Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning of MBP Bait Gene into pGBKT7 Vector
2.2. Preparation of Competent Yeast Cells
2.3. Transformation of Yeast Cells
2.4. Obtaining of Control Mated Strains
2.5. Two-Hybrid Library Screening Using Yeast Mating
2.6. Analysis of Positive Interactions by PCR
2.7. Confirmation of MBP-Bri23R Positive Interactions in Y2HGold Yeast Strain
2.8. Additional Confirmation of MBP-Bri23R Positive Interactions in Y2HGold Yeast Strain Using Reciprocal Approach
2.9. AlphaFold2-Based Modeling
2.10. Docking Calculations
3. Results and Discussion
3.1. Interaction of MBP with a C-Terminal Peptide of Bri2 Was Discovered Using a Yeast Two Hybrid System
3.2. Molecular Modeling and Characterization of the Putative Complexes between MBP and the C-Terminal β-Hairpin of Bri2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Protein Structure Prediction Using Multiple Deep Neural Networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins Struct. Funct. Bioinform. 2019, 87, 1141–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2021, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zweckstetter, M. NMR Hawk-Eyed View of AlphaFold2 Structures. Protein Sci. Publ. Protein Soc. 2021, 30, 2333–2337. [Google Scholar] [CrossRef]
- Higgins, M.K. Can We AlphaFold Our Way Out of the Next Pandemic? J. Mol. Biol. 2021, 433, 167093. [Google Scholar] [CrossRef]
- Tong, A.B.; Burch, J.D.; McKay, D.; Bustamante, C.; Crackower, M.A.; Wu, H. Could AlphaFold Revolutionize Chemical Therapeutics? Nat. Struct. Mol. Biol. 2021, 28, 771–772. [Google Scholar] [CrossRef]
- Ruff, K.M.; Pappu, R.V. AlphaFold and Implications for Intrinsically Disordered Proteins. J. Mol. Biol. 2021, 433, 167208. [Google Scholar] [CrossRef]
- Sorg, B.A.; Smith, M.M.; Campagnoni, A.T. Developmental Expression of the Myelin Proteolipid Protein and Basic Protein MRNAs in Normal and Dysmyelinating Mutant Mice. J. Neurochem. 1987, 49, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Campagnoni, A.T.; Campagnoni, C.W. Myelin Basic Protein Gene. In Myelin Biology and Disorders; Elsevier: Amsterdam, The Netherlands, 2004; pp. 387–400. [Google Scholar]
- Bagheri, H.; Friedman, H.; Siminovitch, K.A.; Peterson, A.C. Transcriptional Regulators of the Golli/Myelin Basic Protein Locus Integrate Additive and Stealth Activities. PLOS Genet. 2020, 16, e1008752. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, H.F.; Lepage, P.; Forghani, R.; Friedman, H.C.H.; Orfali, W.; Jasmin, L.; Miller, W.; Hudson, T.J.; Peterson, A.C. A Combinatorial Network of Evolutionarily Conserved Myelin Basic Protein Regulatory Sequences Confers Distinct Glial-Specific Phenotypes. J. Neurosci. 2003, 23, 10214–10223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamura, T.; Sumita, K.; Hirose, S.; Mikoshiba, K. Core Promoter of the Mouse Myelin Basic Protein Gene Governs Brain-Specific Transcription in Vitro. EMBO J. 1990, 9, 3101–3108. [Google Scholar] [CrossRef]
- Boggs, J.M.; Yip, P.M.; Rangaraj, G.; Jo, E. Effect of Posttranslational Modifications to Myelin Basic Protein on Its Ability to Aggregate Acidic Lipid Vesicles. Biochemistry 1997, 36, 5065–5071. [Google Scholar] [CrossRef]
- Boggs, J.M.; Rangaraj, G. Interaction of Lipid-Bound Myelin Basic Protein with Actin Filaments and Calmodulin. Biochemistry 2000, 39, 7799–7806. [Google Scholar] [CrossRef]
- Bamm, V.V.; De Avila, M.; Smith, G.S.T.; Ahmed, M.A.M.; Harauz, G. Structured Functional Domains of Myelin Basic Protein: Cross Talk between Actin Polymerization and Ca2+-Dependent Calmodulin Interaction. Biophys. J. 2011, 101, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Boggs, J.M.; Homchaudhuri, L.; Ranagaraj, G.; Liu, Y.; Smith, G.S.; Harauz, G. Interaction of Myelin Basic Protein with Cytoskeletal and Signaling Proteins in Cultured Primary Oligodendrocytes and N19 Oligodendroglial Cells. BMC Res. Notes 2014, 7, 387. [Google Scholar] [CrossRef] [Green Version]
- De Avila, M.; Vassall, K.A.; Smith, G.S.T.; Bamm, V.V.; Harauz, G. The Proline-Rich Region of 18.5 KDa Myelin Basic Protein Binds to the SH3-Domain of Fyn Tyrosine Kinase with the Aid of an Upstream Segment to Form a Dynamic Complex in Vitro. Biosci. Rep. 2014, 34, e00157. [Google Scholar] [CrossRef]
- Smirnova, E.V.; Rakitina, T.V.; Ziganshin, R.H.; Arapidi, G.P.; Saratov, G.A.; Kudriaeva, A.A.; Belogurov, A.A. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021, 11, 1628. [Google Scholar] [CrossRef]
- Harauz, G.; Libich, D. The Classic Basic Protein of Myelin—Conserved Structural Motifs and the Dynamic Molecular Barcode Involved in Membrane Adhesion and Protein-Protein Interactions. Curr. Protein Pept. Sci. 2009, 10, 196–215. [Google Scholar] [CrossRef] [PubMed]
- Fields, S.; Song, O. A Novel Genetic System to Detect Protein–Protein Interactions. Nature 1989, 340, 245–246. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.T.; Bartel, P.L.; Sternglanz, R.; Fields, S. The Two-Hybrid System: A Method to Identify and Clone Genes for Proteins That Interact with a Protein of Interest. Proc. Natl. Acad. Sci. USA 1991, 88, 9578–9582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, C.; Boelens, R.; Bonvin, A.M.J.J. HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. J. Am. Chem. Soc. 2003, 125, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Vries, S.J.; van Dijk, A.D.J.; Krzeminski, M.; van Dijk, M.; Thureau, A.; Hsu, V.; Wassenaar, T.; Bonvin, A.M.J.J. HADDOCK versus HADDOCK: New Features and Performance of HADDOCK2.0 on the CAPRI Targets. Proteins 2007, 69, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitternacht, S. FreeSASA: An Open Source C Library for Solvent Accessible Surface Area Calculations. F1000Research 2016, 5, 189. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.; Karaca, E.; Melquiond, A.S.J.; Bonvin, A.M.J.J. Clustering Biomolecular Complexes by Residue Contacts Similarity. Proteins Struct. Funct. Bioinform. 2012, 80, 1810–1817. [Google Scholar] [CrossRef] [Green Version]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Tsachaki, M.; Ghiso, J.; Efthimiopoulos, S. BRI2 as a Central Protein Involved in Neurodegeneration. Biotechnol. J. 2008, 3, 1548–1554. [Google Scholar] [CrossRef]
- Martins, F.; Serrano, J.B.; Müller, T.; da Cruz e Silva, O.A.B.; Rebelo, S. BRI2 Processing and Its Neuritogenic Role Are Modulated by Protein Phosphatase 1 Complexing: BRI2:PP1 C OMPLEX F UNCTION IN N EURITOGENESIS. J. Cell. Biochem. 2017, 118, 2752–2763. [Google Scholar] [CrossRef]
- Fotinopoulou, A.; Tsachaki, M.; Vlavaki, M.; Poulopoulos, A.; Rostagno, A.; Frangione, B.; Ghiso, J.; Efthimiopoulos, S. BRI2 Interacts with Amyloid Precursor Protein (APP) and Regulates Amyloid β (Aβ) Production. J. Biol. Chem. 2005, 280, 30768–30772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, S.; Matsuda, Y.; Snapp, E.L.; D’Adamio, L. Maturation of BRI2 Generates a Specific Inhibitor That Reduces APP Processing at the Plasma Membrane and in Endocytic Vesicles. Neurobiol. Aging 2011, 32, 1400–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Miller, V.M.; Levites, Y.; West, K.J.; Zwizinski, C.W.; Moore, B.D.; Troendle, F.J.; Bann, M.; Verbeeck, C.; Price, R.W.; et al. BRI2 (ITM2b) Inhibits A Deposition In Vivo. J. Neurosci. 2008, 28, 6030–6036. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Fluhrer, R.; Reiss, K.; Kremmer, E.; Saftig, P.; Haass, C. Regulated Intramembrane Proteolysis of Bri2 (Itm2b) by ADAM10 and SPPL2a/SPPL2b. J. Biol. Chem. 2008, 283, 1644–1652. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Marafona, A.M.; Pereira, C.D.; Müller, T.; Loosse, C.; Kolbe, K.; da Cruz e Silva, O.A.B.; Rebelo, S. Identification and Characterization of the BRI2 Interactome in the Brain. Sci. Rep. 2018, 8, 3548. [Google Scholar] [CrossRef] [PubMed]
- DuPai, C.D.; Davies, B.W.; Wilke, C.O. A Systematic Analysis of the Beta Hairpin Motif in the Protein Data Bank. Protein Sci. 2021, 30, 613–623. [Google Scholar] [CrossRef]
- Salveson, P.J.; Spencer, R.K.; Kreutzer, A.G.; Nowick, J.S. X-Ray Crystallographic Structure of a Compact Dodecamer from a Peptide Derived from Aβ 16–36. Org. Lett. 2017, 19, 3462–3465. [Google Scholar] [CrossRef]
- Hoyer, W.; Grönwall, C.; Jonsson, A.; Ståhl, S.; Härd, T. Stabilization of a Beta-Hairpin in Monomeric Alzheimer’s Amyloid-Beta Peptide Inhibits Amyloid Formation. Proc. Natl. Acad. Sci. USA 2008, 105, 5099–5104. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Yurlova, L.; Snaidero, N.; Reetz, C.; Frey, S.; Zimmermann, J.; Pähler, G.; Janshoff, A.; Friedrichs, J.; Müller, D.J.; et al. A Size Barrier Limits Protein Diffusion at the Cell Surface to Generate Lipid-Rich Myelin-Membrane Sheets. Dev. Cell 2011, 21, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Snaidero, N.; Pähler, G.; Frey, S.; Sánchez, P.; Zweckstetter, M.; Janshoff, A.; Schneider, A.; Weil, M.-T.; Schaap, I.A.T.; et al. Myelin Membrane Assembly Is Driven by a Phase Transition of Myelin Basic Proteins Into a Cohesive Protein Meshwork. PLoS Biol. 2013, 11, e1001577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name | N-Terminus | C-Terminus |
---|---|---|
Domain of Gal4, AA, Color * | Protein, AA, Color * | |
Gal4BD-MBP | N-term., 1–147, light gray | MBP-5, full, salmon/cyan |
Gal4AD-Bri23R | C-term., 768–881, dark gray | Bri2, 243–266, magenta/green |
Gal4AD-MBP | C-term., 768–881, dark gray | MBP-5, full, salmon/cyan |
Gal4BD-Bri23R | N-term., 1–147, light gray | Bri2, 243–266, magenta/green |
N. | Size # | RMSD 1, Å | Intermolecular Energy, kcal/mol Average/SD | BuriedSurface Area 2, Å | HADDOCK Score 2 | |||
---|---|---|---|---|---|---|---|---|
Total | Vdw 3 | Elec 3 | AIR 3 | |||||
Gal4BD-MBP/Gal4AD-Bri23R | ||||||||
1 | 11 | 2.2/0.8 | −313.8/56.1 | −54.6/8.5 | −259.2/55.8 | 505.6/86.7 | 2195.2/202.5 | −57.3/14.2 |
2 | 9 | 1.5/0.6 | −360.1/43.2 | −39.1/10.4 | −321.0/37.1 | 439.5/54 | 2044.9/205.0 | −48.4/16.0 |
3 | 5 | 2.9/1.6 | −354.3/68.2 | −82.4/16.7 | −271.9/55.8 | 430.5/69.5 | 3035.8/345.4 | −120.4/39.8 |
Gal4AD-MBP/Gal4BD-Bri23R | ||||||||
1 | 5 | 2.5/1.3 | −307.4/52.6 | −53.7/10.8 | −253.7/56.1 | 476.8/53.7 | 2149.4/175.3 | −97.3/13.2 |
2 | 4 | 1.2/0.8 | −152.9/10.0 | −42.6/13.4 | −110.3/3.6 | 361.0/28.6 | 2060.1/188.5 | −62.6/17.9 |
3 | 4 | 3.3/1.9 | −185.6/20.9 | −33.9/3.9 | −151.7/20.7 | 534.0/99.1 | 2005.5/148.3 | −58.5/19.5 |
MBP/Bri23R 4 | ||||||||
16 | 5 | 1.4/0.7 | −254.4/35.9 | −36.7/2.8 | −217.7/37.7 | 3643.4/255.0 | 1750.4/140.0 | 288.2/17.9 |
18 | 4 | 1.5/09 | −215.0/10.2 | −40.6/6.8 | −174.4/4.0 | 3688.6/100.5 | 1952.9/101.8 | 268.4/9.2 |
MBP/Bri23R 4 (docking with residues from the α-helices chosen as AIR) | ||||||||
19 | 7 | 1.1/05 | −128.0/31.5 | −40.6/3.9 | −87.5/31.0 | 280.9/80.4 | 1519.7/94.5 | −70.2/9.8 |
30 | 9 | 1.7/0.8 | −126.2/28.5 | −21.2/10.3 | −105.0/32.0 | 273.9/35.1 | 1514.3/57.4 | −54.7/9.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnova, E.V.; Rakitina, T.V.; Saratov, G.A.; Kudriaeva, A.A.; Belogurov, A.A., Jr. Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. Crystals 2022, 12, 197. https://doi.org/10.3390/cryst12020197
Smirnova EV, Rakitina TV, Saratov GA, Kudriaeva AA, Belogurov AA Jr. Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. Crystals. 2022; 12(2):197. https://doi.org/10.3390/cryst12020197
Chicago/Turabian StyleSmirnova, Evgeniya V., Tatiana V. Rakitina, George A. Saratov, Anna A. Kudriaeva, and Alexey A. Belogurov, Jr. 2022. "Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking" Crystals 12, no. 2: 197. https://doi.org/10.3390/cryst12020197
APA StyleSmirnova, E. V., Rakitina, T. V., Saratov, G. A., Kudriaeva, A. A., & Belogurov, A. A., Jr. (2022). Deconvolution of the MBP-Bri2 Interaction by a Yeast Two Hybrid System and Synergy of the AlphaFold2 and High Ambiguity Driven Protein-Protein Docking. Crystals, 12(2), 197. https://doi.org/10.3390/cryst12020197