Microstructure Evolution of Mg-Sn-Y Alloy Solidified under High Pressure and Temperature Gradient
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Microstructure Evolution of Mg-1Sn-2.5Y Alloys
3.2. Effects of Pressure and Cooling Rate on Average Grain Size
3.3. Effect of Pressure on Secondary Dendrite Arm Spacing
4. Conclusions
- (1)
- Mg-1Sn-2.5Y alloy was solidified under high pressure and temperature gradient using the cooling rate difference in the high pressure chamber, resulting in the formation of the outer fine equiaxed zone, the columnar zone, and the coarse equiaxed zone in alloys. With an increase in solidification pressure, the columnar-to-equiaxed transition was inhibited in Mg-1Sn-2.5Y alloy.
- (2)
- Increases in solidification pressure and cooling rate resulted in a reduction in the average grain size. The effect of pressure on the average grain size is not negligible compared with the effect of cooling rate on the average grain size.
- (3)
- The average secondary dendrite arm spacing decreased from 14–17 μm under 1 GPa to 9–11 μm under 1.5 GPa. In the outer fine equiaxed zone and the columnar zone, the solubility of Sn in the α-Mg matrix increased with an increase in solidification pressure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strong, H.M.; Wentorf, R.H., Jr. Growth of large, high-quality diamond crystals at General Electric. Am. J. Phys. 1991, 59, 1005–1008. [Google Scholar] [CrossRef]
- Sumiya, H.; Satoh, S. High-pressure synthesis of high-purity diamond crystal. Diam. Relat. Mater. 1996, 5, 1359–1365. [Google Scholar] [CrossRef]
- Lysakovskyi, V.; Novikov, N.; Ivakhnenko, S.; Zanevskyy, O.A.; Kovalenko, T. Growth of Structurally Perfect Diamond Single Crystals at High Pressures and Temperatures. Review. J. Superhard Mater. 2018, 40, 315–324. [Google Scholar] [CrossRef]
- Zhou, X.; Feng, Z.; Zhu, L.; Xu, J.; Miyagi, L.; Dong, H.; Sheng, H.; Wang, Y.; Li, Q.; Ma, Y.; et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Drozdov, A.P.; Eremets, M.I.; Troyan, I.A.; Ksenofontov, V.; Shylin, S.I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 2015, 525, 73–76. [Google Scholar] [CrossRef]
- Drozdov, A.P.; Kong, P.P.; Minkov, V.S.; Besedin, S.P.; Kuzovnikov, M.A.; Mozaffari, S.; Balicas, L.; Balakirev, F.F.; Graf, D.E.; Prakapenka, V.B.; et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 2019, 569, 528–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somayazulu, M.; Ahart, M.; Mishra, A.K.; Geballe, Z.M.; Baldini, M.; Meng, Y.; Struzhkin, V.V.; Hemley, R.J. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 2019, 122, 027001. [Google Scholar] [CrossRef] [Green Version]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Debessai, M.; Vindana, H.; Vencatasamy, K.; Lawler, K.V.; Salamat, A.; Dias, R.P. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 2020, 586, 373–377. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Peng, Y.; Zhu, P.; Liu, J.; Feng, Z.; Wu, G.; Huang, X. Unprecedented strength in pure iron via high-pressure induced nanotwinned martensite. Mater. Res. Lett. 2019, 7, 354–360. [Google Scholar] [CrossRef]
- Jiang, W.; Zou, C.M.; Wang, H.W.; Wei, Z.J. Modeling of eutectic spacing in binary alloy under high pressure solidification. J. Alloy. Compd. 2015, 646, 63–67. [Google Scholar] [CrossRef]
- Zhang, R.; Zou, C.; Wei, Z.; Wang, H.; Ran, Z.; Fang, N. Effects of high pressure and superheat temperature on microstructure evolution of Al-20Si alloy. J. Mater. Res. Technol. 2020, 9, 11622–11628. [Google Scholar] [CrossRef]
- Zhang, R.; Zou, C.M.; Wei, Z.J.; Wang, H.W. In situ formation of SiC in Al-40Si alloy during high-pressure solidification. Ceram. Int. 2021, 47, 24485–24493. [Google Scholar] [CrossRef]
- Wei, Z.J.; Wang, Z.L.; Wang, H.W.; Cao, L. Evolution of microstructures and phases of Al–Mg alloy under 4 GPa high pressure. J. Mater. Sci. 2007, 42, 7123–7128. [Google Scholar] [CrossRef]
- Jie, J.; Zou, C.; Brosh, E.; Wang, H.; Wei, Z.; Li, T. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures. J. Alloy. Compd. 2013, 578, 394–404. [Google Scholar] [CrossRef]
- Jie, J.; Wang, H.; Zou, C.; Wei, Z.; Li, T. Precipitation in Al–Mg solid solution prepared by solidification under high pressure. Mater. Charact. 2014, 87, 19–26. [Google Scholar] [CrossRef]
- Liu, X.; Ma, P.; Jia, Y.D.; Wei, Z.J.; Suo, C.J.; Ji, P.C.; Shi, X.R.; Yu, Z.S.; Prashanth, K.G. Solidification of Al-xCu alloy under high pressures. J. Mater. Res. Technol. 2020, 9, 2983–2991. [Google Scholar] [CrossRef]
- Zhang, R.; Zou, C.M.; Wei, Z.J.; Wang, H.W.; Liu, C. Interconnected SiC-Si network reinforced Al-20Si composites fabricated by high pressure solidification. Ceram. Int. 2021, 47, 3597–3602. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Zhao, H.; Wei, S.; Gao, W. Effects of strontium on microstructure and mechanical properties of as-cast Mg-5 wt.% Sn alloy. J. Alloy. Compd. 2010, 504, 345–350. [Google Scholar] [CrossRef]
- Lim, H.K.; Sohn, S.W.; Kim, D.H.; Lee, J.Y.; Kim, W.T.; Kim, D.H. Effect of addition of Sn on the microstructure and mechanical properties of Mg-MM (misch-metal) alloys. J. Alloy. Compd. 2008, 454, 515–522. [Google Scholar] [CrossRef]
- Wei, S.H.; Chen, Y.G.; Tang, Y.B.; Liu, M.; Xiao, S.; Zhang, X.; Zhao, Y. Compressive creep behavior of Mg-Sn binary alloy. Trans. Nonferrous Met. Soc. China 2008, 18, s214–s217. [Google Scholar] [CrossRef]
- Zhao, H.D.; Qin, G.W.; Ren, Y.P.; Pei, W.; Chen, D.; Guo, Y. Microstructure and tensile properties of as-extruded Mg-Sn-Y alloys. Trans. Nonferrous Met. Soc. China 2010, 20, s493–s497. [Google Scholar] [CrossRef]
- Mittemeijer, E.J. Fundamentals of Materials Science: The Microstructure Property Relationship Using Metals as Model Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 380–384. [Google Scholar]
- Bendijk, A.; Delhez, R.; Katgerman, L.; De Keijser, T.H.; Mittemeijer, E.J.; Van Der Pers, N.M. Characterization of Al-Si-alloys rapidly quenched from the melt. J. Mater. Sci. 1980, 15, 2803–2810. [Google Scholar] [CrossRef]
- Turnbull, D.; Cohen, M.H. Crystallization kinetics and glass formation. Mod. Asp. Vitr. State 1960, 1, 38. [Google Scholar]
- Brazhkin, V.V.; Larchev, I.V.; Popova, S.V.; Skrotskaya, G.G. The influence of high pressure on the disordering of the crystal structure of solids rapidly quenched from the melt. Phys. Scr. 1989, 39, 338–340. [Google Scholar] [CrossRef]
- Li, D.; Wang, A.; Yao, B.; Ding, B.; Hu, Z. Synthesis of bulk nanocrystalline Ti–Cu alloy by pressure-quenching method. J. Mater. Res. 1996, 11, 2685–2688. [Google Scholar] [CrossRef]
- Turnbull, D. On the relation between crystallization rate and liquid structure. J. Phys. Chem. 1962, 66, 609–613. [Google Scholar] [CrossRef]
- Yu, X.F.; Zhang, G.Z.; Wang, X.Y.; Gao, Y.Y.; Jia, G.L.; Hao, Z.Y. Non-equilibrium microstructure of hyper-eutectic Al-Si alloy solidified under superhigh pressure. J. Mater. Sci. 1999, 34, 4149–4152. [Google Scholar] [CrossRef]
- Wang, W.H.; Wang, Z.X.; Zhao, D.Q.; Tang, M.B.; Utsumi, W.; Wang, X.-L. High-pressure suppression of crystallization in the metallic supercooled liquidZr41Ti14Cu12.5Ni10Be22.5: Influence of viscosity. Phys. Rev. B 2004, 70, 092203. [Google Scholar] [CrossRef]
- Rappaz, M.; Boettinger, W. On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Mater. 1999, 47, 3205–3219. [Google Scholar] [CrossRef]
Element | Mg | Y | Sn | Fe | Si | Cu |
---|---|---|---|---|---|---|
(wt%) | balance | 2.581 | 0.932 | 0.013 | <0.01 | <0.01 |
Pressure (GPa) | Cooling Rate (K/s) | Average Grain Size (μm) |
---|---|---|
1 | 10 | 1392 |
15 | 355 | |
1.5 | 10 | 1126 |
15 | 306 | |
20 | 237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, C.; Zhang, R.; Wei, Z.; Wang, H. Microstructure Evolution of Mg-Sn-Y Alloy Solidified under High Pressure and Temperature Gradient. Crystals 2022, 12, 149. https://doi.org/10.3390/cryst12020149
Zou C, Zhang R, Wei Z, Wang H. Microstructure Evolution of Mg-Sn-Y Alloy Solidified under High Pressure and Temperature Gradient. Crystals. 2022; 12(2):149. https://doi.org/10.3390/cryst12020149
Chicago/Turabian StyleZou, Chunming, Rong Zhang, Zunjie Wei, and Hongwei Wang. 2022. "Microstructure Evolution of Mg-Sn-Y Alloy Solidified under High Pressure and Temperature Gradient" Crystals 12, no. 2: 149. https://doi.org/10.3390/cryst12020149
APA StyleZou, C., Zhang, R., Wei, Z., & Wang, H. (2022). Microstructure Evolution of Mg-Sn-Y Alloy Solidified under High Pressure and Temperature Gradient. Crystals, 12(2), 149. https://doi.org/10.3390/cryst12020149