2-b | 2.72 | 1.80 | −0.53 | 3.77 |
shBN-Si-acet | 0.64 | 1.81 | −0.19 | 2.45 α, 3.93 β |
shBN-P-C-NO2-a | 2.99 | 1.55 | −0.73 | 4.19 |
shBN-P-C-NO2-b | 2.17 | 1.67 | −0.66 | 2.97 |
shBN-P-C-acet | 0.67 | 2.71 | 0.02 | 2.44 α, 5.58 β |
shBN-Si-C-NO2-a | 1.59 | 1.54 | −0.51 | 3.41 α, 3.16 β |
shBN-Si-C-NO2-b | 0.99 | 1.98 | −0.55 | 1.41 α, 4.18 β |
shBN-Si-C-acet | 0.84 | 2.83 | 0.003 | 3.08 |
Struct. | Ea (eV) | Q (e) | d (Å) | Eg (eV) |
---|---|---|---|---|
shBN-CH4-a | 0.19 | −0.007 | 2.90 | 5.82 |
shBN-CH4-b | 0.20 | −0.005 | 3.01 | 5.82 |
shBN-eth | 0.57 | 0.012 | 2.69 | 5.87 |
shBN-P-CH4-a | 0.19 | −0.008 | 3.01 | 5.74 |
shBN-P-CH4-b | 0.19 | −0.007 | 2.99 | 5.75 |
shBN-P-eth | 0.63 | 0.018 | 2.78 | 5.68 |
shBN-vac-CH4-a | 0.28 | −0.008 | 3.03 | 3.72 α, 4.17 β |
shBN-vac-CH4-b | 0.19 | −0.009 | 2.97 | 3.78 α, 4.27 β |
shBN-vac-eth | 0.71 | 0.015 | 3.01 | 3.80 α, 4.16 β |
shBN-O-CH4-a | 0.59 | −0.037 | 2.76 | 2.20 α, 5.93 β |
shBN-O-CH4-b | 0.34 | 0.008 | 3.11 | 5.59 α, 4.54 β |
shBN-O-eth | 1.09 | 0.012 | 2.49 | 2.21 α, 6.04 β |
shBN-Si-CH4-a | 0.19 | −0.006 | 2.89 | 5.27 α, 2.59 β |
shBN-Si-CH4-b | 0.18 | −0.003 | 3.00 | 5.28 α, 2.59 β |
shBN-Si-eth | 0.59 | −0.019 | 2.14 | 5.20 α, 2.66 β |
shBN-P-C-CH4-a | 0.22 | −0.012 | 2.79 | 2.47 α, 5.78 β |
shBN-P-C-CH4-b | 0.19 | −0.006 | 3.04 | 2.46 α, 5.78 β |
shBN-P-C-eth | 0.69 | 0.030 | 2.51 | 2.51 α, 5.78 β |
shBN-Si-C-CH4-a | 0.22 | −0.007 | 2.96 | 2.85 |
shBN-Si-C-CH4-b | 0.19 | −0.01 | 3.01 | 2.82 |
shBN-Si-C-eth | 0.61 | 0.005 | 2.87 | 2.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelsalam, H.; Saroka, V.A.; Atta, M.M.; Abd-Elkader, O.H.; Zaghloul, N.S.; Zhang, Q. Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals 2022, 12, 1684. https://doi.org/10.3390/cryst12111684
Abdelsalam H, Saroka VA, Atta MM, Abd-Elkader OH, Zaghloul NS, Zhang Q. Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals. 2022; 12(11):1684. https://doi.org/10.3390/cryst12111684
Chicago/Turabian StyleAbdelsalam, Hazem, Vasil A. Saroka, Mohamed M. Atta, Omar H. Abd-Elkader, Nouf S. Zaghloul, and Qinfang Zhang. 2022. "Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors" Crystals 12, no. 11: 1684. https://doi.org/10.3390/cryst12111684
APA StyleAbdelsalam, H., Saroka, V. A., Atta, M. M., Abd-Elkader, O. H., Zaghloul, N. S., & Zhang, Q. (2022). Tunable Sensing and Transport Properties of Doped Hexagonal Boron Nitride Quantum Dots for Efficient Gas Sensors. Crystals, 12(11), 1684. https://doi.org/10.3390/cryst12111684