Modeling of Chloride Binding Capacity in Cementitious Matrices Including Supplementary Cementitious Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Mix Proportioning
2.2. Samples Preparation and Testing
3. Results and Discussion
4. Modeling of Chloride Binding
4.1. Available Binding Models
4.2. New Model Development
5. Conclusions
- Binding capacity significantly improves when using slag cement and fly ash, for the given ratios, with an increase of 100% and 50%, respectively, compared to the control mix.
- Binding capacity is reduced by 30% to 50% when using SF and Type V cement compared to the control mix.
- The addition of both corrosion inhibitors (MCI and CNI) has a minimal effect on binding capacity, while the addition of a hydrophobic agent (Caltite) reduces the binding capacity by limiting the contact of the samples with saltwater due to its hydrophobic nature.
- The Freundlich isotherm performs the best amongst models that are used for describing the relationship between binding capacity and free chloride, and it produces the most consistent results with a variance of less than 0.001 in the coefficient of determination, a mean of 0.971, and a β coefficient value of 0.996.
- According to the qualitative analysis conducted, Al2O3 content is the dominant parameter that consistently defines binding capacity, and can relate to binding capacity in defining a new model.
- The proposed model predicts bound chloride, based on the concentration of chloride in the environment and Al2O3 content in the paste. It proposes new equations for finding α and β, shows good agreement with the experimental work, and, further, can be used as a simple model in the service-life modeling of concrete.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ann, K.; Ahn, J.; Ryou, J. The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures. Constr. Build. Mater. 2009, 23, 239–245. [Google Scholar] [CrossRef]
- Nokken, M.; Boddy, A.; Hooton, R.; Thomas, M. Time dependent diffusion in concrete—Three laboratory studies. Cem. Concr. Res. 2006, 36, 200–207. [Google Scholar] [CrossRef]
- Valipour, M.; Pargar, F.; Shekarchizadeh, M.; Khani, S.; Moradian, M. In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment. Constr. Build. Mater. 2013, 46, 63–70. [Google Scholar] [CrossRef]
- Abd El Fattah, A.; Al-Duais, I.; Riding, K.; Thomas, M. Field evaluation of corrosion mitigation on reinforced con-crete in marine exposure conditions. Constr. Build. Mater. 2018, 165, 663–674. [Google Scholar] [CrossRef]
- Schueremans, L.; Van Gemert, D.; Giessler, S. Chloride penetration in RC-structures in marine environment—Long term assessment of a preventive hydrophobic treatment. Constr. Build. Mater. 2006, 21, 1238–1249. [Google Scholar] [CrossRef]
- de Rincón, O.T.; Sánchez, M.; Millano, V.; Fernández, R.; de Partidas, E.; Andrade, C.; Martínez, I.; Castellote, M.; Barboza, M.; Irassar, F.; et al. Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED. Corros. Sci. 2007, 49, 2832–2843. [Google Scholar] [CrossRef]
- Hooton, R.D.; Pun, P.; Kojundic, T.; Fidjestol, P. Influence of silica fume on chloride resistance of concrete. In Proceedings of the PCI/FHWA International Symposium of High Performance Concrete, New Orleans, LA, USA, 20–22 October 1997; pp. 245–249. [Google Scholar]
- Zibara, H.; Hooton, R.D.; Thomas, M.; Stanish, K. Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures. Cem. Concr. Res. 2008, 38, 422–426. [Google Scholar] [CrossRef]
- Thomas, M.D.A.; Hooton, R.D.; Scott, A.; Zibara, H. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem. Concr. Res. 2012, 42, 1–7. [Google Scholar] [CrossRef]
- Bleszynski, R.; Hooton, R.D.; Thomas, M.D.; Rogers, C.A. Durability of ternary blend concrete with silica fume and blast-furnace slag: Laboratory and outdoor exposure site studies. Mater. J. 2002, 99, 499–508. [Google Scholar]
- Neville, A.M. Properties of Concrete; Longman: London, UK, 1995; Volume 4. [Google Scholar]
- Ma, B.; Liu, X.; Tan, H.; Zhang, T.; Mei, J.; Qi, H.; Jiang, W.; Zou, F. Utilization of pretreated fly ash to enhance the chloride binding capacity of cement-based material. Constr. Build. Mater. 2018, 175, 726–734. [Google Scholar] [CrossRef]
- Zuquan, J.; Xia, Z.; Tiejun, Z.; Jianqing, L. Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Constr. Build. Mater. 2018, 177, 170–183. [Google Scholar] [CrossRef]
- Hodhod, O.; Ahmed, H. Modeling the service life of slag concrete exposed to chlorides. Ain Shams Eng. J. 2014, 5, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Zhang, Y.; Lin, C.-J.; Jiang, L.-H.; Chen, D. Modeling of Chloride Distribution in Cement-Based Materials with Neumann Boundary Condition. Adv. Mater. Sci. Eng. 2018, 2018, 8085954. [Google Scholar] [CrossRef] [Green Version]
- Thomas, M. Chloride thresholds in marine concrete. Cem. Concr. Res. 1996, 26, 513–519. [Google Scholar] [CrossRef]
- Zibara, H. Binding of External Chlorides by Cement Pastes; University of Toronto: Toronto, ON, Canada, 2001. [Google Scholar]
- Ramachandran, V.S. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride. Matériaux Constr. 1971, 4, 3–12. [Google Scholar] [CrossRef]
- Dousti, A.; Beaudoin, J.J.; Shekarchi, M. Chloride binding in hydrated MK, SF and natural zeolite-lime mixtures. Constr. Build. Mater. 2017, 154, 1035–1047. [Google Scholar] [CrossRef]
- Csizmadia, J.; Balázs, G.; Tamás, F.D. Chloride ion binding capacity of aluminoferrites. Cem. Concr. Res. 2001, 31, 577–588. [Google Scholar] [CrossRef]
- Shakouri, M.; Trejo, D. A study of the factors affecting the surface chloride maximum phenomenon in submerged concrete samples. Cem. Concr. Compos. 2018, 94, 181–190. [Google Scholar] [CrossRef]
- Trejo, D.; Shakouri, M.; Vaddey, N.P.; Isgor, O.B. Development of empirical models for chloride binding in cementitious systems containing admixed chlorides. Constr. Build. Mater. 2018, 189, 157–169. [Google Scholar] [CrossRef]
- Ipavec, A.; Vuk, T.; Gabrovšek, R.; Kaučič, V. Chloride binding into hydrated blended cements: The influence of limestone and alkalinity. Cem. Concr. Res. 2013, 48, 74–85. [Google Scholar] [CrossRef]
- Panesar, D.K.; Chidiac, S.E. Effect of Cold Temperature on the Chloride-Binding Capacity of Cement. J. Cold Reg. Eng. 2011, 25, 133–144. [Google Scholar] [CrossRef]
- Rasheeduzzafar; Al-Saadoun, S.; Al-Gahtani, A.; Dakhil, F. Effect of tricalcium aluminate content of cement on corrosion of reinforcing steel in concrete. Cem. Concr. Res. 1990, 20, 723–738. [Google Scholar] [CrossRef]
- Luping, T.; Nilsson, L.-O. Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cem. Concr. Res. 1993, 23, 247–253. [Google Scholar] [CrossRef]
- Delagrave, A.; Marchand, J.; Ollivier, J.-P.; Julien, S.; Hazrati, K. Chloride binding capacity of various hydrated cement paste systems. Adv. Cem. Based Mater. 1997, 6, 28–35. [Google Scholar] [CrossRef]
- Cheewaket, T.; Jaturapitakkul, C.; Chalee, W. Long term performance of chloride binding capacity in fly ash concrete in a marine environment. Constr. Build. Mater. 2010, 24, 1352–1357. [Google Scholar] [CrossRef]
- Luo, R.; Cai, Y.; Wang, C.; Huang, X. Study of chloride binding and diffusion in GGBS concrete. Cem. Concr. Res. 2003, 33, 1–7. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, T.; Tian, W.; Wei, J.; Yu, Q. Physically and chemically bound chlorides in hydrated cement pastes: A comparison study of the effects of silica fume and metakaolin. J. Mater. Sci. 2018, 54, 2152–2169. [Google Scholar] [CrossRef]
- Islam, M.M.; Islam, M.S. Strength and durability characteristics of concrete made with fly-ash blended cement. Aust. J. Struct. Eng. 2013, 14, 303–319. [Google Scholar] [CrossRef]
- Dhir, R.; El-Mohr, M.; Dyer, T. Developing chloride resisting concrete using PFA. Cem. Concr. Res. 1997, 27, 1633–1639. [Google Scholar] [CrossRef]
- Haque, M.; Kayyali, O. Free and water soluble chloride in concrete. Cem. Concr. Res. 1995, 25, 531–542. [Google Scholar] [CrossRef]
- Saillio, M.; Baroghel-Bouny, V.; Barberon, F. Chloride binding in sound and carbonated cementitious materials with various types of binder. Constr. Build. Mater. 2014, 68, 82–91. [Google Scholar] [CrossRef]
- Florea, M.V.A.; Brouwers, H.J.H. Chloride binding related to hydration products: Part I: Ordinary Portland Cement. Cem. Concr. Res. 2012, 42, 282–290. [Google Scholar] [CrossRef]
- Arya, C.; Buenfeld, N.R.; Newman, J.B. Factors influencing chloride-binding in concrete. Cem. Concr. Res. 1990, 20, 291–300. [Google Scholar] [CrossRef]
- Dousti, A.; Shekarchi, M.; Alizadeh, R.; Taheri-Motlagh, A. Binding of externally supplied chlorides in micro silica concrete under field exposure conditions. Cem. Concr. Compos. 2011, 33, 1071–1079. [Google Scholar] [CrossRef]
- Tuutti, K. Analysis of pore solution squeezed out of cement paste and mortar. Nord. Concr. Res. 1982, 1, 1–16. [Google Scholar]
- Mohammed, T.; Hamada, H. Relationship between free chloride and total chloride contents in concrete. Cem. Concr. Res. 2003, 33, 1487–1490. [Google Scholar] [CrossRef]
- Ogirigbo, O.R.; Black, L. Chloride binding and diffusion in slag blends: Influence of slag composition and temperature. Constr. Build. Mater. 2017, 149, 816–825. [Google Scholar] [CrossRef]
- Saillio, M.; Baroghel-Bouny, V.; Pradelle, S. Effect of Carbonation and Sulphate on Chloride Ingress in Cement Pastes and Concretes with Supplementary Cementitious Materials. Key Eng. Mater. 2016, 711, 241–248. [Google Scholar] [CrossRef]
- Song, H.W.; Lee, C.H.; Jung, M.S.; Ann, K.Y. Development of chloride binding capacity in cement pastes and influence of the pH of hydration products. Can. J. Civ. Eng. 2008, 35, 1427–1434. [Google Scholar] [CrossRef]
- Moffatt, E.T.G.; Thomas, M.D. Effect of Carbonation on the Durability and Mechanical Performance of Ettringite-Based Binders. ACI Mater. J. 2019, 116, 95–102. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, Y.; Mu, S.; Chang, H.; Sun, W.; Jiang, J. Improving the chloride binding capacity of cement paste by adding nano-Al2O3. Constr. Build. Mater. 2018, 195, 415–422. [Google Scholar] [CrossRef]
- Ann, K.Y.; Hong, S.I. Modeling Chloride Transport in Concrete at Pore and Chloride Binding. ACI Mater. J. 2018, 115. [Google Scholar] [CrossRef]
- Jung, M.S.; Kim, K.B.; Lee, S.A.; Ann, K.Y. Risk of chloride-induced corrosion of steel in SF concrete exposed to a chloride-bearing environment. Constr. Build. Mater. 2018, 166, 413–422. [Google Scholar] [CrossRef]
- Ann, K.; Kim, T.-S.; Kim, J.; Kim, S.-H. The resistance of high alumina cement against corrosion of steel in concrete. Constr. Build. Mater. 2010, 24, 1502–1510. [Google Scholar] [CrossRef]
- Ramírez-Ortíz, A.E.; Castellanos, F.; Cano-Barrita, P.F.D.J. Ultrasonic Detection of Chloride Ions and Chloride Binding in Portland Cement Pastes. Int. J. Concr. Struct. Mater. 2018, 12, 20. [Google Scholar] [CrossRef]
- Wang, Y.; Shui, Z.; Gao, X.; Yu, R.; Huang, Y.; Cheng, S. Understanding the chloride binding and diffusion behaviors of marine concrete based on Portland limestone cement-alumina enriched pozzolans. Constr. Build. Mater. 2019, 198, 207–217. [Google Scholar] [CrossRef]
- Qiao, C.; Suraneni, P.; Ying, T.N.W.; Choudhary, A.; Weiss, J. Chloride binding of cement pastes with fly ash exposed to CaCl2 solutions at 5 and 23 °C. Cem. Concr. Compos. 2019, 97, 43–53. [Google Scholar] [CrossRef]
Chemical and Physical Analysis (%) | OPC | Cement Type V | Silica Fume | Fly Ash | Slag |
---|---|---|---|---|---|
SiO2 | 20.8 | 20.97 | 91 | 51.47 | 34.8 |
Al2O3 | 5.37 | 3.91 | 0.53 | 24.31 | 13.4 |
Fe2O3 | 3.32 | 4.8 | 4.77 | 8.87 | 0.62 |
TiO2 | 0.01 | 1.02 | |||
CaO | 63.77 | 64.27 | 0.83 | 5.15 | 43.4 |
MgO | 2.08 | 1.97 | 0.47 | 3.50 | 5.44 |
SO3 | 2.63 | 1.86 | 0.23 | 0.34 | |
Others | 3.03 | 2.22 | 2.39 | 5.45 | 2 |
Loss on Ignition (L.O.I) | 1.34 | 2.16 | 6.00 | 0.53 | |
Insoluble residue (I.R.) | 0.39 | 0.60 | 0.34 | ||
Na2Oeq | 0.52 | 0.48 | 0.56 | ||
K2O | 1.47 | ||||
P2O5 | 0.257 | ||||
C3S | 53.20 | 63.84 | |||
C2S | 19.50 | 11.96 | |||
C3A | 8.61 | 2.24 | |||
C4AF | 10.10 | 14.61 | |||
C3AF + 2C3A | 27.33 | 19.09 | |||
Fineness, Air permeability Test (m2/Kg) | 323 | 315 | 15000 | 338 | 378 |
Mix | W/B | Cement (Kg/m3) | Water (Kg/m3) | Silica Fume (Kg/m3) | Fly Ash (Kg/m3) | Slag Cement (Kg/m3) | Notes |
---|---|---|---|---|---|---|---|
I | 0.4 | 340 | 136 | - | - | - | Type OP/CEM 1 |
V | 340 | 136 | - | - | - | Type V/ high sulfate-resistant Portland cement | |
SF | 320 | 136 | 21 | - | - | OP + SF | |
FA | 255 | 136 | - | 85 | - | OP + FA | |
SC | 100 | 136 | - | - | 240 | OP + SC | |
MCI | 340 | 136 | - | - | - | OP + MCI at 0.6 L/m3 of paste | |
CNI | 340 | 136 | - | - | - | OP + CNI at 20 L/m3 of paste | |
Caltite | 340 | 136 | - | - | - | Type I + Caltite at 30 L/m3 of paste |
M | Langmuir | Freundlich | Tuutti | Modified Tuutti |
---|---|---|---|---|
R2 | R2 | R2 | R2 | |
I | 0.979 | 0.991 | 0.373 | 0.924 |
V | 0.963 | 0.993 | 0.554 | 0.865 |
SF | 0.996 | 0.988 | 0.574 | 0.839 |
FA | 0.994 | 0.981 | 0.600 | 0.838 |
SC | 0.990 | 0.991 | 0.570 | 0.837 |
CNI | 0.984 | 0.987 | 0.448 | 0.810 |
MCI | 0.989 | 0.995 | 0.552 | 0.848 |
Caltite | 0.988 | 0.990 | 0.472 | 0.824 |
β coeff. | 0.979 | 0.983 | 0.791 | 0.967 |
Ref | Material | Cement Properties | SCM Properties | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C3S | C2S | C3A | C4AF | CaO | Al2O3 | SiO2 | CaO | Al2O3 | SiO2 | ||
[17] | I | 57.6 | 17.6 | 8.8 | 5.9 | 63.58 | 4.09 | 21.3 | 0 | 0 | 0 |
I + 25% FA | 57.6 | 17.6 | 8.8 | 5.9 | 63.58 | 4.09 | 21.3 | 4.37 | 20.78 | 53.89 | |
[40] | I + 30%SC | 62.1 | 8.9 | 8.5 | 9.1 | 62.38 | 5.89 | 19.1 | 38.24 | 12.23 | 36.58 |
[26] | I | 61.91 | 10.42 | 8.55 | 8.52 | 62.1 | 5.3 | 19.9 | 0 | 0 | 0 |
[27] | I | 68.7 | 5.9 | 7.4 | 5.1 | 63.8 | 3.9 | 20.1 | 0 | 0 | 0 |
V | 54.9 | 22.5 | 1.8 | 13.3 | 63.9 | 3.5 | 22.3 | 0 | 0 | 0 | |
[41] | I + 68% SC | 68.4 | 4.5 | 8.3 | 8.9 | 62.53 | 4.98 | 19.5 | 48.4 | 13.4 | 34.8 |
[34] | I | 51.23 | 28.32 | 9.9 | 8.81 | 62.53 | 4.98 | 19.5 | 0 | 0 | 0 |
I + 30% FA | 51.23 | 28.32 | 9.9 | 8.81 | 62.53 | 4.98 | 19.5 | 0 | 23.78 | 51.59 | |
[42] | I | 70.83 | 5.93 | 7.12 | 9.13 | 64.7 | 4.6 | 20.7 | 0 | 0 | 0 |
I + 30% FA | 70.83 | 5.93 | 7.12 | 9.13 | 64.7 | 4.6 | 20.7 | 1.7 | 18.8 | 48.7 | |
I + 60% SC | 70.83 | 5.93 | 7.12 | 9.13 | 64.7 | 4.6 | 20.7 | 44.2 | 11.7 | 34.2 | |
[43] | I | 68.98 | 3.1 | 7.9 | 9.1 | 61.83 | 4.84 | 19.2 | 0 | 0 | 0 |
[44] | I | 78.86 | 3.7 | 7.1 | 8.7 | 63.996 | 4.456 | 19.4 | 0 | 0 | 0 |
[45] | I | 78.45 | 6.1 | 12.1 | 8.9 | 65.4 | 6.4 | 18.5 | 0 | 0 | 0 |
[30] | I | 62.1 | 15.1 | 6.6 | 9.1 | 63.81 | 4.35 | 21.6 | 0 | 0 | 0 |
I + 4% SF | 62.1 | 15.1 | 6.6 | 9.1 | 63.81 | 4.35 | 21.6 | 0.44 | 0.18 | 95.11 | |
[46] | I | 70.83 | 6.0 | 7.2 | 9.2 | 64.7 | 4.6 | 20.7 | 0 | 0 | 0 |
I + 10% SF | 70.83 | 6.0 | 7.2 | 9.2 | 64.7 | 4.6 | 20.7 | 0.31 | 0.23 | 94.9 | |
[9] | I | 57.6 | 17.6 | 5.9 | 8.8 | 63.58 | 4.09 | 21.3 | 0 | 0 | 0 |
I + 8% SF | 57.6 | 17.6 | 5.9 | 8.8 | 63.58 | 4.09 | 21.3 | 0.44 | 0.24 | 94.48 | |
I + 25% SC | 57.6 | 17.6 | 5.9 | 8.8 | 63.58 | 4.09 | 21.3 | 35.49 | 10.02 | 36.18 | |
I + 25% FA | 57.6 | 17.6 | 5.9 | 8.8 | 63.58 | 4.09 | 21.3 | 4.37 | 24.65 | 53.89 | |
[47] | I | 53.83 | 22.8 | 8.2 | 9.2 | 63.8 | 5.0 | 22.1 | 0 | 0 | 0 |
[48] | I | 60.71 | 14.7 | 2.2 | 13.7 | 61.93 | 3.69 | 21.1 | 0 | 0 | 0 |
I + 10% SF | 60.71 | 14.7 | 2.2 | 13.7 | 61.93 | 3.69 | 21.1 | 0.56 | 0.03 | 94.92 | |
I + 20% FA | 60.71 | 14.7 | 2.2 | 13.7 | 61.93 | 3.69 | 21.1 | 4.68 | 20.38 | 62.28 | |
[49] | I | 36.73 | 34 | 10.9 | 8.5 | 59.82 | 5.86 | 21.5 | 0 | 0 | 0 |
[50] | I | 61 | 8.0 | 9.0 | 10 | 63.4 | 4.6 | 20.2 | 0 | 0 | 0 |
Freundlich | Langmuir | Tuutti | Mod. Tuutti | |
---|---|---|---|---|
Mean | 0.971 | 0.952 | 0.439 | 0.895 |
Median | 0.982 | 0.963 | 0.601 | 0.905 |
Variance | 0.001 | 0.002 | 0.251 | 0.006 |
Minimum | 0.802 | 0.822 | −0.917 | 0.54 |
Maximum | 0.999 | 0.999 | 0.997 | 1.0 |
β-coeff. | 0.996 | 0.978 | 0.90 | 0.978 |
Std. Error | 0.0042 | 0.0086 | 0.0215 | 0.0106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd El Fattah, A.M.; Al-Duais, I.N.A. Modeling of Chloride Binding Capacity in Cementitious Matrices Including Supplementary Cementitious Materials. Crystals 2022, 12, 153. https://doi.org/10.3390/cryst12020153
Abd El Fattah AM, Al-Duais INA. Modeling of Chloride Binding Capacity in Cementitious Matrices Including Supplementary Cementitious Materials. Crystals. 2022; 12(2):153. https://doi.org/10.3390/cryst12020153
Chicago/Turabian StyleAbd El Fattah, Ahmed M., and Ibrahim N. A. Al-Duais. 2022. "Modeling of Chloride Binding Capacity in Cementitious Matrices Including Supplementary Cementitious Materials" Crystals 12, no. 2: 153. https://doi.org/10.3390/cryst12020153
APA StyleAbd El Fattah, A. M., & Al-Duais, I. N. A. (2022). Modeling of Chloride Binding Capacity in Cementitious Matrices Including Supplementary Cementitious Materials. Crystals, 12(2), 153. https://doi.org/10.3390/cryst12020153