Stabilization of Tetrachloride with Mn (II) and Co (II)Complexes and 4-Tert-Butylpyridinium Organic Cation: Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analyses
Abstract
:1. Introduction
2. Experimental
2.1. Chemical Preparation
2.2. Characterization
2.2.1. SEM Observation and EDX Analysis
2.2.2. Single-Crystal X-ray Structural Investigation
2.2.3. IR spectroscopy, UV Spectroscopy and Thermal Analysis (TGA-DTA)
3. Results and Discussion
3.1. SEM/EDX Observation
3.2. Description of the Structure
3.2.1. Geometry of the [MCl4]2−Anions
3.2.2. Geometry of the Organic Cation
3.3. Hirshfeld Surface (HS) Investigation
3.4. FT–IR Spectroscopy
3.5. Optical Behavior
3.6. Thermal Phenomena
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouerghi, Z.; Roisnel, T.; Fezai, R.; Kefi, R. Physico-chemical characterization, Hirshfeld surface analysis and opto-electric properties of a new hybrid material: Tris (2-amino-5-chloropyridinium) hexachlorobismuthate (III). J. Mol. Struct. 2018, 1173, 439–447. [Google Scholar] [CrossRef]
- Fallas, J.A.; González, L.; Corral, I. Density functional theory rationalization of the substituent effects in trifluorome-thyl-pyridinol derivatives. Tetrahedron 2009, 65, 232–239. [Google Scholar] [CrossRef]
- Płowaś, I.; Szklarz, P.; Jakubas, R.; Bator, G. Structural, thermal and dielectric studies on the novel solution grown (4-dimethylaminopyridinium) chloroantimonate(III) and chlorobismuthate(III) crystals. Mater. Res. Bull. 2011, 46, 1177–1185. [Google Scholar] [CrossRef]
- Awwadi, F.F.; Haddad, S.F. Polymorphism in 2, 6-dimethylpyridinium tetrachlorocuprate (II): Theoretical and crystallo-graphic studies. J. Mol. Struct. 2012, 1020, 28–32. [Google Scholar] [CrossRef]
- Ruiz, A.E.; Hueso, A.P.; Mijangos, E.; Monreal, G.O.; Nöth, H.; Parra, A.F.; Contreras, R.; Behrens, N.B. Cobalt (II), nickel (II) and zinc (II) coordination compounds derived from aromatic amines. Polyhedron 2011, 30, 2090–2098. [Google Scholar] [CrossRef]
- Cotton, F.A.; Daniels, L.M.; Huang, P.L. Correlation of structure and triboluminescence for tetrahedral manganese(II) com-pounds. Inorg. Chem. 2001, 40, 3576–3578. [Google Scholar] [CrossRef] [PubMed]
- Paren, A.R.; Landee, C.P.; Turnbull, M.M. Transition metal halide salts of N-methylmorpholine: Synthesis, crystal structures and magnetic properties of N- methylmorpholinium salts of copper(II), cobalt(II) and manganese(II). Inorg. Chim. Acta 2007, 360, 1943–1953. [Google Scholar] [CrossRef]
- El-Korashy, A.; Brik, M. Crystal growth, spectroscopic and crystal field studies of [N(CH3)4]2MnCl4 and [N(CH3)4]2CoCl4 single crystals in the paraelectric phase. Solid State Commun. 2005, 135, 298–303. [Google Scholar] [CrossRef]
- Murrie, M. Cobalt(ii) single-molecule magnets. Chem. Soc. Rev. 2010, 39, 1986–1995. [Google Scholar] [CrossRef]
- Piecha-Bisiorek, A.; Bieńko, A.; Jakubas, R.; Boča, R.; Weselski, M.; Kinzhybalo, V.; Pietraszko, A.; Wojciechowska, M.; Medycki, W.; Kruk, D. Physical and Structural Characterization of Imidazolium-Based Organic–Inorganic Hybrid: (C3N2H5)2[CoCl4]. J. Phys. Chem. A 2016, 120, 2014–2021. [Google Scholar] [CrossRef]
- Wei, Y.-L.; Jing, J.; Shi, C.; Ye, H.-Y.; Wang, Z.-X.; Zhang, Y. High quantum yield and unusual photoluminescence behaviour in tetrahedral manganese(ii) based on hybrid compounds. Inorg. Chem. Front. 2018, 5, 2615–2619. [Google Scholar] [CrossRef]
- Bai, X.; Zhong, H.; Chen, B.; Chen, C.; Han, J.; Zeng, R.; Zou, B. Pyridine-Modulated Mn Ion Emission Properties of C10H12N2MnBr4 and C5H6NMnBr3 Single Crystals. J. Phys. Chem. C 2018, 122, 3130–3137. [Google Scholar] [CrossRef]
- Moussa, O.; Chebbi, H.; Zid, M. Inermolecularinteraction in [C6H10N3]2[CoCl4] complex: Synthesis, XRD/HSA relation, spectral and catecholase catalytic analysis. J. Mol. Struct. 2020, 1180, 72. [Google Scholar]
- Said, M.; Boughzala, H. Synthesis, crystal structure, vibrational study, optical properties and thermal behavior of a new hybrid material bis(3-amino-4-phenyl-1H-pyrazolium) tetrachloridocobaltate (II) monohydrate. J. Mol. Struct. 2020, 1203, 127413. [Google Scholar] [CrossRef]
- Chekhlov, A.N. 4,7,13,16,21,24-Hexaoxa-1,10-Diazoniabicyclo[8.8.8]-hexacosaneTetrachloromanganese (II) and Tetrachlo-rozinc (II) Hydrates: Synthesis and Crystal Structures. Russ. J. Coord. Chem. 2007, 33, 932–936. [Google Scholar] [CrossRef]
- Mączka, M.; Ciżman, A.; Poprawski, R.; Hanuza, J. Temperature-dependent vibrational studies of [N(C2H5)4]2MnCl4. J. Raman Spectrosc. 2007, 38, 1622–1627. [Google Scholar] [CrossRef]
- Hassen, S.; Chebbi, H.; Arfaoui, Y.; Robeyns, K.; Steenhaut, T.; Hermans, S.; Filinchuk, Y. Spectroscopic and structural studies, thermal characterization, optical proprieties and theoretical investigation of 2-aminobenzimidazolium tetrachlorocobaltate (II). Spectrochim. Acta Part A 2020, 240, 118612. [Google Scholar] [CrossRef]
- Mhadhbi, N.; Saïd, S.; Elleuch, S.; Lis, T.; Naïli, H. Experimental and DFT characterization of the organic–inorganic mono-hydrated Co(II) complex with 2,6-diaminopyridine ligand, (C5H8N3)2[CoBr4]·H2O. J. Mol. Struct. 2016, 1105, 16–24. [Google Scholar] [CrossRef]
- Barszcz, B. Coordination properties of didentate N, O heterocyclic alcohols and aldehydes towards Cu (II), Co (II), Zn (II) and Cd (II) ions in the solid state and aqueous solution. Coord. Chem. Rev. 2005, 249, 2259–2276. [Google Scholar] [CrossRef]
- Sui, B.; Fan, J.; Okamura, T.A.; Sun, W.Y.; Ueyama, N. Synthesis, structure and properties of Mn (II), Zn (II), Ag (I) and Cu (II) complexes with 1,3-bis (imidazole-1-ylmethyl)-5-methylbenzene. Solid State Sci. 2005, 7, 969–982. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Desper, J.; Valdes-Martinez, J. Controlling molecular and supramolecular structure of hydrogen-bonded coor-dination compounds. CrystEngComm 2004, 6, 413–418. [Google Scholar] [CrossRef]
- Keuleers, R.; Desseyn, H.O.; Papaefstathiou, G.S.; Drakopoulou, L.; Perlepes, S.P.; Raptopoulou, C.P.; Terzis, A. Hydro-gen-bonded networks based on manganese (II), nickel (II), copper (II) and zinc (II) complexes of N, N′-dimethylurea. Transit. Met. Chem. 2003, 28, 548–557. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Li, Q.; Shen, Y.; Pan, S.; Pan, J. Synthesis, crystal structure and optical property of manganese (II) halides based on pyridine ionic liquids with high quantum yield. Transit. Met. Chem. 2020, 45, 413–421. [Google Scholar] [CrossRef]
- Ouerghi, Z.; Fersi, M.A.; Elleuch, S.; Roisnel, T.; Othmani, A.; Kefi, R. A New Anionic Structure Type Of Chlorobismuthate Salt: X-ray Characterization, DFT, Optical and Dielectric Properties of (C4H10N)8[Bi2Cl11][BiCl6]. 2H2O. J. Cluster Sci. 2021, 32, 179–191. [Google Scholar] [CrossRef]
- Sayer, I.; Dege, N.; Ghalla, H.; Moliterni, A.; Naïli, H. Crystal structure, DFT studies and thermal characterization of new luminescent stannate (IV) based inorganic-organic hybrid compound. J. Mol. Struct. 2021, 1224, 129266. [Google Scholar] [CrossRef]
- Jomaa, I.; Noureddine, O.; Gatfaoui, S.; Issaoui, N.; Roisnel, T.; Marouani, H. Experimental, computational, and in silico analysis of (C8H14N2)2[CdCl6] compound. J. Mol. Struct. 2020, 1213, 128186. [Google Scholar] [CrossRef]
- Ouerghi, Z.; Gornitzka, H.; Temel, E.; Dridi, I.; Kefi, R. A new non-centrosymmetricChlorobismuthate (III) hybrid material: Crystal structure, optical properties and antibacterial study. J. Mol. Struct. 2019, 1181, 338–347. [Google Scholar] [CrossRef]
- Jomaa, I.; Issaoui, N.; Roisnel, T.; Marouani, H. Insight into non-covalent interactions in a tetrachlorocadmate salt with promising NLO properties: Experimental and computational analysis. J. Mol. Struct. 2021, 1242, 130730. [Google Scholar] [CrossRef]
- Hannachi, A.; Valkonen, A.; Rzaigui, M.; Smirani, W. Thiocyanate precursor impact on the formation of cobalt complexes: Synthesis and characterization. Polyhedron 2018, 161, 222–230. [Google Scholar] [CrossRef]
- Feddaoui, I.; Abdelbaky, M.S.; García-Granda, S.; Essalah, K.; Ben Nasr, C.; Mrad, M. Synthesis, crystal structure, vibrational spectroscopy, DFT, optical study and thermal analysis of a new stannate(IV) complex based on 2-ethyl-6-methylanilinium (C9H14N)2[SnCl6]. J. Mol. Struct. 2019, 1186, 31–38. [Google Scholar] [CrossRef]
- Mrad, M.L.; Belhajsalah, S.; Abdelbaky, M.S.M.; GarcíaGranda, S.; Essalah, K.; Ben Nasr, C. Synthesis, crystal structure, vibrational, optical properties and a theoretical study of a new Pb(II) complex with bis(1-methylpiperazine-1,4-diium): [C5H14N2]2PbCl6·3H2O. J. Coord. Chem. 2019, 72, 1–13. [Google Scholar] [CrossRef]
- Ben Mohamed, C.; Karoui, K.; Saidi, S.; Guidara, K.; Ben Rhaiem, A. Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4compound. Physica B 2014, 451, 87–95. [Google Scholar] [CrossRef]
- Al-Saleh, M.H. Electrical and mechanical properties of graphene/carbon nanotube hybrid nanocomposites. Synth. Met. 2015, 209, 41–46. [Google Scholar] [CrossRef]
- Salah, S.B.; da Silva, P.S.P.; Lefebvre, F.; Ben Nasr, C.; Ammar, S.; Mrad, M. Synthesis, crystal structure, physicochemical characterization of a new hybrid material, (2-hydroxyethyl)piperazine-1,4-diium hexachlorostannate(IV) monohydrate. J. Mol. Struct. 2017, 1137, 553–561. [Google Scholar] [CrossRef]
- Leuthold, J.; Koos, C.; Freude, W. Nonlinear silicon photonics. Nat. Photon 2010, 4, 535–544. [Google Scholar] [CrossRef]
- Hales, J.; Barlow, S.; Kim, H.; Mukhopadhyay, S.; Brédas, J.-L.; Perry, J.W.; Marder, S.R. Design of Organic Chromophores for All-Optical Signal Processing Applications. Chem. Mater. 2013, 26, 549–560. [Google Scholar] [CrossRef]
- Lin, G.; Luo, F.; Pan, H.; Smedskjaer, M.; Teng, Y.; Chen, D.; Qiu, J.; Zhao, Q. Universal Preparation of Novel Metal and Semiconductor Nanoparticle–Glass Composites with Excellent Nonlinear Optical Properties. J. Phys. Chem. C 2011, 115, 24598–24604. [Google Scholar] [CrossRef]
- Krishnakanth, K.N.; Seth, S.; Samanta, A.; Rao, S.V. Broadband ultrafast nonlinear optical studies revealing exciting multi-photon absorption coefficients in phase pure zero-dimensional Cs4PbBr6perovskite films. Nanoscale 2019, 11, 945–954. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Brandenburg, K. DIAMOND Version 2; Impact GbR: Bonn, Germany, 1998. [Google Scholar]
- Saleh, M.; Nugroho, A.A.; Dewi, K.; Supandi, A.; Onggo, D.; Kuhn, H.; van Loosdrecht, P. Optical Absorption Spectra of Mn2+ in of (C6H5CH2CH2NH3)2-MnCl4 and (NH2CH2CH2NH2)2-MnCl4 Hybrid Compounds. Key Eng. Mater. 2019, 811, 179–183. [Google Scholar] [CrossRef]
- Kassou, S.; Belaaraj, A.; Guionneau, P.; Shaltaf, R. Crystal structure, optical and electronic properties studies on an hybrid multifunctional MnCl4-based material. Adv. Compos. Hybrid Mater. 2019, 2, 373–380. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Chong, W.K.; Li, Y.; Ke, Y.; Ganguly, R.; Morris, S.A.; You, L.; Yu, T.; Sum, T.C.; et al. Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. J. Phys. Chem. A 2018, 122, 6416–6423. [Google Scholar] [CrossRef]
- Yang, L.; Powell, D.R.; Houser, R.P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: Structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 2007, 9, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.H.; Jin, L. Temperature-induced-to-configuration-regulated reversible isostructural phase transition in bis (triethylben-zylammonium) tetrachlorocobaltate (II). Inorg. Chem. Commun. 2012, 23, 98–102. [Google Scholar] [CrossRef]
- Jin, Z.-M.; Shun, N.; Ya-Ping LuÈ, Y.-P.; Huc, M.-L.; Shend, L. Bis(2-amino-6-methylpyridinium) tetrachlorozincate(II). Acta Crystallogr. Sect. CCryst. Struct. Commun. 2005, C61, m43–m45. [Google Scholar] [CrossRef] [PubMed]
- Khadri, A.; Bouchene, R.; Bouacida, S.; Sid, A.; Alswaidan, I.A.; Ramasami, P. Synthesis, structural, thermal, Hirshfeld surface and DFT studies on a new hybrid compound: Bis[4-(dimethylamino)pyridinium] tetrachloridomanganate (II). J. Coord. Chem. 2020, 73, 609–621. [Google Scholar] [CrossRef]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer v.3.1; University of Western Australia: Perth, WA, Australia, 2012. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Banerjee, S.; Ghosh, A.; Wu, B.; Lassahn, P.-G.; Janiak, C. Polymethylene spacer regulated structural divergence in cadmium complexes: Unusual trigonal prismatic and severely distorted octahedral coordination. Polyhedron 2005, 24, 593–599. [Google Scholar] [CrossRef]
- Mkaouar, I.; Hamdi, B.; Karâa, N.; Zouar, R. Synthesis, solid-state characterization and dielectric properties of a trichlorostanate (II) complex. Polyhedron 2015, 87, 424–432. [Google Scholar] [CrossRef]
- Sinnokrot, M.O.; Valeev, E.F.; Sherrill, C.D. Estimates of the ab initio limit for π−π interactions: The benzene dimer. J. Am. Chem. Soc. 2002, 124, 10887–10893. [Google Scholar] [CrossRef]
- Feki, H.; Elaoud, Z.; Mhiri, T.; Abid, Y.; Mlayah, A. Vibrational study of phase transition in N-benzyl methyl ammonium di-hydrogenmonophosphate monohydrate. Spectrochim. Acta Part A 2008, 69, 743–747. [Google Scholar] [CrossRef]
- Yurdakul, S.; Arıcı, K. Synthesis and vibrational spectra of metal halide complexes of 8-hydroxyquinoline in relation to their structures. J. Mol. Struct. 2004, 691, 45–49. [Google Scholar] [CrossRef]
- Jamróz, M.H.; Dobrowolski, J.C.; Brzozowski, R. Vibrational modes of 2,6-, 2,7-, and 2,3-diisopropylnaphthalene. A DFT study. J. Mol. Struct. 2006, 787, 172–183. [Google Scholar] [CrossRef]
- Oueslati, A.; Ben Nasr, C.; Durif, A.; Lefebvre, F. Synthesis and characterization of a new organic dihydrogen phosphate–arsenate: [H2(C4H10N2)][H2(As, P)O4]2. Mater. Res. Bull. 2005, 40, 970–980. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Q.; Zheng, F.-K.; Liu, Z.-F.; Wang, S.-H.; Wu, A.-Q.; Guo, G.-C. Intense photo- and tribo-luminescence of three tetrahedral manganese(ii) dihalides with chelating bidentate phosphine oxide ligand. Dalton Trans. 2015, 44, 3289–3294. [Google Scholar] [CrossRef]
- Hashim, H.; Abdallh, M.; Yousif, E. Studying the influence of cobalt chloride on the optical properties of poly (vinyl alcohol) films. Al-Nahrain J. Sci. 2012, 15, 40–45. [Google Scholar]
- Habibi, M.H.; Parhizkar, H.J. FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route syn-thesizednano-structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim. Acta Part A 2014, 127, 102–106. [Google Scholar] [CrossRef]
- Mathlouthi, M.; Janzen, D.E.; Rzaigui, M.; Smirani, W. Synthesis, crystal structure, thermal analysis, spectroscopic, and mag-netic properties of a novel organic cationtetrachlorocobaltate (II). J. Supercond. Nov. Magn. 2016, 29, 1573–1581. [Google Scholar]
- Derbel, A.; Omri, I.; Allouch, F.; Agrebi, A.; Mhiri, T.; Graia, M. Crystal structure, IR spectroscopic and optical properties of the two (C11N4H10)4 H2O and (C11N4H10)2·H2O compounds. J. Mol. Struct. 2015, 1079, 1–8. [Google Scholar] [CrossRef]
- Hassan, H.H.; Elhusseiny, A.F.; Elkony, Y.M.; Mansour, E.S.M. Synthesis and characterization of thermally stable aromatic polyamides and poly (1, 3, 4-oxadiazole-amide) nanoparticles containing pendant substituted bezamides. Chem. Cent. J. 2013, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mani, R.; Rietveld, I.B.; Varadharajan, K.; Louhi-Kultanen, M.; Muthu, S. Fluorescence Properties Reinforced by Proton Transfer in the Salt 2,6-Diaminopyridinium Dihydrogen Phosphate. J. Phys. Chem. A 2014, 118, 6883–6892. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A.A.M.; Siva, S.; Sankaranarayanan, R.K.; Rajendiran, N. Intramolecular Proton Transfer Effects on 2,6-diaminopyridine. J. Fluoresc. 2010, 20, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Urade, D.; Hiwase, V.; Kalambe, A. Synthesis and Electrical Conducting Behaviour of Resin Derived from 2, 6 -Diaminopyridine and Terphthalic Acid. Chem. Sci. Trans. 2012, 1, 604–611. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, J.I.; Ishihara, T. Charge-transfer transitions between wires and spacers in an inorganic-organic qua-si-one-dimensional crystal methylviologen lead iodide. Phys. Rev. B 2004, 70, 11320. [Google Scholar] [CrossRef]
- Fujisawa, J.-I.; Tajima, N.; Tamaki, K.; Shimomura, M.; Ishihara, T. Electronic Interactions between Inorganic Nanowires and Organic Electron Acceptors: Drastic Changes in Optical Response and Molecular Vibration. J. Phys. Chem. C 2007, 111, 1146–1149. [Google Scholar] [CrossRef]
- Lin, R.-G.; Xu, G.; Wang, M.-S.; Lu, G.; Li, P.-X.; Guo, G.-C. Improved Photochromic Properties on Viologen-Based Inorganic–Organic Hybrids by Using π-Conjugated Substituents as Electron Donors and Stabilizers. Inorg. Chem. 2013, 52, 1199–1205. [Google Scholar] [CrossRef]
- Lin, R.G.; Xu, G.; Lu, G.; Wang, M.S.; Li, P.X.; Guo, G.C. Photochromic hybrid containing in situ-generated benzyl viologen and novel trinuclear [Bi3Cl14]5–: Improved photoresponsive behavior by the π···π interactions and size effect of inorganic oligomer. Inorg. Chem. 2014, 53, 5538–5545. [Google Scholar] [CrossRef]
- Lebkücher, A.; Wagner, C.; Hübner, O.; Kaifer, E.; Himmel, H.J. Trinuclear complexes and coordination polymers of re-dox-active guanidino-functionalized aromatic (GFA) compounds with a triphenylene core. Inorg. Chem. 2014, 53, 9876–9896. [Google Scholar]
- Katsoulidis, A.P.; Petrakis, D.E.; Armatas, G.S.; Trikalitis, P.N.; Pomonis, P.J. OrderedmesoporousCoOx/MCM-41 materials exhibiting long-range self-organized nanostructured morphology. Microporous Mesoporous Mater. 2006, 92, 71–80. [Google Scholar] [CrossRef]
- Kumar, A.S.; Narendrudu, T.; Suresh, S.; Rao, M.S.; Ram, G.C.; Rao, D.K. Physical and spectroscopic features of cobalt ions in multi-component CaF2–ZnO–Bi2O3–P2O5 glass ceramics. J. Alloys Compd. 2017, 699, 392–400. [Google Scholar] [CrossRef]
Crystal Data | Compound (I) | Compound (II) |
---|---|---|
Chemical formula | C18H28N2 MnCl4 | C18H28N2 CoCl4 |
Mr(g·mol–1) | 469.16 | 473.15 |
Crystal system, space group | Tetragonal, I2d | Tetragonal, I2d |
Temperature (K) | 293 | 293 |
a (Å) | 15.6644 (11) | 15.4429 (4) |
c (Å) | 9.6754 (17) | 9.7925 (5) |
V(Å3) | 2374.1 (5) | 2335.35 (17) |
Z | 4 | 4 |
Radiation type | MoKα | MoKα |
µ (mm−1) | 1.01 | 1.20 |
Crystal size (mm) Form, Color | 0.35 × 0.25 × 0.16 Block, Colorless | 0.20 × 0.15 × 0.10 Block, Blue |
Data collection | ||
Diffractometer | Atlas | Atlas |
Absorption correction | CCD plate scans | CCD plate scans |
θmin, θmax (°) | 2.5, 28.3 | 2.2, 28.3 |
No. of measured, independent and | 2221, 1259, 1179 | 1726, 846, 800 |
observed [I > 2σ(1)] reflections | ||
Rint | 0.02 | 0.033 |
(sinθ/λ)max(Å−1) | 0.666 | 0.572 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.098, 1.09 | 0.072, 0.199, 1.08 |
No. of reflections | 1259 | 864 |
No. of parameters | 72 | 77 |
Δρmin,Δρmax(e.Å3) | −0.37, 0.22 | −0.67, 0.70 |
CCDC No. | 2101387 | 2101388 |
D—H···A | D—H (Å) | H···A(Å) | D···A(Å) | D―H···A(°) |
---|---|---|---|---|
Compound (I) | ||||
C1―H1···Cl1 | 0.93 | 2.71 | 3.622 (4) | 166 |
C2―H2···Cl1i | 0.93 | 2.87 | 3.772 (4) | 165 |
C2―H2···Cl1ii | 0.93 | 2.96 | 3.440 (5) | 114 |
N1―H1A···Cl1iii | 0.86 | 2.61 | 3.252 (4) | 133 |
N1―H1A···Cl1ii | 0.86 | 2.61 | 3.252 (4) | 133 |
Compound (II) | ||||
N1―H1N···Cl1v | 0.86 | 2.61 | 3.248 (10) | 132 |
N1―H1N···Cl1vi | 0.86 | 2.61 | 3.248 (10) | 132 |
C1―H1···Cl1vii | 0.93 | 2.82 | 3.735 (11) | 167 |
C1―H1···Cl1vi | 0.93 | 2.95 | 3.429 (13) | 114 |
C2―H2···Cl1 | 0.93 | 2.70 | 3.613 (11) | 167 |
Distances (Å) | Angles (°) | ||
---|---|---|---|
[MnCl4]2− of Compound (I) with τ4 = 0.920 | |||
Cl1―Mn1―Cl1i | 106.73 (2) | ||
Mn1―Cl1 | 2.3664 (7) | Cl1―Mn1―Cl1ii | 115.10 (4) |
Mn1―Cl1i | 2.3665 (7) | Cl1i―Mn1―Cl1ii | 106.73 (2) |
Mn1―Cl1ii | 2.3665 (7) | Cl1―Mn1―Cl1iii | 106.73 (2) |
Mn1―Cl1iii | 2.3665 (7) | Cl1i―Mn1―Cl1iii | 115.10 (4) |
Cl1ii―Mn1―Cl1iii | 106.73 (2) | ||
[CoCl4]2− of Compound (II) with τ4 = 0.934 | |||
Cl1―Co1―Cl1ii | 107.20 (6) | ||
Co1―Cl1 | 2.2798 (17) | Cl1―Co1―Cl1iii | 107.20 (6) |
Co1―Cl1ii | 2.2798 (17) | Cl1ii―Co1―Cl1iii | 114.12 (12) |
Co1―Cl1iii | 2.2798 (17) | Cl1―Co1―Cl1iv | 114.12 (12) |
Co1―Cl1iv | 2.2798 (18) | Cl1ii―Co1―Cl1iv | 107.20 (6) |
Cl1iii―Co1―Cl1iv | 107.20 (6) |
Distances (Å) | Angles (°) | ||
---|---|---|---|
[C9H14N]+ in (I) | |||
N1―C2iv | 1.331 (5) | N1—C2—C1 | 120.0 (4) |
N1―C2 | 1.331 (5) | C2—N1—C2iv | 122.2 (5) |
C1—C2 | 1.371 (7) | C2—C1—C3 | 120.6 (4) |
C1—C3 | 1.400 (5) | C1—C3—C1iv | 116.7 (5) |
C3—C1iv | 1.400 (5) | C1—C3—C4 | 121.7 (3) |
C3—C4 | 1.523 (8) | C1iv—C3—C4 | 121. 7 (3) |
[C9H14N]+ in (II) | |||
N1—C1i | 1.324 (11) | C1i—N1—C1 | 122.0 (11) |
N1—C1 | 1.324 (11) | N1—C1—C2 | 120.3 (8) |
C1—C2 | 1.351 (13) | C1—C2—C3 | 120.4 (8) |
C2—C3 | 1.398 (10) | C2—C3—C2i | 116. 6 (10) |
C3—C2i | 1.398 (10) | C2—C3—C4 | 117. 0 (9) |
C3—C4 | 1.530 (17) | C2i—C3—C4 | 126. 4 (9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, A.A.; Ayari, C.; Bajuavfir, E.; Ahmad, A.; Al-Nahdi, F.; Alswieleh, A.M.; Alotaibi, K.M.; Mi, J.-X.; Nasr, C.B.; Mrad, M.H. Stabilization of Tetrachloride with Mn (II) and Co (II)Complexes and 4-Tert-Butylpyridinium Organic Cation: Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analyses. Crystals 2022, 12, 140. https://doi.org/10.3390/cryst12020140
Alotaibi AA, Ayari C, Bajuavfir E, Ahmad A, Al-Nahdi F, Alswieleh AM, Alotaibi KM, Mi J-X, Nasr CB, Mrad MH. Stabilization of Tetrachloride with Mn (II) and Co (II)Complexes and 4-Tert-Butylpyridinium Organic Cation: Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analyses. Crystals. 2022; 12(2):140. https://doi.org/10.3390/cryst12020140
Chicago/Turabian StyleAlotaibi, Abdullah A., Chaima Ayari, Elham Bajuavfir, Ashfaq Ahmad, Fatima Al-Nahdi, Abdullah M. Alswieleh, Khalid M. Alotaibi, Jin-Xiao Mi, Cherif Ben Nasr, and Mohamed Habib Mrad. 2022. "Stabilization of Tetrachloride with Mn (II) and Co (II)Complexes and 4-Tert-Butylpyridinium Organic Cation: Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analyses" Crystals 12, no. 2: 140. https://doi.org/10.3390/cryst12020140
APA StyleAlotaibi, A. A., Ayari, C., Bajuavfir, E., Ahmad, A., Al-Nahdi, F., Alswieleh, A. M., Alotaibi, K. M., Mi, J. -X., Nasr, C. B., & Mrad, M. H. (2022). Stabilization of Tetrachloride with Mn (II) and Co (II)Complexes and 4-Tert-Butylpyridinium Organic Cation: Elaboration of the Structure and Hirshfeld Surface, Optical, Spectroscopic and Thermal Analyses. Crystals, 12(2), 140. https://doi.org/10.3390/cryst12020140